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We develop and extend a line of recent work on the design of mechanisms for two-sided markets. �e markets

we consider consist of buyers and sellers of a number of items, and the aim of a mechanism is to improve

the social welfare by arranging purchases and sales of the items. A mechanism is given prior distributions

on the agents’ valuations of the items, but not the actual valuations; thus the aim is to maximise the expected

social welfare over these distributions. As in previous work, we are interested in the worst-case ratio between

the social welfare achieved by a truthful mechanism, and the best social welfare possible.

Our main result is an incentive compatible and budget balanced constant-factor approximation mechanism

in a se�ing where buyers have XOS valuations and sellers’ valuations are additive. �is is the �rst such

approximation mechanism for a two-sided market se�ing where the agents have combinatorial valuation

functions. To achieve this result, we introduce a more general kind of demand query that seems to be needed

in this situation. In the simpler case that sellers have unit supply (each having just one item to sell), we give

a new mechanism whose welfare guarantee improves on a recent one in the literature. We also introduce

a more demanding version of the strong budget balance (SBB) criterion, aimed at ruling out certain “unnatural”

transactions satis�ed by SBB. We show that the stronger version is satis�ed by our mechanisms.

Additional Key Words and Phrases: Auctions; mechanism design; market intermediation; two-sided markets;

pricing; approximation algorithms

1 INTRODUCTION
One-sided markets have been studied in economics for several decades and more recently in com-

puter science. Mechanism design in one-sided markets aims to �nd an e�cient (high-welfare)

allocation of a set of items to a set of agents, while ensuring that truthfully reporting the input data

is the best strategy for the agents. �e cornerstone method in mechanism design is the Vickrey-

Clarke-Groves (VCG) mechanism [4, 13, 23] that optimises the social welfare while providing the

right incentives for truth-telling: VCG mechanisms are dominant strategy incentive compatible
(DSIC), and in many mechanism design se�ings VCG is also individually rational (IR). �e IR

requirement demands that participating in the mechanism is not harmful to any agent. �e DSIC

requrement demands that truthfully reporting one’s preferences to the mechanism is a dominant

strategy for each agent, independently of what the other agents report.

Recently, increased a�ention has turned to the problems that arise in two-sided markets, in which

the set of agents is partitioned into buyers and sellers. In contrast with the one-sided se�ing (where

one could say that the mechanism itself initially holds the items), in the two-sided se�ing the items
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are initially held by the sellers, who have valuations over the items they hold, and who are assumed

to act rationally and strategically. �e mechanism’s task is now to decide which buyers and sellers

should trade, and at which prices. �e growing interest in two-sided markets can be a�ributed to

various important applications. Relevant examples are selling display-ads on ad exchange platforms,

the US FCC spectrum license reallocation, and stock exchanges. Two-sided markets are usually

studied in a Bayesian se�ing: there is public knowledge of probability distributions, one for each

buyer and one for each seller, from which the valuations of the buyers and sellers are drawn.

In two-sided markets, a further important requirement is strong budget balance (SBB), which
states that monetary transfers happen only among the agents in the market, i.e., the buyers and

sellers are allowed to trade without leaving to the mechanism any share of the payments, and

without the mechanism adding money to the market. A weaker version of SBB o�en considered

in the literature is weak budget balance (WBB), which only requires the mechanism not to inject

money into the market. However, it is known from the work of Myerson and Sa�erthwaite [17]

that it is generally impossible for an IR, BIC, and WBB mechanism to maximise social welfare in

such a market, even in the bilateral trade se�ing, i.e., when there is just one seller and one buyer.
1

�e practical contexts noted above need the application of two-sided market mechanisms that

can work in a combinatorial se�ing, i.e., where there are multiple distinct items in the market

and agents having possibly complex valuations over the subsets of items that they may receive.

However, we are not aware of any such mechanism that approximates the social welfare while

meeting the IR, DSIC and SBB requirements. �e purpose of this paper is to provide mechanisms

that satisfy these requirements and achieve an O (1)-approximation to the social welfare for a

broad class of agents’ valuation functions. We do, in fact, design mechanisms that work under the

assumption of the valuations being fractionally subadditive (XOS), a generalisation of submodular

functions that are contained in the class of subadditive functions.

Our results extend and improve on previous work which targeted an important special case

of a two-sided market: each seller holds a single item, items are identical, and each agent is only

interested in holding a single item. In this se�ing, the valuations of the agents are thus given

by a single number, representing the agent’s utility for holding an item. A mechanism for this

se�ing is known in the literature as a double auction. �e goal of several works on double auctions

[15, 20, 21] has been that of trading o� the achievable social welfare with the strength of the

incentive compatibility and budget balance constraints. In our present work, we investigate this

question for the much more general class of combinatorial two-sided markets.

1.1 The Model
As stated above, the set of agents is partitioned into a set of sellers, each of which is initially endowed
with a set of heterogeneous items, and a set of buyers, having no items initially. Buyers have money

that can be used to pay for items. Every agent has its own, private valuation function, which maps

subsets of the items to numbers, and agents are assumed to optimise their (quasi-linear) utility,

which is given by the valuation of the set of items that the mechanism allocates to an agent, minus

the payment that the mechanism collects from the agent. A seller will typically receive money

(instead of pay money), which we treat as a negative payment.

For each agent we are given a (publicly known) probability distribution over a set of valuation

functions, from which we assume her valuation function is drawn. �e mechanism and the other

1
�e VCG mechanism can also be applied to two-sided markets; however, in this se�ing, VCG is either not IR or it does

not satisfy WBB.
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agents have no knowledge of the actual valuation function of the i-th agent, but only of her prob-

ability distribution. �e general aim of the mechanism is to reallocate the items so as to maximise

the expected social welfare (the sum of the agents’ valuations of the resulting allocation).

Let OPT be the expected social welfare of an optimal allocation of the items. Note that this is

a well-de�ned quantity, even though computing an optimal allocation may be computationally

hard, and even though there might not exist an appropriate mechanism (satisfying IR, SBB, and

DSIC), that is guaranteed to always output an optimal allocation.

We are interested in mechanisms that satisfy IR, SBB, and DSIC (or failing that, the weaker

notion of Bayesian incentive compatibility (BIC)), and that reallocate the items in such a way that

the expected social welfare is within some constant fraction of OPT, where expectation is taken

over the given probability distributions of the agents’ valuations, and over the randomness of

the allocation that the mechanism outputs. In contrast with one-sided combinatorial auction

design (where the main challenge is polynomial-time implementability), for the two-sided case our

primary goal is to design (and thus show the existence of) IR, SBB, and DSIC/BIC mechanisms that

O (1)-approximate OPT. Such mechanisms circumvent the aformentioned impossibility result of

Myerson and Sa�erthwaite [17] by weakening the requirement of optimal social welfare to that of

approximately optimal social welfare (while nonetheless strengthening theWBB contraint into SBB).

1.2 Our Results and their Significance
�e present paper starts o� by showing that there is a straightforward technical trick that one may

apply to turn any WBB mechanism into an SBB one, with a small loss in the approximation factor.

Technically, one could e.g. apply it to the WBB mechanism of Blumrosen and Dobzinski [1] for

combinatorial exchange markets; however, the trick is unsatisfactory in practice as it essentially

consists of giving the le�over money to a random agent. �is demonstrates a weakness in the

current de�nition of SBB, which motivates the introduction of a strengthened version, that we call

direct-trade strong budget balance (DSBB).
Our goal is the design of individually rational, incentive compatible, and direct-trade strongly

budget balanced mechanisms for combinatorial two-sided markets, that achieve a constant approx-

imation to the optimal social welfare. We present two mechanisms adhering to these constraints

for general families of combinatorial two-sided markets, as summarized in the table below.

Mechanism
Buyers’

valuations

Sellers’

valuations

Approximation

ratio
IR IC BB

M1-supply XOS unit-supply 6 ex-post IR DSIC DSBB

Madd XOS additive 6 interim IR BIC DSBB

Madd additive additive 6 ex-post IR DSIC DSBB

Table 1. Summary of our results.

OurM1-supply mechanism handles the se�ing where all sellers have a single item for sale, and

buyers have fractionally subadditive (XOS) valuation functions over the set of items in the market.

OurMadd mechanism can handle the more general case where sellers have multiple items for sale

and have additive valuation functions over the items they possess, thoughMadd satis�es weaker

IC and IR notions than M1-supply. More precisely, Madd is DSIC and IR on the sellers’ side and

BIC and interim-IR on the buyers’ side. However, for the special case where buyers have additive

ACM Transactions on Economics and Computation, Vol. 1, No. 1, Article 1. Publication date: January 2017.
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valuation functions,Madd does satisfy the stronger IC and IR notions for both buyers and sellers.

In all three cases, DSBB is satis�ed (a strengthened variant of SBB), and our mechanisms achieve

an O (1)-approximation to the optimal social welfare.

To our knowledge, these are the �rst mechanisms for combinatorial two-sided markets that

simultaneously are IC, (D)SBB, IR, and approximate the optimal social welfare to within a constant

factor. Notice that with non-unit-supply sellers, a constant approximation was not previously

known even in the context of WBB or standard SBB.
2
Furthermore, we note that our mechanisms

not only work for a more general se�ing than that of [5], but also improve the approximation ratio

for double auctions from 16 to 6.

In the case ofMadd, buyers are required to answer a generalised type of demand query, in which

the mechanism gives prices for the items, and asks a buyer which bundle she would like if, for
each item in that bundle, she were to receive it with probability 1/2. Our usage of these queries
could be criticised for imposing an excessive cognitive burden on the agents. Although we are not

concerned here with that issue (we model agents as computationally unbounded as well as rational),

our apparent need for such queries highlights the general question of how agents’ computational

limitations a�ect what outcomes can be achieved.
3

1.3 Overview of the Techniques
�e main challenge in two-sided market design is to �nd prices that stimulate truthful behavior

and are suitable for both buyers and sellers, which have contrasting interests. In fact, even in the

simplest imaginable se�ing – the bilateral trade – it is impossible to design a socially e�cient

mechanism satisfying IR, BIC and WBB [17].

A �rst feature all our mechanisms share to guarantee DSBB is being a generalised version

of two-sided sequential posted price mechanisms (SPMs) [5] for double auctions to combinatorial

two-sided markets. �ese mechanisms assign �xed, pre-computed prices to each item so that these

prices are the only ones for which the items can be traded. �is yields a sequence of bilateral trades

in which the amount paid by the buyer equals the amount received by the seller.

While one-sided SPMs provide IR and IC for free, two-sided SPMs require additional conditions

to be met. In combinatorial two-sided markets, if prices are �xed for every single item, it cannot

be guaranteed that a bundle of items chosen by a buyer will surely be allocated to her, in case at

that point the corresponding seller has not been queried yet about her willingness to sell the item.

Symmetrically, when a seller would communicate to an SPM mechanism which bundle of items she

is willing to sell given the proposed item prices, then the mechanism cannot guarantee to the seller

that this bundle will surely be traded in case it has not yet queried the buyers which item sets they

demand. �e situation is further complicated by the fact that there may exist strong interdependen-

cies among items within an agent’s valuation function, which implies that the choice of bundle that

a buyer requests (or that a seller makes available) depends strongly on the set of items that the sellers

are prepared to sell (or that the buyers request). �erefore, a mechanism designer needs to be careful

in proposing prices that are suitable for both sides of the market, and needs to be particularly careful

in selecting the side of the market to process �rst. �e choice that the mechanism made here can de-

pend crucially on the types of valuation functions of the agents. Indeed, onemain di�erence between

our two mechanisms is the order in which we process each side of the market. Anyway all the mech-

anisms proposed in this paper are oblivious to the order in which sellers and buyers are presented.

2
�e mechanism proposed in [1] achieves a constant approximation to the optimal social welfare if the size of the initial

endowment of each agent is bounded by a constant; otherwise the approximation factor is of logarithmic order.

3
�is question also applies to standard demand queries [10], which may be computationally hard to answer or may involve

a high communication complexity, depending on the computational model used and on the way in which the valuation

functions are represented.
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To additionally achieve a mechanism that results in a high social welfare, we exclude some

items from trade and introduce randomness into the mechanism. �e main idea is to suppose

that all the items are available to the set of buyers as in a one-sided auction, and to compute the

expected marginal contribution of an item to the social welfare [11] under this assumption. �en,

the mechanism compares this contribution to the seller’s value for the item: if the seller’s value is

much higher, then we exclude the item from trade and leave it with the seller. �us, the mechanism

only trades items that are of relatively high expected value to the buyers’ side of the market.

To estimate the expected marginal contribution of an item to the social welfare,M1-supply and

Madd make use of an algorithm A that, given a buyers’ valuation pro�le and a set of items, allocates

the items to the buyers, without considering the sellers and their valuations. If one is not interested

in achieving a low runtime, one can take A to be an exact algorithm that outputs an optimal allo-

cation. Alternatively, by using a technique of Feldman et al. [11], one may take for A a polynomial

time approximation algorithm and combine this with sampling a su�ciently number of valuation

pro�les from the distribution, in order to estimate the expected marginal contribution of an item

to the social welfare accurately in polynomial time. �is yields polynomial-time implementable ap-

proximation mechanisms. In particular, in case A is a polynomial time α-approximation algorithm,

it will run within time POLY (1/ϵ ,n,m), and approximate the optimal social welfare within anO (α )
multiplicative factor and an ϵ additive term, where ϵ is a parameter that results from the sampling

procedure. �is technique is described in further detail in [11] and works for distributions with

bounded support.

Randomness is added to make sure every seller independently sells her bundle of items with a

�xed probability of 1/2; which is used to bound the social welfare loss on both sides of the market

by no more than a constant factor.

1.4 Related Work
Due to the impossibility result of Myerson and Sa�erthwaite [17], no two-sided mechanism can

simultaneously achieve optimal social welfare and satisfy the BIC, IR, WBB constraints, even in

the simple bilateral trade se�ing. Follow-up work thus had to focus on designing mechanisms that

trade o� among these properties.

�e following papers of the Economics literature studied the convergence rate to the optimal

social welfare as a function of the number of agents when all sellers’ and buyers’ valuations are

independently respectively drawn from identical regular distributions, while satisfying IR and

WBB. Gresik and Sa�erthwaite [12] showed that duplicating the number of agents by τ results in a

market where the optimal IR, IC, WBB mechanism’s expected social welfare approximation factor

approaches 1 at a rate of O (logτ/τ 2). Rustichini et al. [18] and Sa�erthwaite and Williams [21]

investigated a family of non-IC double auctions, and study the ine�ciency and the extent to which

agents misreport their valuations in these double auctions. We remark that these results only hold

for unit-demand buyers and unit-supply sellers, identical valuation distributions, and the hidden

constants in these asymptotic results depend on the speci�c valuation distributions. In contrast,

our interest is in �nding universal constant approximation guarantees for combinatorial se�ings

and not necessarily identical distributions.

In McAfee [15], an IC, WBB, IR double auction is proposed that extracts at least a (1 − 1/`)
fraction of the maximum social welfare, where ` is the number of traders in the optimal solution.

Optimal revenue-maximising Bayesian auctions were characterized in Myerson [16], which

provides an elegant tool applicable to single-parameter, one-sided auctions. Various subsequent

articles dealt with extending these results. Related to our work is the work of Deng et al. [6], which

studied maximising the auctioneer’s revenue in Bayesian double auctions. �e same objective was

ACM Transactions on Economics and Computation, Vol. 1, No. 1, Article 1. Publication date: January 2017.
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studied by Deshmukh et al. [7] yet in the prior-freemodel. In [22], mechanisms for some special cases

of two-sided markets are presented that work by a combination of random sampling and random

serial dictatorship. �e mechanism is IR, SBB and DSIC and its gain from trade approaches the
optimumwhen the market is su�ciently large. Mechanisms that are IC, IR, and SBB have been given

for bilateral trade in [1]. In addition to this, the authors proposed a WBB mechanism for a general

class of combinatorial exchange markets. We will use this result to construct our initial mechanism.

Sequential posted price mechanisms (SPMs) in one-sided markets have been introduced by Sand-

holm and Gilpin [19] and have gained a�ention due to their simplicity, robustness to collusion, and

their easy implementability in practical applications. One of the �rst theoretical results concerning

SPMs is an asymptotic comparison among three di�erent types of single-parameter mechanisms

[2]. �ey were later studied by Chawla et al. [3] for the objective of revenue maximisation. Ad-

ditionally, Kleinberg and Weinberg [14] and Dü�ing and Kleinberg [8] strengthen these results

further. Very relevant to our work is the paper of Feldman et al. [11], showing that sequential

posted price mechanisms can approximate social welfare up to a constant factor of 1/2 for XOS
valuation functions if the published price for an item is equal to the expected additive contribution

of the item to the social welfare.

A line of recent work addressed the problem of approximating social welfare in double auctions

and related problems under the WBB requirement. Dü�ing et al. [9] indeed proposed a greedy

strategy that combines the one-sided VCG mechanism, independently applied to buyers and to sell-

ers with the trade-reduction mechanism of McAfee [15]. �ey obtain IR, DSIC, WBB mechanisms

with a good approximation of the social welfare, for knapsack, matching and matroid allocation

constraints. More recently, Colini-Baldeschi et al. [5] presented the �rst double auction that satis�es

IR, DSIC, and SBB, and approximates the optimal (expected) social welfare up to a constant factor.

�ese results hold for any number of buyers and sellers with arbitrary, independent distributions on

valuations. �e mechanisms are also extended to the se�ing where there is an additional matroid

constraint on the set of buyers who can purchase an item.

2 PRELIMINARIES
As a general convention, we use boldface notation for vectors and use [a] to denote the set {1, . . . ,a}.
We will use I(X ) to denote the indicator function that maps to 1 if and only if event/fact X holds.

2.1 Markets
A two-sided market comprises a set of two distinct types of agents: the sellers, who initially hold

items for sale, and the buyers, who are interested in buying the sellers’ items. All agents possess

a monotone and normalized valuation function, mapping subsets of items to R≥0.
4
Formally, we

represent a two-sided market as a tuple (n,m,k,I ,G,F ), where [n] denotes the set of buyers, [m]

denotes the set of sellers, [k] denotes the set of all items for sale, I := (I1, . . . , Im ) is a vector of (mu-

tually disjoint) sets of items called the initial endowment, where Ij is the set of items that is initially

held by seller j ∈ [m]. It holds that

⋃m
j=1 Ij = [k]. Vectors G = (G1, . . . ,Gn ) and F = (F1, . . . ,Fm )

are vectors of probability distributions, from which the buyers’ and sellers’ valuation functions

are assumed to be drawn: �e valuation function of buyer i ∈ [n] is drawn from distribution Gi ,

and similarly the valuation function of seller j ∈ [m] is drawn from distribution Fj .
A (combinatorial) exchange market is a more general version of the above de�ned two-sided

market where an agent can act as both a buyer and a seller. �us, everyone may initially own items

4
By a monotone valuation function v we mean that v (S ) ≥ v (T ) for all sets of items T ⊆ S . �at is, ge�ing more items

cannot decrease an agent’s overall valuation. By normalized we mean that v (∅) = 0.
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and may both sell and buy items. As a result, in this se�ing, we override the notation and simply

use n to denote the total number of agents. Formally, an exchange market is thus a tuple (n,k,I ,F ).
In two-sided markets, sellers are assumed to only value items in their initial bundle and are

therefore not interested in buying from other sellers, i.e., ∀j ∈ [m] and ∀S ⊆ [k],w j (S ) = w j (S ∩ Ij ).
Conversely, in exchange markets, no such restriction on the valuation functions exists.

�roughout the paper, we reserve the usage of the le�er i to denote a single buyer, the le�er

j to denote a single seller, and the le�er ` to denote a single item. Moreover, we use vi to denote

buyer i’s valuation function andw j to denote seller j’s valuation function.

2.2 Mechanism Design Goals
�e following discussion is speci�c to two-sided markets (the main focus of this paper), but these

concepts can be extended straightforwardly to combinatorial exchange markets. Given a two-sided

market, our aim is to redistribute the items among the agents so as to maximise the social welfare
(the sum of the agents’ valuations). An allocation for a two-sided market (n,m,k,I ,G,F ) is a pair
of vectors (X ,Y ) = ((X1, . . . ,Xn ), (Y1, . . . ,Ym )) such that the union of X1, . . . ,Xn ,Y1, . . . ,Ym is [k],
and X1, . . . ,Xn ,Y1, . . . ,Ym are mutually disjoint. When discussing a given two-sided market, we

will denote by A the set of all allocations for that market.

Redistribution of the items is done by running a mechanismM. A mechanism interacts with and

receives input from the agents, and outputs an outcome, consisting of an allocation (X ,Y ) and a

payment vector (ρB ,ρS ) ∈ Rn × Rm , where ρB
refers to the buyers’ vector of payments and ρS to

the sellers’ one. An outcome is therefore a tuple (X ,Y ,ρB ,ρS ). Note that when an agent is charged

a negative payment, this should be interpreted as an agent receiving money. �e payment of a

seller is usually negative in a reasonable two-sided market mechanism, and this is also the case

for the mechanisms proposed in the present paper.

Agents are assumed to maximise their utility, which is de�ned as the valuation for the bun-

dle of items that they possess with respect to the allocation vector, minus the payment charged

by the mechanism. In particular, the utility uBi (vi , (X ,Y ,ρ
B ,ρS )) of a buyer i ∈ [n] with valu-

ation function vi is vi (Xi ) − ρ
B
i , whereas for a seller j ∈ [m] with valuation function w j it is

uSj (w j , (X ,Y ,ρB ,ρS )) = w j (Yj ) − ρ
S
j .
5

Furthermore, agents are assumed to be fully rational, so that they will strategically interact with

the mechanism to achieve their goal of maximising utility. Our goal is to design a mechanism

such that there is a dominant strategy or Bayes-Nash equilibrium for the agents under which the

mechanism returns an allocation with a high social welfare. For an allocation (X ,Y ), the social
welfare SW(X ,Y ) is de�ned as

SW(X ,Y ) =
∑
i ∈[n]

vi (Xi ) +
∑
j ∈[m]

w j (Yj ).

We now describe three main economic properties our mechanisms must satisfy. For each of these

constraints we �rst introduce the strictest version and then a more relaxed one. We aim to satisfy

the strictest versions, whenever possible.

• Incentive compatibility (IC)6

5
Note that Yj represents the bundle of items that remains in the seller’s possession a�er execution of the mechanism.

6
Technically, as can be inferred, the DSIC properties are reserved for direct revelation mechansims, i.e., where the buyer
solely interacts with the mechanism reporting her valuation function. It is well-known that mechanisms admi�ing a

dominant strategy can be transformed into DSIC direct revelation mechanisms, and those with a Bayes-Nash equilibrium

can be transformed into BIC direct revelation mechanisms. �is way, the DSIC and BIC de�nitions naturally extend to

non-direct revelation mechanisms.
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– Dominant strategy incentive compatibility (DSIC): It is a dominant strategy for every

agent to report her true valuation sincerely. I.e., for every agent i and for every vector

of valuations of all other players, it is impossible for agent i to increase her expected

utility by misreporting her valuation.

– Bayesian incentive compatibility (BIC): It is a Bayes-Nash equilibrium (BNE) for the

agents to truthfully report their valuations to the mechanism. I.e., each agent i max-

imizes her expected utility by truthfully reporting her valuation if all other players

also truthfully report their valuations.

• Individual rationality (IR)
– Ex-post individual rationality (ex-post IR): It is not harmful for any agent to participate

in the mechanism, i.e., there is guaranteed to be a strategy for an agent that yields the

agent a utility that is not less than her initial utility. (�e initial utility of a seller with

bundle Ij isw j (Ij ), and the initial utility of a buyer is vi (∅) = 0.)

– Interim individual rationality (interim IR): �ere is a strategy for each agent that yields

her an expected utility that is not less than her initial utility (where expectation is over

the random outcome of the mechanism, resulting from internal randomness of the

mechanism and randomized strategies adopted by the agents).

• Budget balance (BB)
– Strong Budget Balance (SBB):�e sum of all agents’ payments output by the mechanism

is equal to zero. Conceptually, this means that no money ends up at an external party,

and no external party needs to subsidise the mechanism.

– Weak Budget Balance (WBB): �e sum of all payments is at least zero. In two sided-

markets, this generally means that the buyers’ payments are at least as large as the

payments received by the sellers. No external party needs to subsidise the mechanism.

For valuation pro�les (v,w ), OPT(v,w ) := max{SW(X ,Y ) : (X ,Y ) ∈ A} denotes the optimal
social welfare. �e expected optimal social welfare is the value OPT = Ev,w [OPT(v,w )]. We say

that a mechanism M α-approximates the optimal social welfare for some α > 1 if and only if

OPT ≤ αEv,w [SW(M(v,w ))]. Our goal is to �nd mechanisms that α-approximate the optimal

social welfare for a low α , are DSIC (or BIC), SBB, and ex-post IR (or interim IR).

2.3 Valuation Functions
We will consider probability distributions over the following classes of valuation functions. Let

v : 2
[k] → R≥0 be a valuation function. �en,

• v is additive if and only if there exist numbers α1, . . . αk ∈ R≥0 such that v (S ) =
∑

j ∈S α j
for all S ⊆ [k].

• v is fractionally subadditive (or XOS) if and only if there exists a collection of additive

functions a1, . . . ,ad such that for every bundle S ⊆ [k] it holds that v (S ) = maxi ∈[d] ai (S ).
• v is subadditive if and only if for for all S ,T ⊆ [k] it holds that v (S ∪T ) ≤ v (S ) +v (T ).

It is easy to see that every additive function is a XOS function. Further, it is well-known that the

class of submodular functions are contained in the class of XOS functions, and XOS functions are

contained in the class of the subadditive functions.

3 AN INITIAL MECHANISM AND DIRECT TRADE STRONG BUDGET BALANCE
Blumrosen and Dobzinski [1] present a mechanism for exchange markets with subadditive valuation

functions. �ey prove the following for this mechanism, which we nameMbd.
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Theorem 3.1 (Blumrosen and Dobzinski [1]). Mechanism Mbd is a DSIC, WBB, ex-post IR
randomized direct revelation mechanism that 4H (s )-approximates the optimal social welfare for com-
binatorial exchange markets (n,k,I ,F ) with subadditive valuation functions, where s = min{n, |Ii | :
i ∈ [n]} is the minimum of the number of agents and the number of items in an agent’s initial
endowment, and H (·) denotes the harmonic numbers.

In particular, this mechanism gives us a constant approximation factor if the number of starting

items of the agents is bounded by a constant.

Now consider a mechanismMsbb that selects an agent i ∈ [n] uniformly at random, runsMbd

on the remaining agents, and allocates the surplus money ofMbd to agent i . We are then able to

prove the following.

Theorem 3.2. MechanismMsbb is DSIC, ex-post IR, SBB, and achieves an 8nH (s )/(n−1)-approximation
to the optimal social welfare for exchange markets with subadditive valuations and at least 3 agents.7

Because of space constraints, the proof of this theorem and of various other results in the re-

mainder of this paper, has been omi�ed. �is yields an ex-post IR, SBB, DSIC mechanism that

O (1)-approximates the social welfare if the number of items initially posessed by an agent is

bounded by a constant. �e principle that we used to construct MechanismMsbb can more gener-

ally be used to turn any WBB mechanism into an SBB one, while preserving the DSIC and ex-post

IR properties. It also reveals a problematic aspect of the notion of SBB: it allows for agents to

receive money, while they are not involved in any trade. �is motivates a strengthened notion of

strong budget balance, which we call direct trade strong budget balance.

De�nition 3.3. A mechanism for an exchange market satis�es direct trade strong budget balance
(DSBB) if and only if the outcome it generates can be achieved by a set of bilateral trades, where

each trade consists of a reallocation of an item from an agent i to an agent j, and a monetary

transfer from agent j to agent i . Moreover, each item may only be traded once.

DSBB strengthens the traditional SBB notion and seems to be a reasonable requirement in most

two sided markets and exchange markets se�ings. Note that the way in which we strengthen SBB

is rather mild: DSBB still allows an arbitrarily large amount of money to be transfered from one

agent to another as long as at least one item is exchanged in the opposite direction. DSBB does

not even require such a bilateral exchange to be pro�table for both parties, but does nonetheless

seem to rule out the rather unsatisfactory type construction such as the one used inMsbb.

It can be seen that MechanismMsbb does not satisfy DSBB. In the remainder of the paper we

will proceed to design mechanisms for two-sided markets that do satisfy DSBB.
8
Moreover, two

of our results provide an O (1)-approximation even in se�ings whereMsbb would only provide an

approximation factor of logarithmic order.

4 A MECHANISM FOR UNIT-SUPPLY SELLERS AND XOS BUYERS
In this section we present a DSIC, ex-post IR, and DSBBmechanism for two-sidedmarkets, when sell-

ers initially possess a single item and buyers have XOS valuation functions. �ismechanism achieves

a constant approximation to the optimal social welfare. In this se�ing, we use [k] to denote both the

set of items and the set of sellers, where item j is owned by seller j (so Ij = {j} for all j ∈ [k]). For
each seller j ∈ [k], we then treat Fj as a distribution overR≥0 instead of a distribution over functions.
We assume throughout this section that (n,k,k,I ,G,F ) is a given two-sided market, on which

we run the mechanism to be de�ned. For an allocation (X ,Y ) ∈ A, we shall use the notation

7
For two agents, it is straightforward to come up with alternative mechanisms that have the desired properties.

8
We note that the double auctions given in [5] also satisfy the DSBB property.
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SWB ,SWS
to respectively denote the buyers’ and the sellers’ contribution to the social welfare, i.e.,

SWB (X ,Y ) :=
n∑
i=1

vi (Xi ),

SWS (X ,Y ) :=
k∑
i=1

w j (Yj ) =
k∑
j=1

w j I[j ∈ Yj ].

(1)

Our mechanism requires �xing a price for every item in the market. For a bundle of available

items Λ and an item price vector p = (p1, . . . ,pk ) ∈ R
k
≥0
, we de�ne the demand correspondence of

buyer i ∈ [n] with valuation function vi as

D (vi ,p,Λ) :=


S ⊆ Λ : vi (S ) −

∑
j ∈S

pj ≥ vi (T ) −
∑
j ∈T

pj for all T ⊆ Λ


,

i.e.,D (vi ,p,Λ) is the set of bundles of items inΛ that maximise i’s utility under the given item prices.

For a buyer i with valuation function vi , we de�ne the additive representative function for bundle

T ⊆ [k] as any additive function a(vi ,T , ·) : 2
[k] → R≥0 such that vi (T ) = a(vi ,T ,T ), and vi (S ) ≥

a(vi ,T ,S ) for all S ⊆ [k]. �e additive representative function of a bundle is guaranteed to exist for

each buyer i and for each valuation function in the support ofGi , by the de�nition of XOS functions.

4.1 Mechanism
Let A be an algorithm that, given a buyers’ valuation pro�le v and a set of items [k], allocates
the items to the buyers, without considering the sellers and their valuations. A can either be an

exact algorithm that outputs an optimal allocation of [k] to the buyers (if one is not interested

in the runtime) or an approximately optimal one (in the case that one insists on polynomial-time

implementability). Our mechanism uses A as a black-box for the computation of item prices.

Let X all (v ) = (X all

1
(v ), . . . ,X all

n (v )) (where the superscript “all” stands for “allocation”) be the

output allocation of A(v ). Let SW(X all (v )) be the total social welfare of the allocation X all (v ).
We de�ne for each item j ∈ [k] its contribution SWB

j (v ) to the social welfare SW(X all (v )) as follows:

if there exists a buyer i that receives item j in allocation X all

i (v ), then SWB
j (v ) = a(vi ,X

all

i (v ), {j}).

Otherwise, if j is not allocated to any buyer in X all

i (v ), then SWB
j (v ) = 0.

�is notion allows us to make a distinction between high welfare items and low welfare items. An
item j ∈ [k] is said to have high welfare with respect to SW(X all

i (v )) if and only if Ev [SWB
j (v )] ≥

4E[w j ], i.e., the expected social welfare contribution of j if we would allocate j according to X all (v )
is at least four times as high as the social welfare that results from leaving item j with its seller.

Formally, let H be the set of high welfare items, i.e., H := {` ∈ [k] : E[SWB
` (v )] ≥ 4E[w j ]},

and let L be the set of low welfare items, i.e. L := [k] \ H . For each high welfare item j ∈ H , the

mechanism makes use of the following associated item price pj :

pj :=
1

2

Ev [SWB
j (v )].

Observe that pj ≥ 2E[w j ] for all j ∈ H , by our de�nition of high welfare items.

�e reason why H is chosen in such a way is twofold: �rst, the items in L if kept by their sellers

provide a welfare loss of at most a constant factor; second, every item in H is guaranteed to be sold

(if sold) at a high price, to make sure that the buyer receiving the item has a high valuation for it.

Our (randomized) mechanism does the following. First, it considers the sellers with an item in

H (in any order) and asks each of them whether they would sell their item for a price of pj . As

ACM Transactions on Economics and Computation, Vol. 1, No. 1, Article 1. Publication date: January 2017.



Approximately E�icient Two-Sided Combinatorial Auctions 1

mentioned above, by de�nition of the prices, every seller j ∈ H accepts the price with probability

at least 1/2, by Markov’s inequality (recall that pj ≥ 2E[w j ] for all j ∈ H ).

Tomake sure that this probability is exactly 1/2, the seller j is only given the opportunity to sell her
item at the pricepj with probabilityqj such that (in expectation) the o�er is acceptedwith probability
exactly 1/2. Formally this means that the mechanism makes an o�er to the seller j with probability

qj :=
1

2Fj (pj )
, where Fj (pj ) = Pr[w j ≤ pj ].

An item inH is considered to be “in the market” if the corresponding seller accepts the mechanism’s

o�er. A�er the mechanism has made the o�ers to the sellers of H , it knows which items are in the

market and then asks each buyer (sequentially, in any order) for her favorite bundle of items among

those items that are still in the market. If an item j gets requested by a buyer, then j is transferred
from its corresponding seller j, and the buyer pays pj to seller j. Item j is then removed from the

set of items in the market, and the mechanism proceeds to the next buyer.

We call the mechanism sketched aboveM1-supply, which we now present more precisely:

(1) Let H := {j ∈ [k] : Ev [SWB
j (v )] ≥ 4E[w j ]}.

(2) For all j ∈ H , set pj :=
1

2
Ev [SWB

j (v )].

(3) Let Λ1 := ∅,Xi := ∅ for all i ∈ [n] and Yj := {j} for all j ∈ [k].
(4) For all j ∈ H :

(a) Set qj := 1/(2Pr[w j ≤ pj ]).
(b) With probability qj , o�er payment pj in exchange for her item.

(c) If j accepts the o�er, set Λ1 := Λ1 ∪ {j}.
(5) For all i ∈ [n]:

(a) Buyer i chooses a bundle Bi ∈ D (vi ,p,Λi ) that maximises her utility.

(b) Allocate the accepted items to buyer i , i.e., Xi := Bi and Yj := ∅ for all j ∈ Bi .
(c) Remove the selected items from the available items, i.e., Λi+1 := Λi \ Bi .

(6) Return the outcome consisting of allocation (X = (X1, . . . ,Xn ),Y = (Y1, . . . ,Yk )) and payments

ρ = (ρB ,ρS ), where ρBi =
∑
j ∈Xi pj for i ∈ [n] and ρ

S
j = −pj I[Yj = ∅] for j ∈ [k].

Note that Algorithm A is only used in the �rst steps of mechanismM1-supply, where Ev [SWB
j (v )]

is computed. Let α be the factor by which A is guaranteed to approximate the social welfare of

the buyers.

4.2 Results
Now, we are ready to present the main result of this section:

Theorem 4.1. M1-supply is ex-post IR, DSIC, DSBB, and (2 + 4α )-approximates the optimal social
welfare.

In particular, taking for A an optimal algorithm (i.e., α = 1), we obtain that there exists a

mechanism that is ex-post IR, DSIC, DSBB, and 6-approximates the optimal social welfare. As

mentioned in Section 1.3, one may alternatively take for A a polynomial time α-approximation

algorithm and use the technique of [11], to obtain a mechanism with runtime POLY (1/ϵ ,n,m) that
approximates the optimal social welfare within a 2+ 4α multiplicative factor and an ϵ additive term.

We split the proof of �eorem 4.1 into two lemmas that separately bound the sellers’ and the buy-

ers’ relative contributions to the social welfare. We use the notation OPT as de�ned in Section 2, and

we use ALG to denote the expected social welfare of the mechanism, i.e., Ev,w [SW(M1-supply (v,w ))].
Moreover, the superscripts S ,B respectively denote the sellers’ and buyers’ contributions to the social

welfare, e.g., OPT = OPT
S + OPTB and ALG = ALG

S + ALGB
, consistent with the notation of (1).
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�e following lemma is a simple consequence of the fact that M1-supply lets every seller in H
accept an o�er with probability exactly 1/2.

Lemma 4.2. If every seller j ∈ H puts her item into the market with probability exactly 1/2, then

2ALG
S ≥

k∑
j=1

E[w j ] ≥ OPT
S .

Proof. �e second inequality is trivial, so we focus on the �rst inequality. First, observe that

Pr[w j > pj ] ≤ Pr[w j > 2E[w j ]] <
1

2

,

where the �rst inequality holds because j ∈ L, and the second inequality follows by Markov’s

inequality. �us, with probability at least 1/2 a seller j is happy to sell her item at price pj . But every
seller receives an o�er from the mechanism with probability qj := 1/(2Pr[w j ≤ pj ]), so every seller

in H accepts to trade with probability exactly 1/2. �is implies that every seller j ∈ H contributes

in expectation at least E[w j ]/2 to the social welfare. Moreover, every seller in L never trades, so

that such a seller contributes her full expected valuation to the expected social welfare. �

Next, we provide a more di�cult bound that relates ALG
B
and ALG

S
to OPT

B
.

Lemma 4.3. �e buyers’ contributions to the optimal social welfare is bounded by

4αALGB + 4αALGS ≥ OPT
B .

Intuitively, Lemma 4.3 uses two main ingredients:

• the partition of the items between high-welfare (H ) items and low-welfare items (L), and
• the de�nition of SWB

j (v ) w.r.t. a one-sided (approximation) algorithm A.

�e la�er tells us that the sum of the expected contributions of all the items, i.e.

∑k
j=1 E[SW

B
` (v )],

is an upper-bound on OPT
B/α . From the former we know that:

• the sellers do not trade items in L, and this is enough to ensure that their contribution to

the expected social welfare is greater than a constant fraction of the expected contribution

of the items in L, i.e. ALGS > 1

4

∑
j ∈L E[SWB

j (v )]. Moreover,

• the only items that the agents can trade are those that have a high welfare w.r.t. SW(X all

i (v )).
From that we can infer that the contribution of the buyers to the expected social welfare

is greater than a constant fraction of the expected contribution of the items in H , i.e.

ALG
B > 1

4

∑
j ∈H E[SWB

j (v )].

By combining these bounds, the claim of Lemma 4.3 follows. �eorem 4.1 is then obtained

straightforwardly from Lemma 4.2 and Lemma 4.3.

Proof of Theorem 4.1. �e bound on the approximation ratio follows from the sum of the

inequalities of Lemma 4.2 and Lemma 4.3. Moreover, it is a dominant strategy for a seller to accept

if and only if the payment o�ered to her exceeds her valuation, and it is a dominant strategy for

a buyer to choose a utility-maximising bundle for the items and item prices o�ered to her. �us,

when viewed as a direct revelation mechanism,M1-supply is DSIC. It is clear that participating in

the mechanism can never lead to a decrease in utility for both buyers and sellers, and therefore

the mechanism is also ex-post IR. Lastly, it is straightforward to see that the mechanism is DSBB,

as the de�nition ofM1-supply which we gave in terms of sequential posted pricing naturally yields

us the required set of bilateral trades. �
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5 A MECHANISM FOR ADDITIVE SELLERS AND XOS BUYERS
We now consider the se�ing in which sellers may own multiple distinct items and have an additive

valuation function over them. We design a DSBB mechanism that is DSIC and ex-post IR on the

sellers’ side, and BIC and interim IR on the buyers’ side. At the end of the section we show that, in

the case that both buyers and sellers have additive valuation functions, the mechanism we present

is DSIC and ex-post IR on both sides of the market.

We assume throughout this section that (n,m,k,I ,G,F ) is a given two-sidedmarket with XOS buy-

ers and additive sellers, on which we run the mechanism to be de�ned. Like in the previous section,

the buyers are still assumed to have XOS valuation functions over the items. Since now the number

of items and sellers is di�erent in general, we usem to denote the number of sellers and k for the

number of items. �e valuationw j of a seller j is now an additive function. We reuse the following

notation from Section 4: the allocation (X all

1
(v ), . . . ,X all

n (v )) returned by an allocation algorithm A
on inputv returns an allocation of [k] to [n]. We let α ≥ 1 again denote the approximation factor by

whichA approximates the social welfare. For XOS valuationvi and bundleT ⊆ [k] we use a(vi ,T , ·)
to denote the additive representative function of vi for T . Also we use the buyers’ social welfare

contribution SWB
` (v ) for item ` ∈ [k] and buyers’ valuation pro�lev , as de�ned in Section 4.

Furthermore, we de�ne the sellers’ social welfare contribution SWS
`
(w ) for item ` ∈ Ij and sellers’

valuation pro�le w as SWS
`
(w ) := w j ({`}). Due to the fact that for j ∈ [m], w j is an additive

function, there is no need for de�ning the notion of an additive representative function for a seller.

5.1 Mechanism
We aim to design a BIC, interim IR, and DSBB mechanism that approximates the optimal social

welfare within a constant. We propose the following mechanism, which we refer to asMadd. We let

Hj := {` ∈ Ij : E[SWB
` (v )] ≥ 4E[SWS

`
(w )]} and Lj := Ij \Hj for all j ∈ [m], and we letH :=

⋃m
j=1Hj

and L := [k] \ H denote the sets of high-welfare items and low-welfare items, respectively. Our

mechanism will only allow trading items in H . We de�ne for ` ∈ H the item price

p` :=
1

2

E[SWB
` (v )],

similar to what we did forM1-supply.

An essential di�erence betweenMadd andM1-supply is that the order in which buyers and sellers

are processed is reversed. Mechanism Madd roughly works as follows. It �rst asks every buyer

which set of items it would like to receive from those items in H that have not been requested

yet. �en Madd o�ers every seller j ∈ [m] a payment in exchange for the subset of all items in

Ij that have been requested. �is o�er is made with probability qj , chosen in such a way that

the requested items of seller j are transferred to the buyers with probability 1/2. �e items of

the sellers accepting the o�er are transferred to the buyers for the corresponding item prices.

Buyers act strategically, and will request a bundle of items that maximises their expected utility,

knowing that the item sets requested from each seller will be assigned to them with probabil-

ity 1/2.9 In our mechanism, the sellers will each have a dominant strategy, while the buyers’

aformentioned behaviour relies on the sellers playing their dominant strategies. �is reliance

results in a BIC (rather than a DSIC) mechanism. Below we describe the mechanism in more

detail and we subsequently provide an example of the mechanism’s execution on a simple in-

stance.

9
Buyers may need to make complex calculations in order to establish which bundle maximises her expected utility.
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(1) For ` ∈ [k], compute E[SWB
`
(v )] and E[SWS

`
(w )].

(2) For all j ∈ [m], compute Hj .

(3) Compute H and L.
(4) Let Λ1 := H , Xi := ∅ for all i ∈ [n], and Yj := Ij for all j ∈ [m].

(5) For each buyer i ∈ [n]:
(a) Ask buyer i to select an expected-utility maximising bundle Bi ⊆ Λi given the prices

{p` : ` ∈ Λi } from the set of available items Λi (where the expectation is taken w.r.t. the

randomness of the valuations and the mechanism).

(b) Update the set of available items Λi+1 := Λi \ Bi .
(6) Let B :=

⋃n
i=1 Bi be the set of all items demanded by the buyers.

(7) For each seller j ∈ [m]:

(a) Let Sj := B ∩ Hj be the set of items owned by seller j that are demanded.

(b) Let p (Sj ) :=
∑

`∈Sj p` and let qj = 1/(2Pr[w j (Sj ) ≤ p (Sj )]).

(c) With probability qj , o�er payment p (Sj ) in exchange for the bundle Sj . Otherwise, skip this

seller.

(d) If the seller accepts the o�er, allocate each items in Sj to the buyer that requested it (i.e.,

remove Sj from Yj and add Sj ∩ Bi to Xi for all i ∈ [n])
(8) Return the outcome consisting of allocation (X = (X1, . . . ,Xn ),Y = (Y1, . . . ,Yk )) and payments

ρ = (ρB ,ρS ), where ρBi =
∑

`∈Xi p` for i ∈ [n] and ρ
S
j =
∑

`∈Ij \Yj −p` for j ∈ [m].

Notice the mechanismMadd runs in polynomial time, but it makes use of a variant of a standard

demand query in which the mechanism gives prices for the items, and asks a buyer which bundle

she would like if, for each item in that bundle, she were to receive it with probability 1/2. �is places

a heavier computational and cognitive burden on the agent than with standard demand queries.

We will not address in the present paper the complexity aspects of the buyer’s task to answer such

queries, though we believe that it is an interesting open question to investigate.

�e following example illustrates some important aspects of Madd, and the strategies of the

buyers under a BNE.

Example 5.1. �ere is one buyer and two unit-supply sellers. Each seller has one item. �e

buyer has two XOS valuation functions v1 and v2, each chosen with probability 1/2. Valuation v1
is composed of 3 additive functions a1, a2, and a3, i.e., v1 (S ) = max{a1 (S ),a2 (S ),a3 (S )}. Valuation
v2 consists of a single additive function a4. Each seller j has a valuation function w j = 0. Recall

that a function a is additive if there exists α1, . . . ,αk such that a(S ) =
∑

j ∈S α j for all S ⊆ [k]. �e

functions a1 to a4 are described in the table below by listing the values α1 and α2.

Function item 1 (α1) item 2 (α2)

a1 0 2

a2 8 0

a3 7 2

a4 1 6

Let us compute the prices o�ered by the mechanismMadd when A is an optimal algorithm. �us,

we need to compute the expected contribution to the optimal social welfare of every item. First,

notice that the optimum allocates the items 1 and 2 to the buyer when her valuation is v1. In this

case the contribution to the optimal social welfare of item 1 is 7, and the contribution of item 2

is 2. Similarly, if the buyer has valuation v2, the optimum still allocates items 1 and 2 to her, but

in this case the contribution to the optimal social welfare of item 1 is 1, and the contribution of

item 2 is 6. �us, the expected contribution of every item to the optimal social welfare is 4, i.e.,
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E[SWB
j (v )] = 4 for all j = 1,2. Since the price pj of each item is de�ned to be half of the expected

contribution to the optimal social welfare, pj = 2 for all the items.

When the mechanism asks a buyer to select a bundle that maximizes her expected utility, the

buyer has to answer by taking into account the fact that each item in her requested bundle will

be allocated with probability 1/2. First, consider the case when the buyer has valuation v1. In this

case the expected utility for the di�erent bundles are:

u ({1}) =
1

2

· (8 − 2) +
1

2

· 0 = 3,

u ({2}) =
1

2

· (2 − 2) +
1

2

· 0 = 0,

u ({1,2}) =
1

4

· (8 − 2) +
1

4

· (2 − 2) +
1

4

· (9 − 4) +
1

4

· 0 =
11

4

.

�e utility-maximising bundle that will be requested by the buyer in case of v1 is {1}, in which case

the mechanism will let the buyer pay Seller 1 a price of 2 in exchange for the item. Instead, if the

valuation of the buyer is v2, then the requested bundle will be {1,2}, in which case the mechanism

will let the buyer pay both sellers a price of 2 in exchange for their items.

5.2 Results
Our main result forMadd is the following theorem.

Theorem 5.2. �emechanismMadd is interim IR, BIC, DSBB, and (2+4α )-approximates the optimal
social welfare.

By taking for A an optimal algorithm (i.e., α = 1), we obtain a mechanism that is ex-post IR,

DSIC, SBB, and 6-approximates the optimal social welfare. Again, we split the proof of this theorem

5.2 into two lemmas that separately bound the sellers’ and the buyers’ relative contributions to

the social welfare. Like the previous section, we use the notation OPT as de�ned in Section 2, and

we use ALG to denote the expected social welfare of the mechanism. Moreover, we use again the

superscripts B and S to refer to the buyers’ and sellers’ expected contribution to the social welfare

of a given allocation, as we did in Section 4.

Let us �rst discuss how we bound the sellers’ expected contribution to the optimal allocation.

Lemma 5.3.

2ALG
S ≥ OPT

S .

Proof. �e only items that our mechanisms potentially reallocates are the ones belonging to

H . Every item in L stays with its seller. For the items in H , the mechanism ensures every seller

sells her demanded bundle with probability exactly 1/2, so for each seller it holds that she retains

her full initial endowment with probability at least 1/2, which implies the claim. �

Similarly, we want to provide an upper bound on the buyers’ expected contribution to the optimal

allocation. To do that we need two auxiliary propositions.

�e �rst proposition exploits the partition of the items among high-welfare items and low-welfare

items. Since the low-welfare items are not traded, the sum of the expected contribution of the buyers

on the high-welfare items and the expected contribution of the sellers on the low-welfare items

gives us an upper bound on the buyers’ expected contribution in the allocation computed by A.

Proposition 5.4.∑
`∈H

Ev [SWB
` (v )] + 4

∑
`∈L

Ew [SWS
` (w )] >

n∑
i=1

Ev [vi (X
all

i (v ))].
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Proof. Let a(vi ,X
all

i (v ), ·) be the representative additive function of vi for the bundle X
all

i (v ).
�en,

n∑
i=1

E[vi (X
all

i (v ))] =

n∑
i=1

E



∑
`∈X all

i (v )

a(vi ,X
all

i (v ), {`})



=

n∑
i=1

k∑
`=1

E[a(vi ,X
all

i (v ), {`})I[` ∈ X all

i (v )]]

=

k∑
`=1

E[SWB
` (v )]

=
∑
`∈H

E[SWB
` (v )] +

∑
`∈L

E[SWB
` (v )]

<
∑
`∈H

E[SWB
` (v )] + 4

∑
`∈L

E[SWS
` (w )].

�e last inequality follows because by de�nition of L,

4

∑
`∈L

E[SWS
` (w )] >

∑
`∈L

E[SWB
` (v )].

�

Now, since buyers can obtain only high-welfare items, their contribution to the expected social

welfare ofMadd is greater than a constant fraction of the expected contribution of the high-welfare

items to the allocation computed by A.

Proposition 5.5.

ALG
B ≥

1

4

∑
`∈H

Ev [SWB
` (v )].

�us, using Proposition 5.4 and Proposition 5.5 we can prove that the sum of the buyers’ expected

contribution and the sellers’ expected contribution ofMadd provides a constant approximation to

the buyers’ expected contribution in the optimal allocation.

Lemma 5.6.

4αALGB + 4αALGS > OPT
B .

Proof. By Proposition 5.5, 4ALG
B ≥

∑
`∈H Ev [SWB

` (v )]. Moreover, our mechanism leaves

every item ` ∈ L with its seller, and so ALG
S ≥
∑

`∈L Ew [SWS
`
(w )]. �erefore,

4ALG
B + 4ALGS ≥

∑
`∈H

Ev [SWB
` (v )] + 4

∑
`∈L

Ew [SWS
` (w )] >

n∑
i=1

Ev [vi (X
all

i (v ))] ≥
1

α
OPT

B .

�e second inequality holds by Proposition 5.4, and the last inequality follows because we de�ned α
to be the approximation factor of algorithm A, which is the algorithm that we assumed to generate

allocation X all (v ). �

Finally, we are ready to prove the main theorem of this section.

Proof of Theorem 5.2. On the sellers’ side, the mechanism is ex-post IR and DSIC: the sellers

solely have to decide between accepting or rejecting a single o�er to receive a proposed payment

in exchange for a bundle of items, and it is clearly a dominant strategy to accept if and only if
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such an exchange leads to an improvement in the seller’s utility. Every buyer chooses a bundle

that maximises her expected utility, and this choice depends solely on the choice of strategies of

the sellers. �erefore, the mechanism has a BNE in which the sellers play a dominant strategy,

and the mechanism is thus ex-interim IR and BIC. �e fact that the mechanism is DSBB follows

from its de�nition, which makes clear that payments are de�ned by the appropriate sequence of

trades and payments from buyers to sellers. �e approximation guarantee follows by the sum of

the inequalities of the above Lemmas 5.3 and 5.6. �

It is important to notice that the mechanismMadd turns into a DSIC and ex-post IR mechanism

if the buyers have additive valuations instead of XOS valuations.

Corollary 5.7. For the special case that for all i ∈ [n], distributionGi is over additive valuation
functions,Madd is ex-post IR, DSIC, DSBB and (2 + 4α )-approximates the optimal social welfare.

Proof. If a buyer i ∈ [n] has an additive valuation function, it is a dominant strategy to request

the items in Λi (v<i )) for which it holds that vi ({`}) > p` . �is follows from the simple fact that by

additivity, the utility that a buyer has for any bundle of items S can be wri�en as

∑
`∈S vi ({`}) − p` .

�us, for every item ` ∈ [k] that a buyer requests (recall that this item is then allocated to her for

price p` with probability 1/2), a term of (1/2) (vi ({`}) − p` ) gets added to her expected utility. So

including ` in her requested bundle is pro�table if and only if vi ({`}) − p` ≥ 0. Using the same

argument, the ex-post IR property is also satis�ed by following this strategy. �

6 DISCUSSION
An open problem is to extend or re�ne our mechanisms so that they satisfy the DSIC and ex-post

IR properties for the case of XOS buyers and additive sellers. �e �rst naive approach for doing so

might be trying to consider every additive seller as a set of distinct unit-supply sellers and then run

M1-supply. However, this is not guaranteed to work due to the fact that an additive valuation function

may have intrinsic interdependencies among the items (e.g. if there are duplicates among the items)

and so the independence of these distinct unit-supply sellers is not guaranteed. Something we might

additionally consider to do is to ask every seller for her favorite bundle to place in themarket, yet this

may cause a seller to regret having chosen that particular bundle a�er seeing the realizations of the

buyers’ valuations. On the other hand, it also seems highly challenging to establish any sort of im-

possibility result for any reasonably de�ned class of posted price mechanisms for two-sided markets.

Another natural direction is to extend the above mechanism to the se�ing in which both buyers

and sellers possess an XOS valuation function over bundles of items. A �rst challenge consists

in �nding a suitable de�nition of the sellers’ social welfare contribution of an item using the

corresponding representative additive function.
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