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Abstract. We study the inefficiency of equilibria for several classes of
games when players are (partially) altruistic. We model altruistic behav-
ior by assuming that player i’s perceived cost is a convex combination of
1−αi times his direct cost and αi times the social cost. Tuning the param-
eters αi allows smooth interpolation between purely selfish and purely
altruistic behavior. Within this framework, we study altruistic extensions
of cost-sharing games, utility games, and linear congestion games. Our
main contribution is an adaptation of Roughgarden’s smoothness notion
to altruistic extensions of games. We show that this extension captures
the essential properties to determine the robust price of anarchy of these
games, and use it to derive mostly tight bounds.

1 Introduction

Many large-scale decentralized systems involve the interactions of large numbers
of individuals acting to benefit themselves. Thus, such systems are naturally
studied from the viewpoint of game theory, with an eye on the social efficiency
of stable outcomes. Traditionally, “stable outcomes” have been associated with
pure Nash equilibria of the corresponding game. The notions of price of anarchy
[9] and price of stability [2] provide natural measures of the system degradation,
by capturing the degradation of the worst and best Nash equilibria, respectively,
compared to the socially optimal outcome. However, the predictive power of
such bounds has been questioned on (at least) two grounds: First, the adop-
tion of Nash equilibria as a prescriptive solution concept implicitly assumes that
players are able to reach such equilibria, a very suspect assumption for compu-
tationally bounded players. In response, recent work has begun analyzing the
outcomes of natural response dynamics [3,15], as well as more permissive so-
lution concepts such as mixed, correlated or coarse correlated equilibria. (This
general direction of inquiry has become known as “robust price of anarchy”.)
Second, the assumption that players seek only to maximize their own utility
is at odds with altruistic behavior routinely observed in the real world. While
modeling human incentives and behavior accurately is a formidable task, several



papers have proposed natural models of altruism and analyzed its impact on the
outcomes of games [4,5,6,10].

The goal of this paper is to begin a thorough investigation of the effects
of relaxing both of the standard assumptions simultaneously, i.e., considering
the combination of weaker solution concepts and notions of partially altruistic
behavior by players. We formally define the altruistic extension of an n-player
game in the spirit of past work on altruism (see [10, p. 154] and [4,5,8]): player
i has an associated altruism parameter αi, and his cost (or payoff) is a convex
combination of (1− αi) times his direct cost (or payoff) and αi times the social
cost (or social welfare). By tuning the parameters αi, this model allows smooth
interpolation between pure selfishness (αi = 0) and pure altruism (αi = 1). To
analyze the degradation of system performance in light of partially altruistic
behavior, we extend the notion of robust price of anarchy [15] to games with
altruistic players, and show that a suitably adapted notion of smoothness [15]
captures the properties of a system that determine its robust price of anarchy. We
use our framework to analyze the robust price of anarchy of three fundamental
classes of games.

1. In a cost-sharing game [2], players choose subsets of resources, and all
players choosing the same resource share its cost evenly. Using our framework,
we derive a bound of n/(1 − α̂) on the robust price of anarchy of these games,
where α̂ is the maximum altruism level of a player. This bound is tight for
uniformly altruistic players.

2. We apply our framework to utility games [16], in which players choose
subsets of resources and derive utility of the chosen set. The total welfare is
determined by a submodular function of the union of all chosen sets. We derive
a bound of 2 on the robust price of anarchy of these games. In particular, the
bound remains at 2 regardless of the (possibly different) altruism levels of the
players. This bound is tight.

3. We revisit and extend the analysis of atomic congestion games [14], in
which players choose subsets of resources whose costs increase (linearly) with
the number of players using them. Caragiannis et al. [4] recently derived a tight
bound of (5+4α)/(2+α) on the pure price of anarchy when all players have the
same altruism level α.4 Our framework makes it an easy observation that their
proof in fact bounds the robust price of anarchy. We generalize their bound to the
case when different players have different altruism levels, obtaining a bound in
terms of the maximum and minimum altruism levels. This partially answers an
open question from [4]. For the special case of symmetric singleton congestion
games (which corresponds to selfish scheduling on machines), we extend our
study of non-uniform altruism and obtain an improved bound of (4−2α)/(3−α)
on the price of anarchy when an α-fraction of the players are entirely altruistic
and the remaining players are entirely selfish.

Notice that many of these bounds on the robust price of anarchy reveal
a counter-intuitive trend: at best, for utility games, the bound is independent

4 The altruism model of [4] differs from ours in a slight technicality discussed in Section
2 (Remark 1). Therefore, various bounds we cite here are stated differently in [4].
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of the level of altruism, and for congestion games and cost-sharing games, it
actually increases in the altruism level, unboundedly so for cost-sharing games.
Intuitively, this phenomenon is explained by the fact that a change of strategy
by player i may affect many players. An altruistic player will care more about
these other players than a selfish player; hence, an altruistic player accepts more
states as “stable”. This suggests that the best stable solution can also be chosen
from a larger set, and the price of stability should thus decrease. Our results
on the price of stability lend support to this intuition: for congestion games, we
derive an upper bound on the price of stability which decreases as 2/(1 + α);
similarly, for cost-sharing games, we establish an upper bound which decreases
as (1− α)Hn + α.

The increase in the price of anarchy is not a universal phenomenon, demon-
strated by symmetric singleton congestion games. Caragiannis et al. [4] showed
a bound of 4/(3 + α) for pure Nash equilibria with uniformly altruistic players,
which decreases with the altruism level α. Our bound of (4 − 2α)/(3 − α) for
mixtures of entirely altruistic and selfish players is also decreasing in the fraction
of entirely altruistic players. We also extend an example of Lücking et al. [11]
to show that symmetric singleton congestion games may have a mixed price of
anarchy arbitrarily close to 2 for arbitrary altruism levels. In light of the above
bounds, this establishes that pure Nash equilibria can result in strictly lower
price of anarchy than weaker solution concepts.

Most proofs are omitted from this short paper; they are available in the full
version.

2 Altruistic Games and the Robust Price of Anarchy

Let G = (N, {Σi}i∈N , {Ci}i∈N ) be a finite strategic game, where N = [n] is
the set of players, Σi the strategy space of player i, and Ci : Σ → R the cost
function of player i, mapping every joint strategy s ∈ Σ = Σ1 × · · · × Σn to
the player’s direct cost. Unless stated otherwise, we assume that every player
i wants to minimize his individual cost function Ci. We also call such games
cost-minimization games. A social cost function C : Σ → R maps strategies
to social costs. We require that C is sum-bounded, that is, C(s) ≤

∑n
i=1 Ci(s)

for all s ∈ Σ. We study altruistic extensions of strategic games equipped with
sum-bounded social cost functions. Our definition is based on one used (among
others) in [5], and similar to ones given in [4,6,10].

Definition 1. Let α ∈ [0, 1]n. The α-altruistic extension of G (or simply α-
altruistic game) is defined as the strategic game Gα = (N, {Σi}i∈N , {Cαi }i∈N ),
where for every i ∈ N and s ∈ Σ, Cαi (s) = (1− αi)Ci(s) + αiC(s).

Thus, the perceived cost that player i experiences is a convex combination
of his direct (selfish) cost and the social cost; we call such a player αi-altruistic.
When αi = 0, player i is entirely selfish; thus, α = 0 recovers the original game.
A player with αi = 1 is entirely altruistic. Given an altruism vector α ∈ [0, 1]n,
we let α̂ = maxi∈N αi and α̌ = mini∈N αi denote the maximum and minimum
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altruism levels, respectively. When αi = α (a scalar) for all i, we call such games
uniformly α-altruistic games.

Remark 1. In a recent paper, Caragiannis et al. [4] model uniformly altruistic
players by defining the perceived cost of player i as (1−ξ)Ci(s)+ξ(C(s)−Ci(s)),
where ξ ∈ [0, 1]. It is not hard to see that in the range ξ ∈ [0, 1

2 ] this definition
is equivalent to ours by setting α = ξ/(1− ξ) or ξ = α/(1 + α).

The most general equilibrium concept we consider is coarse (correlated) equi-
libria.

Definition 2 (Coarse equilibrium). A coarse (correlated) equilibrium of a
game G is a probability distribution σ over Σ = Σ1×· · ·×Σn with the following
property: if s is a random variable with distribution σ, then for each player i,
and all s∗i ∈ Σi:

Es∼σ [Ci(s)] ≤ Es−i∼σ−i
[Ci(s∗i , s−i)] , (1)

where σ−i is the projection of σ on Σ−i = Σ1 × · · · ×Σi−1 ×Σi+1 × · · · ×Σn.

It includes several other solution concepts, such as correlated equilibria,
mixed Nash equilibria and pure Nash equilibria.

The price of anarchy (PoA) [9] and price of stability (PoS) [2] quantify the in-
efficiency of equilibria for classes of games: Let S ⊆ Σ be a set of strategy profiles
for a cost-minimization game G with social cost function C, and let s∗ be a strat-
egy profile that minimizes C. We define PoA(S,G) = sup {C(s)/C(s∗) : s ∈ S}
and PoS(S,G) = inf {C(s)/C(s∗) : s ∈ S}. The coarse (or correlated, mixed,
pure) PoA (or PoS ) of a class of games G is the supremum over all games in G
and all strategy profiles in the respective set of equilibrium outcomes. Notice
that the PoA and PoS are defined with respect to the original social cost func-
tion C, not accounting for the altruistic components. This reflects our desire to
understand the overall performance of the system (or strategic game), which is
not affected by different perceptions of costs by individuals.5

Roughgarden [15] introduced the notion of (λ, µ)-smoothness of strategic
games with sum-bounded social cost functions and showed that it provides a
generic template for proving bounds on the PoA as well as the outcomes of
no-regret sequences [3].

The smoothness approach cannot be applied directly to our altruistic games
because the social cost function C that we consider here is in general not
sum-bounded in terms of Cαi (which is a crucial prerequisite in [15]). How-
ever, we are able to generalize the (λ, µ)-smoothness notion to altruistic games,
thereby preserving many of its applications. For notational convenience, we de-
fine C−i(s) = C(s)− Ci(s).
5 If all players have a uniform altruism level αi = α ∈ [0, 1] and the social cost function
C is equal to the sum of all players’ direct costs, then for every strategy profile s ∈ Σ,
the sum of the perceived costs of all players is equal to (1−α+αn)C(s). In particular,
bounding the PoA (or PoS) with respect to C is equivalent to bounding the PoA (or
PoS) with respect to total perceived cost in this case.
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Definition 3. Gα is (λ, µ, α)-smooth iff for any two strategy profiles s, s∗ ∈ Σ,

n∑
i=1

Ci(s∗i , s−i) + αi(C−i(s∗i , s−i)− C−i(s)) ≤ λC(s∗) + µC(s).

Most of the results in [15] following from (λ, µ)-smoothness carry over to our
altruistic setting using the generalized (λ, µ, α)-smoothness notion. The following
result allows a calculation of the PoA.6

Proposition 1. Let Gα be an α-altruistic game that is (λ, µ, α)-smooth with
µ < 1. Then, the coarse (and thus also correlated, mixed, and pure) price of
anarchy of Gα is at most λ

1−µ .

For many important classes of games, the bounds obtained by (λ, µ, α)-
smoothness arguments are actually tight, even for pure Nash equilibria. This
motivates defining the robust PoA as the best bound that can be proved using
the smoothness technique.

Definition 4. Let Gα be an α-altruistic game. Its robust PoA is defined as
RPoAG(α) = inf{ λ

1−µ : Gα is (λ, µ, α)-smooth with µ < 1}. For a class G of
games, we define RPoAG(α) = sup{RPoAG(α) : G ∈ G}.

We study the robust PoA of three classes of games: they are all described by
a set E of resources (or facilities), and strategy sets Σi ⊆ 2E for each player,
from which the player can choose a subset si ∈ Σi of resources. Given a joint
strategy s, we define xe(s) = |{i ∈ N : e ∈ si}| as the number of players
that use resource e ∈ E under s. We also use U(s) to refer to the union of all
resources used under s, i.e., U(s) =

⋃
i∈N si.

3 Cost-sharing Games

A cost-sharing game is given by G = (N,E, {Σi}i∈N , {ce}e∈E), where ce is the
non-negative cost of facility e ∈ E. The cost of each facility is shared evenly
among all players using it, i.e., the direct cost of player i is defined as Ci(s) =∑
e∈si

ce/xe(s). The social cost function is C(s) =
∑n
i=1 Ci(s) =

∑
e∈U(s) ce.

It is well-known that the pure PoA of cost-sharing games is n [13]. We show
that it can get significantly worse when there is altruism. Also we provide an
upper bound on the pure PoS when altruism is uniform.

Theorem 1. For α-altruistic cost-sharing games, the robust PoA is n
1−α̂ (where

n/0 =∞), and for uniform altruism, the pure PoS is at most (1− α)Hn + α.

6 All results in this section continue to hold for altruistic extensions of payoff-
maximization games G: One needs only replace C by Π and µ by −µ in Definition
3, and replace λ

1−µ by 1+µ
λ

and µ < 1 by µ > −1 in Definition 4.
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4 Utility Games

A utility game [16] G = (N,E, {Σi}i∈N , {Πi}i∈N , V ) is a payoff maximization
game, in which Πi is the payoff function of player i, and V is a submodular7

and non-negative function on E. Every player i strives to maximize his pay-
off function Πi. The social welfare function Π : Σ → R to be maximized is
Π(s) = V (U(s)), and thus depends on the union of the players’ chosen re-
sources, evaluated by V . The payoff function of every player i is assumed to
satisfy8 Πi(s) ≥ Π(s) − Π(∅, s−i) for every strategy profile s ∈ Σ. Intuitively,
this means that the payoff of a player is at least his contribution to the social
welfare. Moreover, it is assumed that Π(s) ≥

∑n
i=1Πi(s) for every s ∈ Σ; see

[16] for a justification of these assumptions. Vetta [16] proved a bound of 2 on
the pure PoA for utility games with non-decreasing V ; Roughgarden [15] showed
that this bound is achieved via a (λ, µ)-smoothness argument. We extend it to
altruistic extensions of these games.

Theorem 2. The robust PoA of α-altruistic utility games is 2.

5 Congestion Games

In an atomic congestion game G = (N,E, {Σi}i∈N , {de}e∈E), every facility e ∈
E has an associated delay function de : N → R. Player i’s cost is Ci(s) =∑
e∈si

de(xe(s)), and the social cost is C(s) =
∑n
i=1 Ci(s). We focus on linear

congestion games, i.e., the delay functions are of the form de(x) = aex + be,
where ae, be are non-negative rational numbers. Pure Nash equilibria of altruistic
extensions of linear congestion games always exist [8]; this may not be the case
for arbitrary (non-linear) congestion games.9

The PoA of linear congestion games is known to be 5
2 [7]. Recently, Cara-

giannis et al. [4] extended this result to linear congestion games with uniformly
altruistic players. Applying the transformation outlined in Remark 1, their result
can be stated as follows:

Theorem 3 ([4]). The pure PoA of uniformly α-altruistic linear congestion
games is at most 5+4α

2+α .

The proof in [4] implicitly uses a smoothness argument in the framework
we define here for altruistic games. Thus, without any additional work, our
framework allows the extension of Theorem 3 to the robust PoA. Caragiannis
7 A function f : 2E → R is called submodular iff f(A∪{x})−f(A) ≥ f(B∪{x})−f(B)

for any A ⊆ B ⊆ E, x ∈ E.
8 We abuse notation and write Π(∅, s−i) to denote V (U(s)\si).
9 If players’ altruism levels are not uniform, then the existence of pure Nash equilibria

is not obvious. Hoefer and Skopalik [8] established it for several subclasses of atomic
congestion games. For the generalization of arbitrary player-specific cost functions,
Milchtaich [12] showed existence for (symmetric) singleton congestion games and
Ackermann et al. [1] for matroid congestion games.
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et al. [4] also showed that the bound of Theorem 3 is asymptotically tight. A
simpler example (deferred to the full version of this paper) proves tightness of
this bound (not only asymptotically). Thus, the robust PoA is exactly 5+4α

2+α . We
give a refinement of Theorem 3 to non-uniform altruism distributions, obtaining
a bound in terms of the maximum and minimum altruism levels.

Theorem 4. The robust PoA of α-altruistic linear congestion games is at most
5+2α̂+2α̌
2−α̂+2α̌ .

We turn to the pure price of stability of α-altruistic congestion games. Clearly,
an upper bound on the pure price of stability extends to the mixed, correlated
and coarse price of stability.

Proposition 2. The pure PoS of uniformly α-altruistic linear congestion games
is at most 2

1+α .

Symmetric Singleton Congestion Games. An important special case
of congestion games is that of symmetric singleton congestion games G =
(N,E, {Σi}i∈N , {de}e∈E), in which every player chooses one facility (also called
edge) from E = [m], and all strategy sets are identical, i.e., Σi = E for every
i. In singleton linear congestion games, the focus here, delay functions are also
assumed to be linear, of the form de(x) = aex+ be.

Caragiannis et al. [4] prove the following theorem (stated using the transfor-
mation from Remark 1). It shows that the pure PoA does not always increase
with the altruism level; the relationship between α and the PoA is thus rather
subtle.

Theorem 5 (Caragiannis et al. [4]). The pure PoA of uniformly α-altruistic
singleton linear congestion games is 4

3+α .

We show that even the mixed PoA (and thus also the robust PoA) will be at
least 2 regardless of the altruism levels of the players, by generalizing a result of
Lücking et al. [11, Theorem 5.4]. This implies that the benefits of higher altruism
in singleton congestion games are only reaped in pure Nash equilibria, and the
gap between the pure and mixed PoA increases in α.

Proposition 3. For every α ∈ [0, 1]n, the mixed PoA for α-altruistic singleton
linear congestion games is at least 2.

As a first step to extend the analysis to non-uniform altruism, we analyze the
case when all altruism levels are in {0, 1}, i.e., each player is either completely
altruistic or completely selfish.10 Then, the system is entirely characterized by
the fraction α of altruistic players (which coincides with the average altruism
level). The next theorem shows that in this case, too, the pure PoA improves
with the overall altruism level.

Theorem 6. Assume that an α fraction of the players are completely altruistic,
and the remaining (1 − α) fraction are completely selfish. Then, the pure PoA
of the altruistic singleton linear congestion game is at most 4−2α

3−α .

10 This model relates naturally to Stackelberg scheduling games (see, e.g., [6]).
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