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Abstract. This paper provides new bounds on the quality of equilibria in finite congestion
games with affine cost functions, specifically for atomic network routing games. It is well
known that the price of anarchy equals exactly 5/2 in general. For symmetric network
routing games, it is at most (5n − 2)/(2n + 1), where n is the number of players. This paper
answers to two open questions for congestion games. First, we show that the price of
anarchy bound (5n − 2)/(2n + 1) is tight for symmetric network routing games, thereby
answering a decade-old open question. Second, we ask whether sequential play and
subgame perfection allows to evade worst-case Nash equilibria, and thereby reduces the
price of anarchy. This is motivated by positive results for congestion games with a small
number of players, as well as recent results for other resource allocation problems. Our
main result is the perhaps surprising proof that subgame perfect equilibria of sequential
symmetric network routing games with linear cost functions can have an unbounded price
of anarchy. We complete the picture by analyzing the case with two players: we show that
the sequential price of anarchy equals 7/5 and that computing the outcome of a subgame
perfect equilibrium is NP-hard.
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1. Introduction
The concept of the price of anarchy (PoA), introduced by Koutsoupias and Papadimitriou [30, 31], has spurred
a significant amount of research over the past two decades and has contributed to establishing the area al-
gorithmic game theory. In its original version, one relates the outcome of a worst-case Nash equilibrium of a
noncooperative game with selfish players to that of an optimal, centrally computable solution, using as a metric
some global objective function defined on the set of possible outcomes of the game. It is well known that the lack
of central coordination, translated into solutions that arise as Nash equilibria, can lead to substantial efficiency
losses. This remains true even if the global objective function is the sum of the objective functions of all players.

In their highly influential work, Roughgarden and Tardos [39] prove that the price of anarchy for “non-
atomic” network routing games with affine cost functions is exactly 4/3. The equilibrium concept in non-
atomic network routing is Wardrop’s equilibrium [41], meaning that only minimum cost paths can have
nonzero flow. Wardrop equilibria possess a simple characterization through variational inequalities that has
been extensively used to derive price of anarchy results (e.g., Correa et al. [13]). Furthermore, they can be thought
of as the limiting case of a Nash equilibrium where the total flow is routed by infinitely many players, each
responsible for an infinitesimally small amount of flow. This variational inequality approach was shortly after
used to pin down, to 5/2, the price of anarchy of the “atomic” counterpart of the network routing problem
(Awerbuch et al. [6, 7], Christodoulou and Koutsoupias [12]).

This paper focuses on finite congestion games with affine cost functions, and specifically their special case,
atomic network routing with linear cost functions. A congestion game consists of set of n players and a set of m
resources, and each player is equipped with a feasibility system of subsets of the resources that describes the
feasible choices that are available for that player. The cost of a resource is an affine, nonnegative function that
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depends on the number of players that choose that resource. A solution consists of a choice of a feasible subset for each
of the players, and the total cost of a player is the sum of the costs of all chosen resources. The total cost of the system is
the sum of the costs of all players. In the special case of atomic network routing, the resources are arcs in a digraph,
and each of the n players is interested in establishing one origin–destination path. The game is symmetric if all
players have the same feasibility system, and, translated into network routing, that means that all players have
the same origin and destination. For general congestion games with affine cost functions, the price of anarchy
is known to be equal to 5/2 for n ≥ 3 players (Awerbuch et al. [6, 7], Christodoulou and Koutsoupias [12]), and
it is at most (5n − 2)/(2n + 1) if the game is symmetric (Christodoulou and Koutsoupias [12]).

This paper first closes a gap in the literature by showing that (5n − 2)/(2n + 1) is indeed the exact price
of anarchy for symmetric network routing games. The major part of this paper, however, is dedicated to the
question what effect sequential decision making has on the quality of the resulting equilibria. Let us next
elaborate on the relevance of this question.

One motivation to address the effect of sequential decision making lies in a set of recent publications, led by
Paes Leme et al. [37]. They made the proposal to consider sequential versions of finite, n-player games and to
analyze subgame perfect equilibrium (SPE) outcomes of such sequential games, instead of Nash equilibria of
the simultaneous move strategic form games. Roughly speaking, subgame perfect equilibria represent the
rational outcomes of a sequential game where all players act farsighted and strategically (Selten [40]). The
driver behind this proposal is the insight that some of the Nash equilibria of the strategic form game cannot be
realized as subgame perfect equilibria of the sequential version of the game. That leads to the notion of the
sequential price of anarchy (SPoA), introduced by Paes Leme et al. [37], which could be smaller than the price
of anarchy. Similar to the price of anarchy (Koutsoupias and Papadimitriou [30, 31]), the sequential price of
anarchy measures the cost of decentralization. However, whereas the price of anarchy compares the quality of
a worst-case Nash equilibrium to the quality of an optimal solution, the sequential price of anarchy considers
the possible outcomes of a game where players choose their strategies sequentially, in some arbitrary (albeit
fixed) order. It then relates the quality of the outcome of the worst possible subgame perfect equilibrium taken
over all possible orders of the players to the quality of an optimal solution. Note that for games with perfect
information, which we consider here, subgame perfect equilibria can be computed via backward induction.
Although this is conceptually simple, it raises an important challenge compared with the understanding of
Nash or Wardrop equilibria, the main difficulty being the absence of a simple characterization such as the
variational inequality mentioned earlier.

It turns out that there are interesting examples of games where sequential play and subgame perfection can
lead to substantially improved guarantees on the price of anarchy and in this sense allow one to avoid what
has been called the “curse of simultaneity” (Paes Leme et al. [37]). Indeed, for a handful of games, the SPoA
has been proven to be lower than the PoA (de Jong and Uetz [15], de Jong et al. [16], Paes Leme et al. [37]). For
some others, however, this turns out to be the opposite (Angelucci et al. [1, 2], Bilò et al. [10, 11]).

The motivation to analyze the sequential price of anarchy also for congestion games, and specifically for
atomic network routing games, is twofold.

First, de Jong and Uetz [15] considered general congestion games with affine cost functions and showed that
the sequential price of anarchy is equal to 1.5 for two players, and equal to 2 + 63

488 for three players. That means
in particular that worst-case Nash equilibria are not realizable by farsighted players in sequential play. De
Jong and Uetz [15] further conjectured that the SPoA for affine congestion games is below 5/2, for any number
of players. Yet the only known upper bound on the SPoA for an arbitrary number of players is—trivially—the
number of players, n.

Second, in practical situations, it often seems that sequential decision making is a more realistic model
compared with simultaneous single shot games. This is certainly true for applications such as traffic and load
balancing, where autonomous decisions are typically taken on top of an existing and known load of the resources,
but future decisions of other players are to be expected. The model that we consider is clearly an abstraction of
such concrete applications, and specifically asks what the effect is if all n players act sequentially and fully
farsighted. We believe it is important to understand the effect of sequential play and subgame perfection in
this basic setting.

1.1. Our Results
As a first result, this paper answers a question that was posed, among others, by Christodoulou and
Koutsoupias [12] and Bhawalkar et al. [8, 9], and that had remained an open problem for more than a decade.
Indeed, it was open whether the price of anarchy bound 5/2 can also be attained (asymptotically) with
symmetric network routing games, and if the upper bound (5n − 2)/(2n + 1) of Christodoulou and Koutsoupias
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[12] is tight. We close this gap, by deriving a lower bound equal to (5n − 2)/(2n + 1) for symmetric, atomic
network routing games with linear cost functions. We thereby exactly match the upper bound that was known
for the case of symmetric (not necessarily network) congestion games (Christodoulou and Koutsoupias [12]).
This asymptotically matches the upper bound 5/2 that is known for n ≥ 3 players for the asymmetric network
routing case (Awerbuch et al. [6], Christodoulou and Koutsoupias [12]).

As to the quality of equilibria for sequentially played congestion games, we show the following. First, we pin
down the exact sequential price of anarchy for the symmetric network routing case with n � 2 players, showing
that it equals 7/5. This constitutes an improvement over the 3/2 bound that is known for the more general,
nonsymmetric case (de Jong and Uetz [15]). For a large number of players, however, and in sharp contrast to
what was conjectured by de Jong and Uetz [15], we show that congestion games, and even symmetric network
routing games, have an unbounded sequential price of anarchy. Indeed, we prove that even in the symmetric
network routing case, that is, when all players share the same origin and destination, the sequential price of anarchy
can be as large as Ω( ��

n
√ ). In view of earlier results that compare Nash to subgame perfect equilibria (de Jong

and Uetz [15], de Jong et al. [16], Paes Leme et al. [37]), this establishes an unexpectedly sharp separation between
Nash and subgame perfect equilibria for network routing games. Subsequent recent work by Groenland and Schäfer
[21] suggests that the presence of ties seems to be pivotal for the existence of such worst-case instances.

The crucial part of the proof of our main result is to come up with a “contingency plan of actions” for every
player and every possible profile of actions of all previous players that indeed leads to a subgame perfect
outcome. This is generally difficult, because the strategies of the players are of exponential size. We are,
however, able to design a plan leading to an unbounded SPoA that can be described in a succinct manner: The
core idea, that we believe may be of independent interest, is to design a “master plan” of actions that all
players are supposed to follow, together with a “punishing” action that players only apply when some
previous player deviates from the master plan. The main technical difficulty is to design a construction such
that the punishing actions do not lead to a higher cost for the player applying it, so that subgame perfection
can be achieved. To some extent, this construction may seem somewhat unrealistic from a practical viewpoint,
yet the main point is to show that such a construction is possible at all for atomic congestion games.

We finally also address the computational complexity of subgame perfection, showing that the computation
of the outcome of a subgame perfect equilibrium is an NP-hard problem. Although we know from Paes Leme
et al. [37] that computing subgame perfect equilibria can be PSPACE-hard in general congestion games, that
reduction requires a nonconstant number of players. Our result shows that the problem remains at least NP-hard
for symmetric network routing games, and even when the number of players is only two. This contrasts with
the fact that a pure Nash equilibrium can be efficiently computed in these games through a minimum cost flow
computation (Fabrikant et al. [17]). Interestingly, our analysis also shows that outcomes of subgame perfect
equilibria are generally not Nash equilibria of the simultaneous single shot game, as opposed to, for example,
crowding games, as studied by Milchtaich [34]. Conditions under which this is actually the case for network
routing games have been given by Groenland and Schäfer [21].

1.2. Outline
We first discuss in Section 2 the related literature with respect to the sequential price of anarchy. We then
formally introduce the model along with some necessary preliminary definitions and insights in Section 3.
Section 4 addresses the (nonsequential) atomic network routing game and shows that the regular price of
anarchy equals (5n − 2)/(2n + 1) when the game is symmetric. In Section 5, we start discussing the sequential
network routing game for the case when there are only n � 2 players. We prove that the sequential price of
anarchy is precisely 7/5 and show that computing an outcome from a subgame perfect equilibrium is NP-hard.
In Section 6, we prove the main result of this paper, namely, that the sequential price of anarchy of symmetric
network routing games with linear cost functions is generally unbounded. In Section 7, we conclude with
some remarks and open problems.

2. Related Work on the Sequential Price of Anarchy
Network routing games and congestion games form a cornerstone class of problems in the field of algorithmic
game theory. Many variants and extensions on these games have been proposed, and the body of literature on
these games is so large that it is impossible to survey it or summarize its most important articles in this section.
We refer to the recent survey by Fotakis [19], which discusses various results on the price of anarchy and the
price of stability, including more general variants such as weighted congestion games, nonlinear cost func-
tions, etc. In the remainder of this section, we focus on recent work on sequential games and subgame perfect
equilibria, as the present paper falls most naturally into this line of research.
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The idea to consider subgame perfect equilibria of sequential games as an alternative to rule out some
potentially “unrealistic” Nash equilibria was initiated by Paes Leme et al. [37]. They introduced the notion of
the sequential price of anarchy (abbreviated SPoA) and proved it to be relevant for three classes of games: In
consensus games, players choose one of two alternatives, and gain utility by picking the same alternative as
other players. The authors show that consensus games have an SPoA of 1 as opposed to an unbounded PoA.
In machine cost sharing games with fair cost allocation, each player chooses a set of machines, and players
distribute the cost of each machine equally. The authors show that the SPoA is Θ(logn), an improvement over
the PoA, which is equal to n for these games (where n is the number of players). In unrelated machine
scheduling games, each player controls a job and needs to choose a machine to run the job on. Processing
times of the jobs are machine dependent, and jobs are interested in the total load of the selected machine.
Unrelated machine scheduling games have an unbounded PoA, but the SPoA lies in between Ω( ��

n
√ ) and m · 2n,

where m is the number of machines. The paper (Paes Leme et al. [37]) also contains the result that subgame
perfect equilibria are PSPACE-hard to compute in general.

Later, Bilò et al. [11] showed that the improvements obtained by Paes Leme et al. [37] should be relativized,
as they hold only for the class of generic games.1 Specifically, in the nongeneric case, consensus games as well
as the related class of cut games have an SPoA of 3, whereas machine cost sharing games with fair cost
allocation have an SPoA between Ω(n + 1 −Hn) and n, and unrelated machine scheduling games have an SPoA
between 2Ω( ��

n
√ ) and 2n. Note that the latter upper bound is also an improvement for the generic case.

Closest to our work is the study of congestion games with few players by de Jong and Uetz [15]. That paper
triggered the question on the actual value of the price of anarchy for atomic congestion games that is ul-
timately answered here. The authors show that for two players, the SPoA equals 3/2, and for three players, it
equals 2 + 63/488 ≈ 2.13. Hence, in those cases, the SPoA is less than the PoA, which equals 2 and 5/2,
respectively (Christodoulou and Koutsoupias [12]). It was conjectured by de Jong and Uetz [15] that the PoA
for affine congestion games is below 5/2, but Kolev [29] showed that when the number of players is four or
more, the SPoA already exceeds 2.5.

We conclude this introductory section with a brief account of models for which the effect of sequential play
on the quality or existence of equilibria has been analyzed:

• A set of authors that first addressed the effect of sequential decisions in network routing games are Olver
[35], Harks et al. [25], Harks and Vegh [24], as well as Farzad et al. [18]. Without going into too much detail,
their models differ in that the cost of a given player depends on preceding players but not on future players,
just like in traffic situations where players enter streets in sequence, and a player only influences players that
are behind.

• Hassin and Yovel [26] consider machine scheduling and focus on the special case of related machines. The
authors prove that for this model, the SPoA is at most 2, whereas the PoA is Θ(lnn/ ln ln n). Moreover, the SPoA
decreases to 4/3 when each machine always executes the shortest jobs first. Their analysis relies on well-known
approximation results for list scheduling by Graham [20].

• The effect of sequential play was also analyzed for a throughput schedulingmodel by de Jong et al. [16]. There,
each player owns a set of machines, and players select jobs with individual values that must be scheduled in given
timewindows. The authors show that for identical machine scheduling, the SPoA is e/(e − 1), an improvement over
the PoA, which is 2.

• Avni et al. [5] study another variation of congestion games. The difference is that in their model, players make
multiple, incremental decisions, and each time choose a single resource that extends the current solution. These
decisions are in scheduled phases, and within each phase, the players make decisions in k ≤ n subsequent turns,
where at least one player makes a choice in each turn. In some sense, this model mixes sequential and simultaneous
decision making, and the main results of Avni et al. [5] are on the existence and nonexistence of (pure strategy)
subgame perfect equilibria.

• Rahn and Schäfer [38] study tree graph coordination games, where players are nodes in a graph. Each player
chooses a color, and obtains utility equal to the number of neighbors sharing her color. The authors prove that the
SPoA is 2, whereas the PoA is unbounded.

• Yet another context is that of item bidding games. Here players bid on a set of public projects, aiming to have
their personal preferred project selected. Lucier et al. [33] prove, among other things, that even though the PoA can
be as large as n − 1, any subgame perfect equilibrium in the sequential version is optimal, yielding an SPoA of 1.

• Isolation gameswere studied byAngelucci et al. [1, 2]. These are games inwhich players have to choose a point
in a metric space and are interested in maximizing the distance to any other player. The authors show that,
depending on the definition of the players’ utility functions (sum or minimum distance) and social cost (utilitarian
or egalitarian), the SPoA is higher than the PoA in some cases and lower in other cases.
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• Variants of sequential matching games were studied by Haeringer and Wooders [23] and in the very recent
papers by Kawase et al. [27, 28]. Haeringer and Wooders [23] characterize Nash and subgame perfect equilibria in
a gamewhere firms sequentially propose workers to be assigned to them, after which a second stage starts in which
the workers make their acceptance and rejection decisions. Kawase et al. [27] study the problem to compute
a subgame perfect equilibrium in a similar type of game where the difference is that a worker immediately makes
his decision after each offer. They show various tractability results and PSPACE-hardness results.

• Subsequent to this paper, recent works by Groenland and Schäfer [21, 22] suggest bridging the gap between
far-sighted behaviour and myopic greedy best-response behaviour. They assume that for some parameter k, each
player chooses a best response with respect to the action profile that arises when the k subsequent players play
subgame perfectly. The authors establish conditions under which the action profiles resulting from such behaviour
correspond to Nash equilibria, thereby allowing them to import known results for the price of anarchy. In
particular, for a special class of graphs, their work shows that the absence of ties guarantees that subgame perfect
equilibria are also Nash equilibria, and hence have a bounded sequential price of anarchy.

3. Model and Notation
Throughout this paper, we consider a special class of finite, atomic congestion games, namely, symmetric atomic
network routing games with linear cost functions. The input of an instance I ∈ ( consists of a directed graph
G � (V,E), with designated source and target nodes s, t ∈ V, and for each arc e ∈ E a linear cost (or latency)
function ce(y) � aey with linear cost coefficient ae; that is, the cost of an arc equals ae times the number of players
using it. There are n players that all want to travel from the same origin s to destination t, so that the possible
actions of all players consist of all directed (s, t) paths in G. Hence, all players have the same set of actions and the
game is symmetric. We will denote by m the number of arcs |E|. We refer to the path that a player i chooses the
action Ai of player i, and A � (A1, . . . ,An) is a vector with one action for each player, also called an outcome or
action profile.

The cost of a player i for choosing a specific (s, t) path Ai depends on the number of players on each arc on
that path. Specifically, for an outcome A � (A1, . . . ,An), let

ne(A) :�
∑n
i�1

|Ai ∩ {e}|

denote the number of players using arc e; then the cost of that arc for each player using it equals aene(A), and
therefore the cost for player i, choosing path Ai, is defined as

ci(A) �
∑
e∈Ai

ae · ne(A).

For the sake of strengthening some of our results, sometimes we assume that the cost functions are affine
instead of linear.2 Affine cost functions are of the form

ci(A) �
∑
e∈Ai

(ae · ne(A) + be),

where be ≥ 0 can be thought of as a player-independent activation cost associated to an arc e ∈ E.
We define the social cost of an action profile A as C(A) � ∑n

i�1 ci(A), that is, the sum of the costs of the players.
In other words, we consider a utilitarian social cost function. This is a standard model, yet note that it differs
from the egalitarian makespan objective as studied, for example, by Koutsoupias and Papadimitriou [30, 31].

A pure Nash equilibrium is an outcome A in which no player can decrease her costs by unilaterally de-
viating, that is, switching to an action that is different from Ai. The price of anarchy (PoA) (Koutsoupias and
Papadimitriou [30, 31]) measures the quality of any Nash equilibrium relative to the quality of a globally
optimal allocation, OPT. Here OPT is an outcome minimizing C(·). More specifically, for an instance I,

PoA(I) � max
NE∈NE(I)

C(NE)
C(OPT) , (1)

where NE(I) denotes the set of all Nash equilibria for instance I. The price of anarchy of a class of instances ( is
defined by PoA(() � supI∈( PoA(I).

In this paper, our goal is to evaluate the quality of subgame perfect equilibria of an induced extensive form
game that we call the sequential version of the game (Kuhn [32], Selten [40]). In the sequential game, players
choose an action from the set of (s, t) paths, but instead of doing so simultaneously, they choose their actions in
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an arbitrary predefined order 1, 2, . . . ,n, so that the ith player must choose action Ai, observing the actions of
players preceding i, but of course not knowing the actions of the players succeeding her. However, because
players are fully rational and fully informed, at equilibrium they anticipate the successors’ behaviour and
therefore make optimal strategic choices by fully anticipating all followers’ actions.

A strategy Si then specifies for player i the full contingency plan of actions she would choose for each
potential choice of actions A,i :� (A1, . . . ,Ai−1) chosen by her predecessors. We use Si(A,i) to denote the action
that i plays under strategy Si when A,i is the vector of actions chosen by players 1, . . . , i − 1. We refer to
a choice of strategies S � (S1, . . . , Sn) by each of the players as a strategy profile. Note the explicit distinction
between action (profile) and strategy (profile). The outcome resulting from S is then the set of actions chosen by
the players when they play according to the strategy profile S.

Subgame perfect equilibria, defined by Selten [40], are defined as strategy profiles S that induce Nash
equilibria in any subgame of the extensive form game. In other words, a strategy profile S is a subgame perfect
equilibrium if for all i and for any choice of actions A,i of players 1, . . . , i − 1, player i cannot decrease her cost
by switching to an action different from Si(A,i), in the subgame where the actions of 1, . . . , i − 1 are fixed to A,i,
and players i + 1, . . . ,n play strategies (Si+1, . . . , Sn).

Subgame perfect equilibria reflect farsighted strategic behaviour of players that observe the state of the
game and reason strategically about choices of subsequent players, always choosing the action that will
minimize their individual cost. Analogous to (1), the sequential price of anarchy of an instance I is defined by

SPoA(I) � max
SPE∈SPE(I)

C(SPE)
C(OPT) , (2)

where SPE(I) denotes the set of all outcomes of subgame perfect equilibria of instance I. The sequential price
of anarchy of a class of instances ( is defined as by Paes Leme et al. [37] by SPoA(() � supI∈( SPoA(I).
Throughout this paper, when the class of instances is clear from the context, we write PoA and SPoA.

Extensive form games can be represented in a game tree (see Figure 1 for an example), with the nodes on
level i representing the possible states of the game that a single player i can encounter, and the arcs emanating
from any node representing the possible actions of that player in the given state. The nodes of the game tree
are called information sets or states. We will refer to a state by a pair (A,i, i), where A,i is the choice of actions of
the players 1, . . . , i − 1 in that state, and i is the next player who has to choose her action. Because we deal with
a game with perfect information, subgame perfect equilibria can be computed by backward induction. In
particular, it is known that subgame perfect equilibria always exist; see, for example, Osborne [36]. Note,
however, that if S is a subgame perfect equilibrium, the resulting outcome A need not be a Nash equilibrium of
the corresponding strategic form game, as will also be discussed in Section 5.

4. The Price of Anarchy for Symmetric Network Routing
In this section, we first focus on the regular price of anarchy PoA as defined in (1) for symmetric network
routing games with linear cost functions. We show that it equals (5n − 2)/(2n + 1), n being the number of
players. This resolves an open question regarding the price of anarchy of network congestion games of

Figure 1. Game tree for a symmetric sequential two player game. Nodes are the states. Note that A11 and A21 are actions of
players 1 and 2, respectively, but denote the same action (recall that we have a symmetric game). The same holds for A12 and
A22. Fat lines denote a subgame perfect strategy S � (S1, S2), where S1 � A12, S2(A11) � A21, and S2(A12) � A22. The outcome
resulting from S is (A12,A22), the rightmost path of the game tree.
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Christodoulou and Koutsoupias [12] (see also Bhawalkar et al. [8]). Indeed, it is well known that the price
of anarchy of the more general class of linear symmetric (not necessarily network) congestion games is at most
(5n − 2)/(2n + 1) (Christodoulou and Koutsoupias [12]). It has not been clear, however, whether this bound can also
be attained with symmetric linear network routing games. Here we settle that issue and give a matching lower bound
of (5n − 2)/(2n + 1). Surprisingly, the lower bound is conceptually simpler than the one previously provided
for the more general class of (nonnetwork) affine congestion games (Christodoulou and Koutsoupias [12]).

Theorem 1. The price of anarchy of symmetric linear network routing games with n players equals (5n − 2)/(2n + 1).
Proof. We construct the following family of instances. For three players, the instance (along with the optimal and
equilibrium strategies) is depicted in Figure 2. In general, let n be the number of players, and consider an instance in
which there are n disjoint paths from the source s to the sink t, which we refer to as principal paths. These paths are
all composed of 2n − 1 arcs and thus 2n nodes (s being the first and t being the last), so we denote by ei,j the jth arc
of the ith path, for i � 1, . . . , n and j � 1, . . . , 2n − 1, and by vi,j the jth node of the ith path, for i � 1, . . . , n and
j � 1, . . . , 2n. There are n · (n − 1) additional connecting arcs that connect these paths: there is an arc from vi,2k+1 to
vi−1,2k for k � 1, . . . ,n − 1, where i − 1 is taken mod(n). This defines the network. The cost coefficients on the arcs are
set as follows. Arcs ei,1 (that start from s) have cost coefficient ae � 2, arcs ei,2n−1 (that end in t) have cost coefficient
ae � 2, and arcs ei,j with 1, j , 2n − 1 have cost coefficient ae � 1. All connecting arcs have cost coefficient ae � 0.

It is easy to check that the optimal solution in this instance is to route one player in each of the principal
paths. Because in this solution no two players intersect in any arc, its cost can be computed as n(2 + 2n−
3 + 2) � n(2n + 1). On the other hand, a Nash equilibrium is obtained when each player k follows the following
path: she starts with arcs ek,1 and ek,2; then uses all arcs of the form ek+j,2j, ek+j,2j+1, and ek+j,2j+2 for j � 1, . . . , n − 2;
and finishes with arcs ek+n−1,2n−2 and ek+n−1,2n−1 and uses all the required connecting arcs. Here, the additions on
the principal paths index are taken mod(n). In this solution, every arc ei,j with j even is used exactly twice,
whereas every other arc is used only once. Thus, the social cost is n(n − 1) · 4 + n(n − 2) · 1 + 2n · 2 � n(5n − 2). It
immediately follows that the PoA of the instance is at least (5n − 2)/(2n + 1).

The remainder of the proof consists in checking that the latter path choices indeed result in a Nash
equilibrium. Consider a player, which by symmetry we may assume is player 1, and let us evaluate possible
deviations from the current path, which we call the zigzag path Z. Note that in any path an arc ei,2j−1 is always
followed by ei,2j for 2 ≤ j ≤ n − 1, and that player 1 evaluates the joint cost of these two arcs as either 5 (if not in
the zigzag path) or 3 (if in the zigzag path). Now assume player 1 follows a path P not intersecting Z in arcs of

Figure 2. A lower bound instance for the PoA for n � 3. Players travel from s to t.
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the form ei,2j−1 for j � 1, . . . ,n; then the cost of this path is at least (n − 2) · 5 + 8 � 5n − 2 (the extra 8 comes from
the arc starting in s and the arc ending in t), and thus the deviation is not profitable. Therefore, we may assume
that P and Z do intersect in arcs of the form ei,2j−1. Because these arcs are in Z, they actually are of the form
ei,2i−1. Assume there are two such arcs, and consider two of these intersection arcs ei,2i−1 and ek,2k−1 such that
there is no other intersection arc on the path segment of P that runs from ei,2i−1 to ek,2k−1. The cost of the
restricted Z path between nodes vi,2i and vk,2k−1 is 3 + 5(k − i − 1), whereas path P has to cost at least 5(k − i − 1)
just to get to a node of the form vl,2k−1 plus what it needs to pay to get to the principal path k, which is at least
3. The total cost is thus at least 3 + 5(k − i − 1), implying that the deviation P restricted to the segment between
any two edges intersecting with Z is not profitable. Finally, we consider the subpath between s and the first
such intersection, say, ei,2i−1 (and symmetrically between the last and t). In this case, the cost of the restricted Z
path between nodes s and vi,2i is 6 + (i − 2)5, whereas the cost of P is at least 4 + 3 + (i − 2)5. Here, the 4 comes
from the first arc and the 3 from the second arc. Again, the deviation cannot be profitable. We thus conclude
that Z is indeed a best response, and thus we have a Nash equilibrium. □

5. Sequential Games and Equilibria for n � 2 Players
As a way to illustrate the difficulties in arguing about subgame perfect equilibria in general, we first focus on
the special case with only two players. Doing that, we point out two phenomena that clarify the fundamental
difference between the concept of subgame perfect equilibrium and that of Nash equilibrium.

First, we derive a simple instance in which the resulting actions of a subgame perfect equilibrium do not
correspond to a Nash equilibrium. This is in contrast to the case of parallel links (de Jong and Uetz [15]) and
also to the crowding games as studied by Milchtaich [34]. This effect is the major complication in analyzing
subgame perfect equilibria, and it seems it can be circumvented if the underlying game is generic, meaning that
no player is ever confronted with a tie; see Milchtaich [34], Bilò et al. [11], and Groenland and Schäfer [21] for
network routing games in particular.

Based on this particular instance, we additionally prove that the sequential price of anarchy for the two
player case equals 7/5. This is smaller than the regular price of anarchy, which is equal to 8/5 [12], and also
smaller than the sequential price of anarchy for the asymmetric network routing case, which equals 3/2 (de
Jong and Uetz [15]).3 Second, we show that even in the two-player case, computing the outcome of a subgame
perfect equilibrium is NP-hard.

5.1. The Sequential Price of Anarchy
Consider the two-player instance depicted in Figure 3, with five vertices and eight arcs. The vertices 1, 2, 3, 4, 5
are numbered from left to right and from top to bottom so that s � 1 and t � 5. The linear cost coefficients ae are
given by the numbers next to the respective arcs e.

Figure 3. Lower bound example for two players. Each arc is labeled with the coefficients of the linear cost function associated
with it. There are two parallel arcs emanating from s: The purpose of the arc with the higher coefficient is to cause player 2 to be
indifferent between the two arcs in case player 1 uses the arc with the lower coefficient. This ensures that there exists an SPE
that results in the action profile depicted on the right-hand side.
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There are two parallel arcs between vertices 1 and 2. In the discussion below, whenever we specify that
a player takes a path that includes an arc from 1 to 2, that player uses the parallel arc with the lower of the two
coefficients. It can be easily verified that the following is a subgame perfect equilibrium:

• Player 1 chooses path (1, 2, 3, 4, 5).
• Player 2 chooses

—(1, 5) if player 1 chooses (1, 2, 3, 4, 5),
—(1, 2, 4, 5) if player 1 chooses (1, 2, 3, 5),
—(1, 2, 3, 5) if player 1 chooses (1, 2, 4, 5),
—any (best-response) path for all remaining choices of player 1.

In this equilibrium outcome, player 1 chooses the dashed path on the right, that is, path (1, 2, 3, 4, 5), whereas
player 2 chooses the dotted path on the right, which is simply the arc going directly from 1 to 5. Interestingly,
one may think that player 1 has an incentive to deviate to the path (1, 2, 3, 5) because the cost of going straight
from 3 to 5 is 0. However, if player 1 does this, player 2 would pick path (1, 2, 4, 5), and therefore player 1’s cost
would still be 3. This implies that indeed the outcome of the subgame perfect equilibrium is not a Nash
equilibrium. Note furthermore that player 1’s cost is 3 and player 2’s is 4, for a total social cost of 7, whereas in
the socially optimal situation, depicted on the left of Figure 3, the social cost is 5. So in particular this instance
shows that the SPoA is at least 7/5.

In the above instance, the subgame perfect equilibrium is not unique. However, the latencies can be slightly
perturbed so that uniqueness is achieved, while the cost of the equilibrium remains arbitrarily close to 7 and
that of the optimum remains arbitrarily close to 5. To this end consider the same instance but change the cost
coefficient of arc (1, 2) from 2 to 2 + ε, that of arc (1, 5) from 4 to 4 + ε, and those of arcs (2, 4) and (3, 5) from
0 to ε.

With the latter observation, not only the sequential price of anarchy but also the sequential price of stability4

equals 7/5 in the two-player case. This is because it is possible to prove a matching upper bound, even for the
more general class of symmetric affine (not necessarily network) congestion games. It uses a proof technique
based on linear programming, but is nonetheless different from the proof used by de Jong and Uetz [15],
where linear programming was also used to derive upper bounds on the SPoA. The main result of this section
is the following.

Theorem 2. The sequential price of anarchy of symmetric linear network routing games and symmetric affine congestion
games is 7/5 when there are two players only.

Proof. It follows from the example above that the SPoA for two-player linear network routing games is at least 7/5,
so it remains only to show that 7/5 is also an upper bound. The proof goes by establishing a set of valid inequalities
that must be fulfilled for any outcome of a subgame perfect equilibrium (A1,A2) and any outcome (A∗

1,A
∗
2) that

minimizes the total cost. After applying several combinatorial arguments, we arrive at the matching upper bound
of 7/5 via linear programming. The details of these arguments that complete the proof of Theorem 2, together with
a combinatorial argument to show that the underlying linear program has 7/5 as an optimal solution, can be found
in Lemma A.1 in the appendix. □

5.2. Hardness of Computing Subgame Perfect Equilibria
Notice that the encoding of subgame perfect strategies can, in general, require superpolynomial space in terms
of the input size of a network routing game. This is even the case for two players, for example, if the first
player has a superpolynomial number of possible actions, that is, (s, t) paths. Then, for each of these potential
actions of player 1, a subgame perfect equilibrium needs to prescribe the respective actions taken by player 2.
We head for a meaningful statement, however, with respect to the input size of a network routing game, and
not the output. Therefore, we consider the computational problem to only output the outcome resulting from
a subgame perfect equilibrium. This exactly corresponds to a single path in the game tree, which for two
players has depth two. This outcome has polynomial size, as it consists of just one path in the network G per
player. The problem to compute such an equilibrium path in the game tree, however, turns out to be hard.

Theorem 3. Computing an action profile resulting from a subgame perfect equilibrium is (strongly)NP-hard for any number
of players n ≥ 2.

Proof. We prove the theorem by a reduction from the Hamiltonian path problem, where the task is to determine
whether a given undirected graph has a Hamiltonian path, that is, a path that visits each vertex of the graph exactly
once. Consider any instance of Hamiltonian path on undirected graphG � (V,E), where we assume without loss of
generality (w.l.o.g.) that G is connected and has at least one edge. We construct the following game: There are n
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players. There are two copies v′, v0 for each node v ∈ V. There is also a source node s, a sink node t, and a node s′. We
define m � 2|V| + 1, and ε � 1/(|E| − 1). There is an arc with cost coefficient m from s to s′, and an arc with cost
coefficient (2m + 3)/(n − 1) from s to t. For each v ∈ V, there is an arc with cost coefficient 0 from s′ to v′, an arc with
cost coefficient 2 from v′ to v0, and an arc with cost coefficient 0 from v0 to t. Moreover, for each arc (u, v) ∈ E, there is
an arc with cost coefficient ε from u0 to v′. This reduction is shown in Figure 4.

We claim that in an outcome resulting from a subgame perfect equilibrium, player 1 chooses all arcs (v′, v0)
that correspond to all v ∈ V. If the graph is Hamiltonian, she will choose these arcs exactly in the order of
a Hamiltonian path, and otherwise will have to traverse at least one arc (v′, v0) twice. Moreover, all subsequent
players choose the arc (s, t).

Let us argue that, indeed, this is the outcome of a subgame perfect equilibrium. First note that if for at least
one node v, player 1 does not choose arc (v′, v0), then there is some successor that will choose the path
(s, s′, v′, v0, t). Let us call this player j. Then j has a cost of at most 2m + 2, because all other players will play
(s, t). The latter is due to the high cost of 3m that the third player would have if she were to choose arc (s, s′)
(whereas choosing (s, t) would guarantee her a lower cost of at most 2m + 3). So, in this case, player 1 has a cost
of at least 2m + 2.

On the other hand, if player 1 chooses all arcs (v′, v0), then for any succeeding player, choosing any path
using an arc (v′, v0) would yield her a cost of at least 2m + 4. In that case, choosing (s, t) is always a better
option for any succeeding player, because doing so guarantees that her cost is at most 2m + 3.

Now, suppose there exists a Hamiltonian path in G. Let us look at the cost of player 1 if she chooses the arcs
(v′, v0) that correspond to all v ∈ V, in the order of the Hamiltonian path. Then player 1’s cost is at most
m + 2|V| + ε|V − 1| , 2m, because, as we showed, succeeding players will choose (s, t).

If no Hamiltonian path exists, then for player 1, any path that contains all arcs (v′, v0) uses at least |V| arcs
with cost coefficient ε, because she will have to use at least one arc (v′, v0) twice. This yields player 1 a cost of at
least m + 2|V| + ε|V|.

From the above we conclude the following: if there is a Hamiltonian path in G, then there is an action A1 for
player 1 that gives her a cost of m + 2|V| + ε|V − 1| when the succeeding players all play a subgame perfect
strategy profile. Moreover, playing any action other than A1 will give player 1 a strictly higher cost when the
succeeding players all play a subgame perfect strategy profile. Therefore, if there exists a Hamiltonian path,
player 1 plays A1 in a subgame perfect equilibrium and has a cost of m + 2|V| + ε|V − 1|. If there is no
Hamiltonian path in G, then in any subgame perfect equilibrium, player 1 has a cost of at least m + 2|V| + ε|V|.

Hence, if we were able to compute the outcome of a subgame perfect equilibrium in polynomial time, we
could verify in polynomial time whether the cost of player 1 equals m + 2|V| + ε|V − 1| or not. This would allow
us to decide the Hamiltonian path problem in polynomial time. □

Recall that membership in NP is not clear in general, because it is generally not clear how to verify subgame
perfectness in polynomial time. However, if we define a decision problem SPE-DEC that asks whether the first

Figure 4. Reducing a Hamiltonian path instance to an n-player network routing game.
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player can guarantee herself a cost at most equal to some threshold k in a subgame perfect equilibrium, we can
also show the following.

Theorem 4. Decision problem SPE-DEC is NP-complete for the case of two players.

Proof. By Theorem 3, SPE-DEC is NP-hard, so we need to prove only that SPE-DEC is contained in NP.We use the
subgame perfect action profile (A1,A2) as a certificate for a yes instance. We can verify in polynomial time, by
a shortest-path algorithm, that A2, the action chosen by player 2, is subgame perfect. For player 1, we do not have
a way to verify that A1 is a subgame perfect action, but we do not need to: we simply verify if the cost of player 1 is
indeed at most k for the action profile (A1,A2). If yes, player 1 can guarantee herself cost at most k by choosingA1, so
in any subgame perfect equilibrium, player 1 will have cost at most that much. Hence, we can verify the validity of
the certificate for any yes instance in polynomial time. □

6. The Sequential Price of Anarchy for Symmetric Network Routing Games
We now prove our main result, namely, that the SPoA of symmetric network routing games is unbounded.

Theorem 5. The sequential price of anarchy of symmetric network routing games with linear cost functions is not bounded by
any constant.

We prove the theorem by constructing a sequence of lower bound instances where the sequential price of
anarchy gets arbitrarily large. Intuitively, the construction of these instances works as follows. There are
slightly more players than disjoint (s, t) paths. As an effect of our construction, it will turn out that the last
player has to necessarily share every arc in her chosen action with one other player. That will result in the
situation that this player can credibly “threaten” any other player j by choosing the arcs that player j chooses,
if player j does not stick to a certain action. More generally, we extend this idea so that a whole group of
players can force a common predecessor into a certain action. This is achieved in such a way that the “concerted”
threatening is not too expensive for every single threatener, but very expensive for the common predecessor.
Altogether, the goal of the construction is to incentivize a large number of players to choose a set of arcs, much
larger than in the optimal outcome, so as to drive the sequential price of anarchy to infinity. The challenging
aspect is to make sure that this is indeed a subgame perfect equilibrium.

6.1. Definition of Instance Γx
Formally, to obtain a sequential price of anarchy of x, where x ≥ 4 is a square number, we construct the
following instance Γx: Let p be a sufficiently large integer. There are n � p

��
x

√ + 5x2 players. The network consists
of x segments Ri, i ∈ [x]. Segment Ri consists of 2(1 + p

��
x

√ + 4x2) nodes {i, (2i, 1), (2i, 2), . . . , (2i, p ��
x

√ + 4x2), (2i +
1, 1), (2i + 1, 2), . . . , (2i + 1, p

��
x

√ + 4x2), i + 1}. Note that node i + 1 is in both segments Ri and Ri+1. The arc set is
defined as follows:

• There is an arc e with cost coefficient ae � 0 from node i to node (2i, j) for all j ∈ {1, . . . , (p ��
x

√ + 4x2)}.
• There is an arc e with cost coefficient ae � 1/x, from (2i, j) to (2i + 1, j) for all j ∈ {1, . . . , (p ��

x
√ + 4x2)}.

• There is an arc e with cost coefficient ae � 0 from (2i + 1, j) to i + 1 for all j ∈ {1, . . . , (p ��
x

√ + 4x2)}.
• There is an arc e with cost coefficient ae � 0 from (2i + 1, j) to (2i, k) for all j ∈ {1, . . . , (p ��

x
√ + 4x2)} and for all

k ∈ {j + 1, . . . , (p ��
x

√ + 4x2)}.
Note that between any two nodes i, i + 1, there exist 2p

��
x

√ +4x2 different paths: one for every subset of arcs with
cost coefficient 1/x of segment Ri. For brevity, from now on, when we refer to arcs, we mean the arcs of which
the cost coefficient is not identically zero, that is, arcs with cost coefficient 1/x.

Node 1 is the source s, and node x + 1 is the sink t. Now any feasible action of a player consists of at least one
arc from each segment Ri, i ∈ [x]. This example is shown in Figure 5.

In the remainder of the section, we say that in a state (A,i, i), an arc e is free if no player in [i − 1] has chosen e
in her action, that is, there does not exist an i′ ∈ [i − 1] such that e ∈ Ai′ .

6.2. Optimal Social Cost of Γx
In the optimal outcome A∗, each player chooses exactly one arc from each segment, and players share arcs as
little as possible. Straightforward counting based on the above definitions yields that the optimal social cost is

C(A∗) � p
��
x

√ + 3x2 + (2x2)2 � p
��
x

√ + 7x2.

6.3. Definition of Strategy Profile S for Γx
To describe our worst-case subgame perfect equilibrium strategy, we first define the following actions. Note
that these actions are defined relative to a given state in the game. The actions Greedy and Copy are well
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defined for each state, whereas the actions Punish( j) and Fill exist only for a subset of the states. The actions are
as follows:

• Greedy: In each segment, choose the single arc chosen by the least number of players. In cases of ties, the
tie-breaking rule as described below is used.

• Punish( j) (for j ∈ [n]): Denote by R a segment where all arcs chosen by player j are chosen by in total less than x
players from [ j]. Denote by e an arc from R that is chosen by the largest number of players among the arcs chosen
by j, breaking ties in a consistent way. The action Punish( j) is then defined as choosing e inR and any free arc in each
other segment.

• Fill: Choose
��
x

√
free arcs in each segment.

• Copy: Choose exactly the same arcs as the previous player.
Using these actions, we now define our subgame perfect equilibrium S � (S1, . . . ,Sn) for Γx. For each state

(A,i, i), strategy Si prescribes playing an action Si(A,i), which is determined as in Algorithm 1.

Algorithm 1 (Definition of subgame perfect equilibrium S (for player i))

1: if every player j ∈ [i − 1] plays according to Sj then
2: if i has at least 5x2 successors then
3: if i is the first player, or if the previous

��
x

√ − 1 players chose Copy then
4: Fill
5: else
6: Copy
7: else
8: Greedy
9: else
10: if exactly 1 player j ∈ [i − 1] does not play according to Sj then
11: if j has chosen less than x2 arcs in each segment then
12: if Sj prescribed j to choose Fill or Copy then
13: if there exists a segment such that all arcs e chosen by j contain less than x players in total then
14: Punish( j)
15: else
16: Greedy
17: else
18: Greedy

Figure 5. A lower bound instance of a network routing game. Players travel from s to t.
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6.4. Tie-Breaking Rule
In Algorithm 1, when the strategy Si prescribes that a player i choose an arc chosen by the largest number of
players, any arbitrary fixed tie-breaking rule is used. Second, when the strategy Si prescribes that a player i
choose an arch chosen by the smallest number of players, and a set E′ of multiple arcs have this property, the
following tie-breaking rule is used: all predecessors of i are ordered. The set of all players that deviate from S
comes first in this ordering. After that comes the set of all other players. Within these two sets, the players are
ordered by index from high to low. Now the arcs are ordered as follows: arc e is ordered before e′ iff the set of
players on e is lexographically less than the set of players on e′ according to the ordering on the players just
defined. Finally, ties are broken by choosing the first arc in this order, among the arcs in E′.

Example 1. As an example to clarify the tie-breaking rule, consider the following situation: Say player 5 has to
choose 2 arcs among arc set {e1, e2, e2, e4}, which are chosen by the smallest number of players. Players 1 and 3 have
deviated from S. Player 1 has chosen, among arcs {e1, e2, e3, e4}, the two arcs e2 and e3; player 2 has chosen arcs e3 and
e4; player 3 has chosen arcs e1 and e4; and player 4 has chosen arcs e1 and e2. Thus, the players are ordered 3, 1, 4, 2,
and the arcs are ordered e4, e1, e3, e2, so player 5 chooses arcs e4 and e1.

Observe first that S is well defined:
• In any state, Si prescribes that i plays either Greedy, Copy, Fill, or Punish( j) for some j ∈ [i − 1].
• In any state, the actions Greedy and Copy always exist.
• Whenever the action Fill is prescribed, then by line 1, no player in [i − 1] has deviated from S. Combined with

line 2, this means that in each segment, there are at most p
��
x

√
arcs that are chosen by at least one player in [i − 1].

Therefore, there is guaranteed to be enough free arcs in each segment, so the action Fill exists in any state where Si
prescribes i to choose Fill.

• Whenever the action Punish( j) is prescribed, for some j ∈ [i − 1], then from line 12 and line 2 it follows that
j ∈ [p ��

x
√ − x2]. Also, from line 10 it follows that in each segment, the total number of arcs chosen by players in [j − 1]

(who all play Fill and Copy) is at most p
��
x

√ − x2 + ��
x

√
, p

��
x

√
, and player j chooses at most x2 arcs in each segment by

line 11. Moreover, it follows from line 10 that players in { j + 1, . . . , i − 1} have not deviated from S and have
therefore chosen only one arc in each segment (as they all have played Punish(j)). From line 13, it follows that the
number of players between j and i is at most x2, so the total number of arcs chosen in each segment, by players in
{j + 1, . . . , i − 1}, is at most x2. Last, line 11 certifies that player j occupies at most x2 arcs in each segment. So, in
a single segment, the total number of arcs used by players in [i − 1] is at most p

��
x

√ + 3x2. Thus, when Si prescribes
Punish( j), each segment has a free arc. Moreover, by line 13, there is a segment in which all arcs chosen by player j
are chosen by fewer than x players from [ j]. Therefore, Punish( j) exists in any state where Si prescribes i to choose
Punish( j).

6.5. Social Cost of S
If each player i chooses the action prescribed by Si, then the social cost is at least

(p ��
x

√ )( ��
x

√ ��
x

√ ) + 3x2 + (2x2)2 � p
��
x

√
x + 7x2.

If we denote by A the outcome induced by S, we see that

lim
p→‘

C(A)/C(A∗) � lim
p→‘

(px ��
x

√ + 7x2)/(p ��
x

√ + 7x2) � x.

6.6. Checking That S Is a Subgame Perfect Equilibrium
For a state (A,i, i), an action Ai is said to be subgame perfect with respect to a sequential strategy profile S iff
choosing Ai minimizes i’s cost when players 1 to i − 1 play A,i, and players i + 1 to n play according to S.

The following lemma and corollary shows that S is a subgame perfect equilibrium.

Lemma 1. For each state (A,i, i) of Γx, action Si(A,i) is subgame perfect with respect to S.

Proof. For each of the possible actions, Greedy, Fill, Punish(j) (where j ∈ [i − 1]), and Copy, that Si may prescribe to
player i in state (A,i, i), we prove that deviating from this prescription will not decrease the cost of player i, under
the assumption that all succeeding players i + 1, . . . ,n play according to S:

• Suppose player i is prescribed by Si to play Fill or Copy. Then no player in [i − 1] has deviated from S.
Therefore, assuming that all succeeding players play according to S as well, the cost of player iwhen she does not
deviate is x. If player i does deviate, then the subsequent players will play Punish(i), which ensures that in each
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segment, one of the arcs chosen by i gets chosen by at least x players. Her cost will therefore be at least x. Thus,
deviating is not beneficial for player i.

• Suppose player i is prescribed by Si to play Greedy. Then, assuming that players i + 1, . . . ,n all play according
to S as well, observe that, by definition of S, players i + 1, . . . ,n play Greedy, even if player i deviates from playing
Greedy.We denote byA the outcome that results if i does not deviate from Si. We show that if i does deviate, then in
each segment, i’s costs are at least as high as inA. Let j ∈ [x] and consider segmentRj. Let ei and en denote the arcs from
Rj chosen respectively by player i and player n in A. Denote by R the set of arcs in Rj chosen by players i, . . . , n in A.

• We denote by c the number of players choosing arc en in A. Any arc e ∈ R has cost either c/x or (c − 1)/x; if it
were higher, then the last player who chose e would have chosen en, because she plays greedily. Specifically, the
cost of ei is at most c/x. Also, any arc e ∈ Rj that is not in R is chosen by at least c − 1 players of [i − 1]; if this were
false, then in A, player n would have chosen e instead of en.

• Now consider outcomeA′, which occurs when player i deviates from Si. If player i chooses any arc e′i that is not
inR, then this arc has cost at least c/x. We now show that if e′i is inR, then it has cost at least c/x aswell. In that case, if
any player i′ ∈ {i + 1, . . . ,n} chooses an arc not in R, then all arcs in Rwill yield cost at least c/x. If there were an arc
e′ ∈ Rwith cost (c − 1)/x, then the tie-breaking rule dictates that i′ would have chosen e′i instead of e′. However, if all
players i, . . . , n choose an arc in R, then player n has cost at least c/x. Combining this with the tie-breaking rule, we
conclude that e′i has a cost of at least c/x as well. Therefore, in all cases, the costs of player i does not decrease by
deviating.

• Suppose player i is prescribed by Si to play Punish( j) for some j ∈ [i − 1]. Let us compute first the cost of i if she
follows this prescription, assuming that players i + 1, . . . , n all play according to S. Then observe that, by definition
of S, there are a number of other players succeeding i that play Punish( j) as well. Let k be this number of players. So,
{j + 1, . . . , i + k} is the set of players that play Punish( j). Let � � |{ j + 1, . . . , i + k}|. Players {i + k + 1, . . . ,n} play
Greedy, again by definition of S. Players in [j − 1] together occupy at most j − 2 + ��

x
√

arcs in each segment. Player j
occupies at most x2 arcs in each segment. Players j + 1, . . . , i + k all choose Punish( j), so they each occupy one arc per
segment. The total number of arcs occupied per segment by players in [i + k] is therefore j − 2 + x2 + � + ��

x
√

.
Therefore, there are at least F :� (p − 1) ��

x
√ + 3x2 − j − � + 2 free arcs per segment after the first i + k players have

chosen their actions. The set i + k + 1, . . . ,n is of size G :� p
��
x

√ + 5x2 − j − �. We see that

G
F
� p

��
x

√ + 5x2 − j − �

(p − 1) ��
x

√ + 3x2 − j − � + 2
≤ p

��
x

√ + 6x2 − j − �

(1/2) ��
x

√ + 3x2 − (1/2)j − (1/2)� � 2,

so the Greedy players will choose only those free arcs; that is, by the tie-breaking rule, the Greedy players will
not choose arcs of player i. Therefore, player i’s cost is exactly 2 − 1/x if she plays Punish( j): in x − 1 segments, i
chooses one free arc that will not be chosen by any of her successors, as we have shown. In the remaining
segment, i chooses an arc that player j has chosen, which will be chosen by precisely x players.

Suppose now that i deviates from playing Punish( j). In that case, all succeeding players will play Greedy. We
prove that in each segment, i’s costs are at least 2/x, so that her total cost is at least 2. All players in [ j − 1]
together occupy at least j − 1 arcs per segment. This implies that in state (A,i, i) in each segment, there are at
least j − 1 occupied arcs and at most p

��
x

√ + 4x2 − j free arcs. The number of players succeeding i is p
��
x

√ + 5x2 −
i ≥ p

��
x

√ + 4x2 − j + x, where the inequality holds because i ≤ j + x2 − x, which is true because, by the definition
of S, there are at most x2 − x players choosing Punish( j). Therefore, there exist players among the Greedy
players who choose in each segment an arc that is occupied by at least one player. The tie-breaking rule for the
Greedy action then ensures that the first such a Greedy player chooses in each segment an arc on which i is the
sole player, in case such an arc exists. Therefore, when i deviates, her cost in each segment is at least 2/x. □

Now we can finish the proof of Theorem 5.

Corollary 1. The strategy profile S is a subgame perfect equilibrium of Γx.

Proof. Recalling the definition of a subgame perfect equilibrium, we have to prove that for all i ∈ [n] and for each
state (A,i, i), it holds that the action Si(A,i) that i plays under Sminimizes her cost in the subgame corresponding to
state (A,i, i), when the remaining players play according to S. This follows directly from Lemma 1 and from the
way we defined subgame perfection of an action with respect to strategy profile S. □

Although the SPoA is not bounded by any constant, it is not hard to see that it is trivially upper bounded by
the number of players, n. This holds, as for nonnegative, affine cost functions, n is the maximum multiplicative
gap between the congestion of any given resource, for any two arbitrary action profiles. Our construction
above shows actually a lower bound SPoA ≥ Ω( ��

n
√ ). To see this, we choose p � x

��
x

√
. Then n � x2 + 5x2 � 6x2,
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which yields x � �����
n/6

√
. Now, SPoA ≥ (x3 + 7x2)/(x2 + 7x2) ≥ x3/(8x2) � x/8 � ��

n
√

/(8 ��
6

√ ). Whether instances can
be constructed where the sequential price of anarchy is asymptotically worse than

��
n

√
remains open.

7. Discussion
The central result of this paper states that the sequential price of anarchy is generally unbounded for
symmetric affine network routing games. One property that stands out in our lower bound constructions is
that it admits multiple subgame perfect equilibria. In fact, there even exists a subgame perfect equilibrium that
induces an optimal strategy profile, and the existence of a poorly performing subgame perfect equilibrium
relies crucially on bad tie breaking. Recent results for special cases, namely, so-called extension-parallel
graphs, show that indeed, the sequential price of anarchy is no longer unbounded if we consider generic
games, that is, those games admitting a unique subgame perfect equilibrium; see Groenland and Schäfer [21].
We do not know, however, whether the sequential price of anarchy is bounded for all symmetric congestion
games that are generic. That question relates to determining the sequential price of stability of symmetric network
routing games.

Finally, note that our main result is asymptotic for large n. In view of concrete applications, it may be
interesting to pin down the exact value for small numbers of n; here we did that for n � 2.
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Appendix. Proof of Upper Bound for Theorem 2
We here give the missing proof of the 7/5 upper bound for sequentially played affine congestion games with n � 2 players.

Lemma A.1. The sequential price of anarchy of symmetric affine congestion games is at most 7/5 when there are n � 2 players only.

Because we consider nonnetwork congestion games for this upper bound proof, we use the term resources instead of arcs.
Consider any symmetric affine congestion game with two players, m resources, affine cost functions (c1, . . . , cm), and the set
R⊆ 2[m] such that the action set of both players is R. We first show that we may assume without loss of generality that all
the cost functions are of the form ce(y) � y. This is because we can transform any symmetric affine congestion game as
follows: First, by scaling all the cost functions simultaneously by an appropriate constant, we may assume that each cost
function ce is of the form ce(y) � aey + be, with ae and be being natural numbers. (It is straightforward to do so when the
original coefficients of the affine cost functions are rational. In case the original coefficients are irrational, additionally one
must first turn such an instance into an equivalent one where the coefficients are approximated by rational numbers.) For
a resource e where ae �� 1 or be �� 0, we may replace each action A′ ∈ R that contains e by two new strategies, A1 �
(A′ \ e) ∪ {e′j : j ∈ [ae]} ∪ {e′′j : j ∈ [be]} and A2 � (A′ \ e) ∪ {e′j : j ∈ [ae]} ∪ {e′′′j : j ∈ [be]}, where for all j, the resources e′j , e′′j , and
e′′′j are newly introduced into the game, and all these newly introduced resources have cost functions of the form ce(y) � y.
There is a natural mapping from the old outcomes to the new outcomes: for player 1, action A′ is mapped to A1, and for
player 2, action A′ is mapped to A2. Note that because the transformed game is still symmetric, action A2 can be chosen by
player 1, and action A1 can be chosen by player 2. However, the two players will not both choose action A1 if be . 0 because
player 2 could then improve her cost by choosing the action A2, and a symmetric conclusion can be made if both players
would choose action A2. Thus, by this transformation, the sequential price of anarchy can only increase. This shows that
we may assume that the cost functions have the form ce(y) � y.

Now, let A∗ � (A∗
1,A

∗
2) be an outcome that minimizes the social cost, and let A � (A1,A2) be the outcome resulting from

a subgame perfect equilibrium S � (S1, S2). We may assume w.l.o.g. that c1(A∗) ≤ c2(A∗), because the action sets are
symmetric. We first define some parameters that we will use throughout this proof:

• Let x be the minimum cardinality of a set of resources in the action set R.
• Let a ∈ R be such that |A∗

1 ∩ A∗
2| � ax.

• Let b be such that |A∗
1 ∩ A1| � b|A1|. Note that this implies that |A∗

2 ∩ A1| ≤ (1 − b)|A1| + ax.
• Let g be such that C(A∗) � (2 + g)x. Observe that g is positive, as 2x is a lower bound on C(A∗).
• Let d be such that c1(A∗) � (1 + d)x. It holds that d ≤ g/2 because c1(A∗) ≤ c2(A∗). The definition of d implies that

c2(A∗) � (1 + g − d)x.
We derive several upper bounds on C(A) that are expressed in terms of a,b, g, and d.
Observe first that each player experiences a cost of at most 2x under A, because there exists an action of cardinality x by

which each resource is chosen by at most two players.
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Proposition A.1. It holds that

c1(A) ≤ 2x, c2(A) ≤ 2x.

This gives us a straightforward upper bound of 4x on C(A). Note that in the case g ≥ 6/7, we obtain that

C(A)
C(A∗) ≤

4
20/7

� 7
5
,

so it remains to prove the claim for the case that g ∈ [0, 6/7], which we assume from now on.

We prove a second upper bound on C(A) next. By subgame perfection of S, it holds that c1(A) ≤ c1(A∗
1, S2(A∗

1)). Also,
c2(A∗

1, S2(A∗
1)) ≤ c2(A∗

1,A
∗
2) � (1 + g − d)x. The number x is defined as the smallest cardinality of an action in R, so S2(A∗

1)
intersects with A∗

1 in at most (g − d)x resources. We combine the latter with the fact that the cardinality of A∗
1 is (1 + d − a)x,

and we conclude that c1(A∗
1, S2(A∗

1)) ≤ (1 + d − a)x + (g − d)x. Therefore, we have the following proposition:

Proposition A.2. It holds that

c1(A) ≤ (1 + g − a)x.
Combining this with Proposition A.1 gives us that

C(A) ≤ (1 + g − a)x + 2x � (3 + g − a)x. (A.1)

We prove two additional upper bounds on C(A) next. By subgame perfection of S, it holds that c2(A) ≤ c2(A1,A∗
1), and it

holds that c2(A) ≤ c2(A1,A∗
2). The cost c2(A1,A∗

1) can be upper bounded as follows:

c2(A1,A∗
1) ≤ |A∗

1| + |A∗
1 ∩ A1| ≤ (1 + d − a)x + b|A1|

≤ (1 + d − a)x + bc1(A)
≤ (1 + d − a)x + b(1 + g − a)x,

where we use Proposition A.2 for the last inequality. The cost c2(A1,A∗
2) can be upper bounded as follows:

c2(A1,A∗
2) ≤ |A∗

2| + |A∗
2 ∩ A1| ≤ (1 + g − d − a)x + (1 − b)|A1| + ax

≤ (1 + g − d)x + (1 − b)|A1|
≤ (1 + g − d)x + (1 − b)c1(A)
≤ (1 + g − d)x + (1 − b)(1 + g − a)x,

where we use Proposition A.2 for the last inequality.

Combining the above two with Proposition A.2 gives us

C(A) � c1(A) + c2(A)
≤ (1 + g − a)x + (1 + d − a)x + b(1 + g − a)x
� (1 + d − a)x + (1 + b)(1 + g − a)x (A.2)

and
C(A) � c1(A) + c2(A)

≤ (1 + g − a)x + (1 + g − d)x + (1 − b)(1 + g − a)x
� (1 + g − d)x + (2 − b)(1 + g − a)x. (A.3)

Combining (A.1), (A.2), and (A.3), we conclude that the sequential price of anarchy of our game is at most

min
(3 + g − a)x,

(1 + d − a)x + (1 + b)(1 + g − a)x,
(1 + g − d)x + (2 − b)(1 + g − a)x

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎫⎪⎪⎪⎬⎪⎪⎪⎭

(2 + g)x �
min

(3 + g − a),
(1 + d − a) + (1 + b)(1 + g − a),
(1 + g − d) + (2 − b)(1 + g − a)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎫⎪⎪⎪⎬⎪⎪⎪⎭

(2 + g) .

We can obtain a concrete upper bound on the sequential price of anarchy of the complete class two-player symmetric affine
congestion games when we maximize the latter expression subject to the constraints g ∈ [0, 6/7],b ∈ [0, 1], d ∈ [0, 1/2g]. The
variable a can be eliminated, as it is clear that the maximum is attained when a � 0. This results in the optimization problem

max
{
min{(3 + g), (1 + d) + (1 + b)(1 + g), (3 − b)(1 + g) − d}

(2 + g) ,

: 0 ≤ g ≤ 6
7
, 0 ≤ b ≤ 1, 0 ≤ d ≤ g

2

}
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Numerically solving this program gives that the solution is 7/5, attained when we take g � b � 1/2, d � 1/4, although this
does not comprise a formal proof. However, it is possible to prove formally that the solution does not exceed 7/5 by
showing that the optimal solution to the following optimization problem does not exceed zero:

max min

(3 + g),
(1 + d) + (1 + b)(1 + g),

(1 + g − d) + (2 − b)(1 + g)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭ − 7

5
(2 + g)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
: 0 ≤ g ≤ 6

7
, 0 ≤ b ≤ 1, 0 ≤ d ≤ g

2

}
. (A.4)

We introduce an additional variable z that we use to eliminate the min expression in the objective function:

max z − 7
5
(2 + g)

{
: z ≤ 3 + g, z ≤ (1 + d) + (1 + b)(1 + g),
z ≤ (1 + g − d) + (2 − b)(1 + g),
0 ≤ g ≤ 6

7
, 0 ≤ b ≤ 1, 0 ≤ d ≤ g

2

}
.

There are still two constraints in this program that are nonlinear, because they contain the terms gb and −gb, respectively.
We introduce a new variable ξ that we restrict to lie in [0, 6/7] and substitute the latter two terms by ξ and −ξ, respectively.
This results in the following linear program, with an “enlarged” feasible region:

max z − 7
5
(2 + g)

{
: z ≤ 3 + g, z ≤ 2 + d + b + g + ξ, z ≤ 3 + 3g − d − b − ξ,

0 ≤ g ≤ 6
7
, 0 ≤ b ≤ 1, 0 ≤ d ≤ g

2
, 0 ≤ ξ ≤ 6/7

}
.

Because the set of feasible points of this linear program is larger, the solution to this linear program is an upper bound to
the solution of (A.4). The exact solution to this linear program can be obtained by known algorithms, and turns out to be 0,
as we needed to show. □

Endnotes
1 In a generic game, the players are never facedwith a tie, for any strategy profile of the other players. Thus, all decisions are uniquely determined,
and in particular, uniqueness of subgame perfect equilibria is guaranteed.
2Note that our main results are lower bounds on the price of anarchy and they already apply under linear cost functions.
3 In de Jong and Uetz [15], a lower bound example is given for general congestion games which can be easily transformed to network routing
games.
4 Just like the price of stability as defined byAnshelevich et al. [3, 4], the sequential price of stability is the ratio of the outcome of the best subgame
perfect equilibrium over the optimum.
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