
Shapley meets Shapley

Haris Aziz1 and Bart de Keijzer2

1 NICTA and University of New South Wales
Sydney, NSW 2033, Australia
haris.aziz@nicta.com.au

2 Centrum Wiskunde& Informatica (CWI)
1098 XG, Amsterdam, The Netherlands
keijzer@cwi.nl

Abstract
This paper concerns the analysis of the Shapley value in matching games. Matching games constitute a
fundamental class of cooperative games which help understand and model auctions and assignments. In
a matching game, the value of a coalition of vertices is the weight of the maximum size matching in the
subgraph induced by the coalition. The Shapley value is one of the most important solution concepts
in cooperative game theory. After establishing some general insights, we show that the Shapley value
of matching games can be computed in polynomial time for some special cases: graphs with maximum
degree two, and graphs that have a small modular decomposition into cliques or cocliques (complete k-
partite graphs are a notable special case of this). The latter result extends to various other well-known
classes of graph-based cooperative games. We continue by showing that computing the Shapley value
of unweighted matching games is #P-complete in general. Finally, a fully polynomial-time randomized
approximation scheme (FPRAS) is presented. This FPRAS can be considered the best positive result
conceivable, in view of the #P-completeness result.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.1 Combina-
torics, G.2.2 Graph Theory

Keywords and phrases Matching games, Shapley, counting complexity

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

In economics and computer science, one of the most fundamental problems is the allocation of
profits or costs based on contributions of the nodes in a network. The problem has assumed even
more importance as networks have become ubiquitous. In this paper, we address this problem by
simultaneously studying two concepts that can be traced to Lloyd S. Shapley — the Shapley value
and matching games.

Lloyd S. Shapley is one of the most influential game theorists in history. Among his numerous
contributions, two of them are the following: (i) formulating the assignment game as a rich and
versatile class of cooperative games [25], and (ii) proposing the Shapley value as a highly desirable
solution concept for cooperative games [24]. Both contributions have had far-reaching impact and
were part of Shapley’s Nobel Prize winning achievements. The assignment game is a cooperative
game based on bipartite graphs, and models the interaction between buyers and sellers. It is the
transferable utility version of the well-known stable marriage setting and is a fundamental model that
is used for modelling exchange markets and auctions [23]. Assignment games were later generalized
to matching games, for non-bipartite graphs (see e.g., [11, 17]). The main idea of a matching game is
that each node represents an agent and the value of a coalition of nodes is the weight of the maximum
weight matching in the subgraph induced by the coalition of nodes. Whereas the matching game is

© Haris Aziz and B. de Keijzer;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor, Bill Editors; pp. 1–12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Shapley meets Shapley

one of the most natural and important cooperatives game, the Shapley value has been termed “the
most important normative payoff division scheme” in cooperative game theory [28]. It is based on the
idea that the payoff of an agent should be proportional to his marginal contributions to the payoff for
the set of all players. For an excellent overview of the concept, we refer the reader to [Chapter 5, 21].
The Shapley value is the only solution concept that satisfies simultaneously the following properties:
efficiency, symmetry, additivity, and dummy player property.

In this paper we address a gap in the computational cooperative game theory literature, and
we initiate research on the computational aspects of the Shapley value in matching games. This
gap is surprising on two fronts: (i) computational aspects of Shapley values have been extensively
studied for a number of cooperative games (see e.g., [12, 15, 14]) and (ii) matching games are a
well-established class of cooperative games, and the structure and computational complexity of
computing important solution concepts such as the core, least core, and nucleolus have been examined
in-depth for matching games (see e.g., [1, 26, 17, 10, 6, 5]).

Our results. We study the algorithmic aspects and computational complexity of the Shapley value
for matching games for the first time. We establish first some general insights and some particular
special cases for which the exact Shapley value can be computed in polynomial time for: graphs with
a constant size decomposition into clique and coclique modules (these include e.g., complete k-partite
graphs, for k constant), and for graphs with maximum degree two. The non-trivial algorithm required
for graphs of maximum degree two illustrates that exact computation of the Shapley value quickly
becomes rather complex, even for very simple graph classes. We then move on to the central results
of this paper, which concerns the general problem: we prove that the computational complexity of
computing the Shapley value of matching games is #P-complete even if the graph is unweighted. The
proof relies on Berge’s Lemma and the fact that a certain matrix related to the Pascal triangle has a
non-zero determinant. We subsequently present an FPRAS (i.e., a fully polynomial time randomized
approximation scheme) for computing the Shapley value of (weighted) matching games. In view of
our #P-completeness result, the FPRAS is the best possible result we can hope for.

Related work. The complexity of computing the Shapley value of important classes of co-
operative games has been the topic of detailed studies. The papers [12] and [15] present
polynomial-time algorithms to compute the Shapley value of graph games and marginal contribution
nets respectively. On the other hand, computing the Shapley value is known to be intractable for a
number of cooperative games (see e.g., [14, 2]).

Among the classes of cooperative games, matching games are one of the most well-studied. The
core of matching games is characterized in [11], where it is also shown that various computational
problems regarding the core and the least core of matching games can be solved in polynomial time.
For matching games, there has been considerable algorithmic research on the nucleolus: an alternative
single valued solution concept (see e.g., [26, 17]).

As networks analysis becomes an increasingly important area, centrality indices of graphs have
received immense interest (see e.g., [7]). The idea is to get a ranking of vertices according to their
ability to connect with other vertices. Recently, a Shapley-values based game theoretic approach
has been used to gauge the centrality or connectivity of vertices by representing different valuation
functions with a graph [see e.g., 20]. The motivation is that the Shapley value of a vertex captures
various synergies which standard centrality measures do not. In this vein, Shapley values of the
matching game constitutes an interesting method of gauging centrality/connectivity of the vertices. In
particular it quantifies in a principled manner the ability of a vertex to match with other vertices to
increase the value of the coalition.

H. Aziz and B. de Keijzer 3

2 Preliminaries

We work throughout this text with undirected weighted graphs G = (N, E,w), where N is the vertex
set, E is the edge set, and w : E → R≥0 is a weight function. For S ⊆ N, we denote by G(S) the
subgraph of G induced by S , i.e., the graph (S , {e ∈ E : e ∈ S × S }). We assume for the remainder of
this text that the reader is familiar with basic notions related to graphs and matchings.

A cooperative game consists of a set N of n = |N | players and a characteristic function v : 2N → R

associating a value v(S) to every subset S ⊆ N. A subset of N is referred to as a coalition in this
context. Deciding how to distribute the value v(N) among the players in a fair and stable manner is an
objective of central importance in the research area of cooperative games.

A matching game is a cooperative game (N, v) induced by an undirected weighted graph G =

(N, E,w) (with vertex set N, edge set E, and weight function w : E → R≥0) such that for any S ⊆ N,
v(S) is the weight of a maximum weight matching of the subgraph G(S). For a given graph G, we
will denote by MG(G) the matching game corresponding to graph G.

An unweighted matching game is a matching game for which all weights are 1 in the associated
graph. In unweighted matching games, it holds that v(S ∪ {i}) − v(S) ∈ {0, 1} for all S ⊂ N, i ∈ N\S .
If, for an unweighted matching game (N, v), a player i ∈ N, and a coalition S ⊆ N\{i}, it holds that
v(S ∪ {i}) = v(S) + 1, then we say that player i is pivotal (for coalition S , in game (N, v)). Similarly,
if σ : N → N is a permutation on N, and i is pivotal for set of players p(i, σ) = { j : σ−1(j) < σ−1(i)}
(i.e., the players occurring before i in σ), then we say that σ is pivotal for i.

For the general case of weighted matching games, when S is a coalition not containing player i,
we refer to the value v(S ∪ {i})− v(S) as the marginal contribution of i to S . When σ is a permutation
of N, we refer to the value v(p(i, σ) ∪ {i}) − v(p(i, σ)) as the marginal contribution of i to σ.

The Shapley value of a player i ∈ N in a cooperative game (N, v) is denoted by ϕi(N, v), and is
defined as follows.

ϕi(N, v) = κi(N, v)/n!, κi(N, v) =
∑

S⊆N\{i}

(|S |!)(n − |S | − 1)!(v(S ∪ {i}) − v(S)). (1)

κi is called the raw Shapley value. It is well-known and straightforward to obtain that the raw
Shapley value can be written as κi(N, v) =

∑
σ∈S N

(v(p(i, σ) ∪ {i}) − v(p(i, σ),)), where S N is the set of
permutations on the player set N. For an unweighted matching game, the raw Shapley value of a player
is thus equal to the number of pivotal permutations. We refer to the vectors ϕ = (ϕ1(N, v), . . . ϕn(N, v))
and κ = (κ1(N, v), . . . , κn(N, v)) respectively as the Shapley value and the raw Shapley value of the
game (N, v).

The players i, j ∈ N are called symmetric in (N, v) if v(S ∪ {i}) = v(S ∪ { j}) for any coalition
S ⊆ N \ {i, j}. A player i ∈ N is a dummy if v(S ∪ {i}) − v(S) = 0 for all S ⊆ N. The Shapley value
satisfies the following properties: (i) Efficiency:

∑
i∈N ϕi(N, v) = v(N); (ii) Symmetry: if i, j ∈ N are

symmetric, then ϕi(N, v) = ϕ j(N, v); (iii) Dummy: if i is a dummy, then ϕi(N, v) = 0; (iv) Additivity:
ϕi(N, v1 + v2) = ϕi(N, v1) + ϕi(N, v2) for all i ∈ N;1 and (v) Anonymity: relabeling the agents does not
affect their Shapley value. We are interested in the following computational problem.

Shapley
Instance: A weighted graph G = (N, E,w) and a specified player i ∈ N.
Question: Compute ϕi(MG(G)).

1 The sum of two characteristic functions v1 and v2 on the same player set is defined in the standard way: as v1(S)+v2(S)
for all S ⊆ N.

4 Shapley meets Shapley

2.1 General insights

In this subsection, we gain some general insights about the Shapley value of matching games. First, if
the graph is not connected, then the problem of computing the Shapley value of the graph reduces to
computing the Shapley value of the respective connected components.

I Lemma 1 (Shapley value in connected components). Let G = (N, E,w) be a weighted graph
with k connected components, and let the respective vertex sets of these connected components be
N1, . . . ,Nk. Let v be the characteristic function of the matching game MG(G) on that graph, and let
c : N → [k] be the function that maps a vertex i to the number j such that j ∈ Nk.2 Then, for every
vertex i it holds that ϕi(v) = ϕi(vc(i)), where v j denotes the characteristic function of the matching
game on the subgraph induced by N j.

It is rather straightforward to see that a vertex has a Shapley value zero if and only if it is not connected
to any other vertex.

I Observation 1. A player in a matching game has a non-zero Shapley value if and only if there is
an edge in the graph that contains the player. It can thus be decided in linear time whether a player in
a matching game has a Shapley value of zero.

Next, we present another lemma concerning the Shapley value of unweighted matching games.

I Lemma 2. Consider an unweighted matching game (N, v). If for each s ∈ [n − 1], the number
of coalitions of size s for which player i is pivotal in (N, v) can be computed in time f (n) for some
function f : N→ R≥0, then the Shapley value of i can be computed in time n f (n).

3 Exact algorithms for restricted graph classes

Some classes of matching games for which computing the Shapley value is trivial are symmetric
graphs (e.g. cliques and cycles), and graphs with a constant number of vertices. We proceed to prove
this for two additional special cases: weighted graphs that admit constant size (co)clique modular
decompositions, and unweighted graphs with degree at most two.

3.1 Graphs with a constant number of clique or coclique modules

An important concept in the context of undirected graphs is that of a module. A subset of vertices
S ⊆ N is a module if all members of S have the same set of neighbors in N \ S . We can extend
this notion to weighted graphs by requiring that all members of S are connected to the same set of
neighbors, by edges of the same weight. A modular decomposition is a partition of the vertex set into
modules.

A clique module (resp. coclique module) of a weighted graph is a module of which the vertices are
pairwise connected by edges of the same weight (resp. pairwise disconnected). Note that every graph
has a trivial modular decomposition into cliques (and cocliques): the partition of N into singletons.

We prove that if a weighted graph G has a size k modular decomposition consisting of only cliques
or only cocliques, then the Shapley value of MG(G) can be found in polynomial time. In fact, we will
show that this holds for the more general class of subgraph-based games: We call a cooperative game
(N, v) subgraph-based if there exists a weighted graph G = (N, E,w) such that for S ,T ⊂ N, it holds
that v(S) = v(T) if G(S) and G(T) are isomorphic.

2 For a ∈ N, we write [a] to denote {b ∈ N : 1 ≤ b ≤ a}.

H. Aziz and B. de Keijzer 5

I Theorem 3. Consider a subgraph-based cooperative game (N, v). Then, the Shapley value of
(N, v) can be computed in polynomial time if the following three conditions hold: i.) the weighted
graph G = (N, E,w) associated to (N, v) is given or can be computed in time polynomial in the size
of the representation of (N, v); ii.) there exists a modular decomposition γ(G) into k cocliques or k
cliques and G is unweighted in the latter case; and iii.) v(S) can be computed in polynomial time for
all S ⊆ N.

Proof. Note first that one can find for G in polynomial time a minimum cardinality modular decom-
position into cocliques: simply check for each pair of vertices whether they are disconnected and
connected to identical sets of vertices through edges with identical weights. If so, then they can be
put in the same module. Similarly, a minimum cardinality modular decomposition into cliques can be
found in polynomial time in case the graph is unweighted, by finding a minimum cardinality modular
decomposition into cocliques in the complement of G (i.e., the graph that contains only those edges
not in E).

A set of players S is said to be of the same player type if all player pairs in S are symmetric. We
first show that all players in the same module of γ(G) are of the same player type. Let i, j be two
players in the same module M in γ(G). Then, for every coalition C ⊆ N\{i, j}, the subgraphs G(C∪{i})
and G(C ∪ { j}) are isomorphic (because G(M) is a clique or coclique), so v(C ∪ {i}) = v(C ∪ { j}).
Therefore, we know that the vertices can be divided into a constant number k of player types.

[27] showed that any cooperative game in which the value of a given coalition can be computed in
polynomial time, and there is known size k partition of the players into sets of the same player type,
then the Shapley value can be computed in polynomial time via dynamic programming. The number
of player types in our game is constant number k of clique and coclique modules. Therefore the result
of [27] can be applied, and this proves our claim. J

For matching games, the function v can be evaluated using any polynomial time maximum weight
matching algorithm. Therefore, the above result implies that computing the Shapley value can be done
in polynomial time for classes of graphs where we can find efficiently a size k modular decomposition
into cliques or cocliques. This includes the class of complete k-partite graphs and any strong product3

of an arbitrary size clique (or coclique) with a graph on k vertices.

I Corollary 4. For matching games based on complete k-partite graphs, where k is a constant, the
Shapley value can be computed in polynomial time.

Theorem 3 also applies to cooperative games such as s-t vertex connectivity games and min-cost
spanning tree games [10, 11], as these are subgraph-based games.

3.2 Graphs of degree at most two

We first examine linear graphs (or: “paths”), i.e., unweighted connected graphs in which two vertices
have out-degree one and the remaining vertices have out-degree two.

I Lemma 5. The Shapley value of a player in a matching game on an unweighted linear graph can
be computed in O(n4) time.

Proof. Assume without loss of generality that the vertex set is N and the edge set is {{ j, j + 1} :
j ∈ N\{n}]}, and that i ∈ N is the player of whom we want to compute the Shapley value. Fix any
s ∈ [n − 1], and let ηs

i be the number of coalitions of size s for which vertex i is pivotal. We compute
ηs

i by subdividing in separate cases and taking the sum of them:

3 The strong product of two graphs G1 = (N, E1) and G2 = (M, E2) is defined as the graph (N × M, E′), where
E′ = {{(iN , iM), (jN , jM)} ⊆ N × M : iM = jM ∧ {iN , jN } ∈ E1 ∨ {iM , jM} ∈ E2}.

6 Shapley meets Shapley

The number ηs,left
i = |{S ∪ {i + 1} : S ⊆ N\{i, i − 1, i + 1}, i is pivotal for S }|. Intuitively: the

number of coalitions S where i is pivotal such that adding i to S extends the left of a line segment.
The number ηs,right

i = |{S ∪ {i − 1} : S ⊆ N\{i, i − 1, i + 1}, i is pivotal for S }|.
The number ηs,connect

i = |{S ∪ {i − 1, i + 1} : S ⊆ N\{i, i − 1, i + 1}, i is pivotal for S }|. Intuitively:
the number of coalitions S where i is pivotal, such that i connects two line segments.
ηs,isolated

i = |{S : S ⊆ N\{i, i − 1, i + 1}, i is pivotal for S }|.

It is immediate that ηs,isolated
i = 0, since adding i to a coalition S not containing i + 1 nor i − 1

results in a coalition forming a subgraph in which i is an isolated vertex. For the remaining three
values, ηs,left

i , ηs,right
i , and ηs,connect

i , we show below how to compute them efficiently.

For ηs,left
i , observe that adding a vertex to the left of a (non-empty) line segment L increases the

cardinality of a maximum matching if and only if L has an even number of edges (and thus an
odd number of vertices). Therefore, define ηs,left

i (k) to be the number of coalitions S of size s for
which i is pivotal such that S contains the line segment {i + 1, . . . , i + k + 1}, and does not contain
{i − 1, i + k + 2}. The number ηs,left

i (k) is easy to determine:

ηs,left
i (k) =

0 if k is odd,(
|N\{i−1,...,i+k+2}|

s−|{i−1,...,i+k+1}∩N |

)
otherwise.

We can then express ηs,left
i as

∑max{n−i−1,s−1}
k=1 ηs,left

i (k). There is only a linear number of terms in
this sum, and all of them can be computed in linear time.
η

s,right
i is computed in an analogous fashion.

For ηs,connect
i , observe that adding a vertex i to a coalition such that i connects two line segments L1

and L2, increases the cardinality of a maximum matching if and only if L1 and L2 do not both have
an odd number of edges (or equivalently: not both have an even number of vertices). Therefore,
define ηs,connect

i (k1, k2) to be the number of coalitions S of size s for which i is pivotal such that S
contains the line segments {i − k1 − 1, . . . , i − 1} and {i + 1, . . . , i + k2 + 1}, and does not contain
{i − k1 − 2, i + k2 + 2}. The number ηs,connect

i (k1, k2) is easy to determine:

ηs,connect
i (k1, k2) =

0 if k1 and k2 are both odd,(
|N\({i−k−2,...,i+k+2}|

s−|{i−k−1,...,i+k+1}∩N |

)
otherwise.

We can then express ηs,connect
i as

∑max{i−2,s−1}
k1=1

∑max{n−i−1,s−k1−2}
k2=1 ηs,left

i (k1, k2). The number of terms
in this sum is quadratic, and all of these terms can be computed in linear time. We can thus
compute ηs,connect

i in O(n3) time.

The claim now follows from Lemma 2. J

I Theorem 6. For graphs with maximum degree 2, the Shapley value can be computed in polynomial
time.

Proof. A graph with degree at most two is a disjoint union of cycles and linear graphs. From
Lemma 1, we can compute the Shapley value of the connected components separately. From
Lemma 5, we know that the Shapley value of linear graphs can be computed in polynomial time. Due
to anonymity, the Shapley value of a cycle is uniform. J

The above proof for linear graphs demonstrates that computation of the Shapley value of a
matching game already becomes involved for even the simplest of graph structures. We would be
interested in seeing an extension of this result that enables us to exactly compute the Shapley value in
any non-trivial class of graphs that contains a vertex of degree at least three.

H. Aziz and B. de Keijzer 7

4 Computational complexity of the general problem

In this section, we examine the computational complexity of the general problem of computing the
Shapley value for matching games. As we mentioned in Section 2, Shapley is equivalent to the
problem of counting the number of pivotal permutations for a player in an unweighted matching
game, and is therefore a counting problem. It is moreover easy to see that this counting problem is a
member of the complexity class #P.4

For certain cooperative games such as weighted voting games [14], intractability of computing
the Shapley value can be established by proving that even checking whether a player gets non-zero
Shapley value is NP-complete. Proposition 1 tells us that this is not the case for matching games.
Before we proceed, we establish some notation. Let G = (N, E) be a graph. Let αk(G) be the number
of vertex sets S ⊆ N such that |S | = k and the subgraph G(S) of G induced by S admits a perfect
matching. Then αk(G) =

(
n
k

)
− αk(G) is the number of subsets S ⊆ N of size k such that G(S) does

not admit a perfect matching. In order to characterize the complexity of Shapley, we first define the
following problem.

#MatchableSubgraphsk
Instance: Undirected and unweighted graph G = (N, E) and an even integer k.
Question: Compute αk(G).

I Lemma 7. #MatchableSubgraphsk is #P-complete.

Proof. In [9] it is proved that the following problem is #P-complete: Given an undirected and
unweighted bipartite graph G = (S ∪ I, E), compute the number of subsets of B ⊆ S , such that
G(B ∪ I) admits a perfect matching.5 The problem is equivalent to #MatchableSubgraphs2|I|. J

I Theorem 8. Computing the Shapley value of a matching game on an unweighted graph is #P-
complete.

Proof. We present a polynomial-time Turing reduction from #MatchableSubgraphsk to Shap-
ley. We show that if there exists a polynomial-time algorithm for Shapley, then we can solve
#MatchableSubgraphsk for a given graph G in polynomial time, by solving Shapley on a set of
graphs that we construct from G. For each of these graphs, we show that a linear equation holds
that relates the Shapley value of a vertex of G to the values αk and αk. The coefficient matrix of this
system of equations will then turn out to be invertible, hence it can be solved in polynomial time via
Gaussian elimination in order to compute the values αk and αk.

We remind the reader that the symbol κ is used to denotes the raw Shapley value, as defined in
Section 2.

Let G = (N, E) be the given graph, and let G0 be the graph in which a new vertex y0 is added to G
that is connected to all vertices in N. For i > 0, let Gi be G0 with i additional vertices y1, y2, . . . , yi

and i additional edges {{y j, y j−1} : j ∈ [i]}.
The first part of the proof consists of showing that the following set of equations hold:

κyi (MG(Gi)) =

{ C(i) +
∑n

k=0(k + i)!(n − k)!αk(G) if i is even, (2)

C(i) +
∑n

k=0(k + i)!(n − k)!αk(G) if i is odd, (3)

4 Informally: #P is the class of computational problems that correspond to counting the number of accepting paths on
a non-deterministic Turing machine. We refer the reader to any introductory text on complexity theory.

5 The proof of Colbourn resolved “an exceptionally difficult problem” [9]. Interestingly, the corresponding decision
problem of checking whether there exists a subgraph of size k that does not admit a perfect matching, appears to be
open.

8 Shapley meets Shapley

where

C(i) =

bi/2c∑
k=1

n+i−2k∑
j=0

(j + 2k − 1)!(n + i − j − 2k + 1)!
(
n + i − 2k

j

)
.

Define a type 1 pivotal coalition for yi in MG(Gi) as a pivotal coalition for i in MG(Gi) that
does not contain all players y0, . . . , yi−1. Define a type 2 pivotal coalition for yi in MG(Gi) as a
pivotal coalition for yi in MG(Gi) that does contain all players y0, . . . , yi−1. Denote by Htype 1

i (s) (resp.
Htype 2

i (s)) the set of type 1 (resp. type 2) pivotal coalitions for i in MG(Gi) that are of size s. From
(1), it follows that

κyi (MG(Gi)) =

n+i∑
s=1

s!(n + i − s)!|Htype 1
i (s)| +

n+i∑
s=1

s!(n + i − s)!|Htype 2
i (s)|. (4)

First we characterize the coalitions in Htype 2
i (s).

I Lemma 9. If i is even, a coalition S of MG(Gi) is in Htype 2
i (s) if and only if G(S ∩ N) is not

perfectly matchable (and {y0, . . . , yi−1} ⊆ S , |S | = s). If i is odd, a coalition S of MG(Gi) is in
Htype 2

i (s) if and only if G(S ∩ N) is perfectly matchable (and {y0, . . . , yi−1} ⊆ S , |S | = s).

Proof. Case of even i. (⇒) Let M be a maximum matching for Gi(S). S is pivotal for yi, so M
is not a perfect matching. We can assume though, that all vertices {y0, . . . , yi−1} are matched to
each other in the matched graph (Gi(S),M), because Gi({y0, . . . , yi−1}) is a linear graph with an
even number of vertices, and is thus perfectly matchable. It follows that the exposed nodes of
(Gi(S),M) are all in N, and therefore the matching M restricted to N is a maximum matching for
G(S \{y0, . . . , yi−1}) = G(S ∩ N) that is non-perfect.

(⇐) Let M be a maximum (non-perfect) matching for G(S ∩ N) and let y be an exposed vertex of
(G(S ∩ N),M). Then M′ = M ∪ {{y j, y j+1} : j even ∧ j < i} is a maximum matching for Gi(S), by
Berge’s Lemma, as it is clear that there is no augmenting path in (Gi(S),M′). Moreover, observe that
in (Gi(S),M′) there is an even-length alternating path from y to yi−1. Therefore, there is in (Gi,M′)
an augmenting path from y to yi, and it follows again by Berge’s lemma that S is pivotal.

Case of odd i. (⇒) Let M′ be a maximum matching for Gi(S). S is pivotal, so in (Gi(S),M′)
there is an even-length alternating path P from an exposed node y to yi−1. Obtain the matching M
by augmenting M′ along P. M is then a maximum matching for Gi(S) in which yi−1 is exposed.
Gi({y0, . . . , yi−1}) is a linear graph and M is maximum, so it follows that yi−1 is the only exposed node
in (Gi(S),M) among {y0, . . . yi−1}. Therefore S ∩ N must be matched to each other in (G(S),M) (for
otherwise, in (Gi(S),M) there would be an augmenting path from yi−1 to an exposed node of S ∩ N,
contradicting the fact that M is a maximum matching for Gi(S)). It follows that G(S ∩ N) is perfectly
matchable.

(⇐) Let M be a maximum perfect matching for G(S ∩ N). Let M′ be a maximum matching for
Gi({y0, . . . , yi−1}) in which yi−1 is the only exposed node. Then M ∪ M′ is a matching for Gi(S) in
which yi−1 is the only exposed node. M ∪ M′ is clearly a maximum matching, and in (Gi,M ∪ M′)
the edge {yi−1, yi} is exposed. So S is pivotal. J

From the above lemma, it follows that the coalitions in Htype 2
i (s) are precisely the coalitions of the

form T ∪ {y0, . . . , yi−1}, where T ⊂ N is such that for even i, G(T) is not perfectly matchable, and for
odd i, G(T) is perfectly matchable. Therefore |Htype 2

i (s)| = αs−i(G) for even i and |Htype 2
i (s)| = αs−i(G)

for odd i, and this implies:

n+i∑
s=1

s!(n + i − s)!|Htype 2
i (s)| =


∑n

k=0(k + i)!(n − k)!αk(G) if i is even,∑n
k=0(k + i)!(n − k)!αk(G) if i is odd.

H. Aziz and B. de Keijzer 9

In words: the second summation of (4) equals the summation of (2) when i is even, and the summation
of (3) when i is odd. Therefore, it suffices to prove that the first summation of (4) equals C(i).

For this sake, define Htype 1
i (s, k) for k ∈ [bi/2c] as {S ∈ Htype 1

i (s) : yi−2k < S ∧{yi−1, . . . , yi−2k+1} ⊆

S }. Observe that {Htype 1
i (s, 1), . . . ,Htype 1

i (s, i/2)} is a partition of Htype 1
i (s). For a given k and s,

note that the set Htype 1
i (s, k) consists of all coalitions of the form T ∪ {yi−1, . . . , yi−2k+1}, where

T ⊆ N ∪ {y0, . . . , yi−2k−1}, |T | = s − 2k + 1. Hence, |Htype 1
i (s, k)| =

(
n+i−2k
s−2k+1

)
(defining

(
a
b

)
= 0 whenever

b < 0 or b > a). Therefore:
n+i∑
s=1

s!(n + i − s)!|Htype 1
i (s)| =

bi/2c∑
k=1

n+i−1∑
s=2k−1

s!(n + i − s)!
(
n + i − 2k
s − 2k + 1

)

=

bi/2c∑
k=1

n+i−2k∑
j=0

(j + 2k − 1)!(n + i − j − 2k + 1)!
(
n + i − 2k

j

)
.

This shows that (2) and (3) hold.
The second part of the proof consists of showing that all αk(G), k ∈ N can be computed from

κyi (MG(Gi)) in polynomial time, using (2) and (3), for i ∈ N ∪ {0}. This is sufficient to complete
the proof, because the graphs G0, . . . ,Gn can clearly be constructed from G in polynomial time,
hence a polynomial time algorithm that computes αk from κyi (MG(Gi)), i ∈ N is a polynomial Turing
reduction.

Let βi(G) = αi(G) for even i and let βi(G) = αi(G) for odd i. We can represent (2) and (3) for
i ∈ N ∪ {0} as the following system of equations:


0!n! 1!(n − 1)! · · · n!0!
1!n! · · · (n + 1)!0!
...

...
. . .

...

n!n! · · · (2n)!0!

 ×

β0(G)
β1(G)
...

βn(G)

 =


κy0 (MG(G0)) −C(0)
κy1 (MG(G1)) −C(1)

...

κyn (MG(Gn)) −C(n)

 (5)

Denote by A the (n + 1) × (n + 1) matrix in the above equation. Recall that a scalar multiplication
of a column by a constant c multiplies the determinant by c. Therefore, A is nonsingular if and only if
nonsingularity also holds for the (n + 1)× (n + 1) matrix B, defined by Bi j = (i + j)!. B is a matrix that
is related to Pascal’s triangle, and it is known that its determinant is equal to

∏n
i=0 i!2 , 0 [3, 2]. It

follows that A is nonsingular, so our system of equations (5) is linearly independent and has a unique
solution. Note that all entries in the system can be computed in polynomial time (assuming that the
Shapley value of a matching game is polynomial time computable): The constants C(i) consist of
polynomially many terms, and all factorials and binomial coefficients that occur in (5) are taken over
numbers of magnitude polynomial in n.

Therefore, we can use Gaussian elimination to solve (5) in O(n3) time. It follows that for all i ∈ N,
βi(G) can be computed in polynomial time, and hence αi(G) can be computed in polynomial time.
Therefore, if there exists an algorithm that solves Shapley in polynomial time, then it can also be
used to solve #MatchableSubgraphsk in polynomial time. J

5 An approximation algorithm

In this section, we show that although computing exactly the Shapley value of matching games is a
hard problem, approximating it is much easier.

Let Σ be a finite alphabet in which we agree to describe our problem instances and solutions.
A fully polynomial time randomized approximation scheme (FPRAS) for a function f : Σ∗ → Q

is an algorithm that takes input x ∈ Σ∗ and a parameter ε ∈ Q>0, and returns with probability at

10 Shapley meets Shapley

least 3
4 a number in between f (x)/(1 + ε) and (1 + ε) f (x). Moreover, an FPRAS is required to

run in time polynomial in the size of x and 1/ε. The probability of 3
4 is chosen arbitrarily: by a

standard amplification technique, it can be replaced by an arbitrary number δ ∈ (1/2, 1). The resulting
algorithm would then run in time polynomial in n, 1/ε, and log(1/δ).

We will now formulate an algorithm that approximates the raw Shapley value of a player in a
weighted matching game, and show that it is an FPRAS. Note that we cannot utilize approximation
results in [18] and [4] since matching games are neither convex nor simple. Our FPRAS is based
on Monte Carlo sampling, and works as follows: Let (G = (N, E,w), i, ε) be the input, where G is
the weighted graph representing matching game MG(G), i ∈ N is a player in MG(G), and ε is the
precision parameter. For notational convenience, we write κi as a shorthand for κi(MG(G)). The
algorithm first determines whether κi = 0 (Observation 1). If so, then it outputs 0 and terminates. If
not, then it samples d4n2(n − 1)2/ε2e permutations of the player set uniformly at random. Denote this
multiset of sampled permutations by P. The algorithm then outputs the average marginal contribution
of player i over the permutations in P and terminates. Note that this average marginal contribution is
efficiently computable: it is given by 1/d4n2(n − 1)2/ε2e times the sum of the marginal contributions
of player i to each of the sampled permutations. Determining these marginal contributions can be
done in polynomial time, using any maximum weight matching algorithm. Denote our sampling
algorithm by MatchingGame-Sampler.

MatchingGame-Sampler resembles the algorithms in [19, 18]: the differences are that the algo-
rithm takes a different number of samples, and that it determines whether the Shapley value of player
i is 0 prior to running the sampling procedure. Moreover, its proof of correctness requires different
insights.6

I Theorem 10. MatchingGame-Sampler is an FPRAS for the raw Shapley value in a weighted
matching game.

Proof. Denote by κ̄i the output of the algorithm. If κi = 0, then MatchingGame-Sampler is guaranteed
to output the right solution, so assume that κi > 0. Let wmax

i be the maximum weight among the
edges attached to i, and let emax

i ∈ E be an edge that is attached to i such that w(emax
i) = wmax

i . Let
X be a random variable that takes the value of n! times the marginal contribution of player i in a
uniformly randomly sampled permutation of the players. Note that E[X] = κi. Note that the marginal
contribution of a player in any permutation is at most wmax

i , so X is at most wmax
i n!.

Let j be the neighbor of i connected by emax
i . Observe that any permutation in which j is positioned

first, and i is positioned second, is a permutation for i in which the marginal contribution of i is wmax
i .

There are (n − 2)! such permutations, so the raw Shapley value κi of i is at least wmax
i (n − 2)!. For the

variance of X we obtain Var[X] = E[X2] − E[X]2 ≤ E[X2] ≤ (wmax
i)2n!2 ≤ n2(n − 1)2κ2

i .

Observe that κ̄i is a random variable that is equal to
∑d4n2(n−1)2/ε2e

j=1 X j

d4n2(n−1)2/ε2e
, where X j are independent

random variables with the same distribution as X. From this we obtain that E[κ̄i] = E[X] = κi. The
desired approximation guarantee then follows from Chebyshev’s inequality,7 and completes the proof:

Pr[|κ̄i − κi| ≥ εκi] ≤
Var[κ̄i]
ε2κ2

i

=

Var
[

1
d4n2(n−1)2/ε2e

∑d4n2(n−1)2/ε2e

j=1 X j

]
ε2κ2

i

=

(
Var[X]

d4n2(n−1)2/ε2e

)
ε2κ2

i

≤
n2(n − 1)2κ2

i

(4n2(n − 1)2/ε2) · ε2κ2
i

≤
1
4
.

6 To be precise, this applies only to [18]. For the sampling algorithm in [19], no proof or approximation-quality
analysis of any kind is given.

7 Here, one could also choose to apply Hoeffding’s inequality instead of Chebyshev’s inequality, but this will not result
in an asymptotically better bound.

REFERENCES 11

J

I Corollary 11. The algorithm that runs MatchingGame-Sampler and returns its output scaled down
by 1/n!, is an FPRAS for the Shapley value of a weighted matching game.

Observe that MatchingGame-Sampler is an FPRAS in the strong sense that its running time does
not depend on the weights of the edges. Due to the #P-completeness result stated in Theorem 7, this
FPRAS is the best one can hope for, and provides us with a complete answer to the precise complexity
of this problem (based on our best judgment).

6 Conclusions

In this paper, we examined the structure, algorithms, and computational complexity for the problem
of computing the Shapley value in a matching game. There are many special cases of the problem
that have not been treated in this paper, but nonetheless are potentially worthwhile to analyze:
trees, bipartite graphs, connected regular graphs, and series-parallel graphs. Among these, bipartite
graphs are especially interesting, since they model two-sided markets. There are some interesting
computational problems related to Shapley value computation, such as the problem of comparing
the Shapley values of two vertices. One may also pursue the same questions for fractional matching
games in which the value of a coalition is the maximum size of a fractional matching [8]. Moreover,
our study motivates the investigation of unexplored connections with some objects in matching theory.
The matching polytope is one of the most-well studied objects in polyhedral combinatorics [22]. It
will be interesting to identify any relation between the matching polytope of a graph and the Shapley
values of the corresponding matching game. Secondly, network flows are fundamentally connected
to matchings for the case of bipartite graphs. An interesting research direction is to explore the
connection of network flow games [16] with matching games and whether computing Shapley values
of one game is reducible to computing Shapley values of the other game, under certain conditions.

Acknowledgements. The authors thank Ross Kang for various helpful discussions.

References

1 A. Alkan and D. Gale. The core of the matching game. Games and Economic Behavior,
2(3):203–212, 1990.

2 H. Aziz, O. Lachish, M. Paterson, and R. Savani. Power indices in spanning connectivity games.
In Proc. of 5th International Conference on Algorithmic Aspects in Information and Management
(AAIM), volume 5564 of LNCS, pages 55–67. Springer, 2009.

3 R. Bacher. Determinants of matrices related to the Pascal triangle. Journal de théorie des nombres
de Bordeaux, 14:19–41, 2002.

4 Y. Bachrach, E. Markakis, E. Resnick, A. D. Procaccia, J. S. Rosenschein, and A. Saberi.
Approximating power indices: theoretical and empirical analysis. Autonomous Agents and
Multi-Agent Systems, 20:105–122, 2010.

5 P. Biró, M. Bornhoff, P. A. Golovach, W. Kern, and D. Paulusma. Solutions for the stable
roommates problem with payments. Theoretical Computer Science, 2013.

6 P. Biró, W. Kern, and D. Paulusma. Computing solutions for matching games. International
Journal of Game Theory, 41(1):75–90, 2011.

7 U. Brandes and T. Erlebach, editors. Network Analysis, volume 3418 of LNCS. Springer, 2005.
8 N. Chen, P. Lu, and H. Zhang. Computing the nucleolus of matching, cover and clique games. In

Proc. of 26th AAAI Conference, 2012.

12 REFERENCES

9 C. J. Colbourn, J. S. Provan, and D. Vertigan. The complexity of computing the Tutte polynomial
on transversal matroids. Combinatorica, 15(1):1–10, 1995.

10 X. Deng and Z. Fang. Algorithmic cooperative game theory. In A. Chinchuluun, P. M. Pardalos,
A. Migdalas, and L. Pitsoulis, editors, Pareto Optimality, Game Theory And Equilibria, volume 17
of Springer Optimization and Its Applications. Springer-Verlag, 2008.

11 X. Deng, T. Ibaraki, and H. Nagamochi. Algorithmic aspects of the core of combinatorial
optimization games. Mathematics of Operations Research, 24(3):751–766, 1999.

12 X. Deng and C. H. Papadimitriou. On the complexity of cooperative solution concepts. Mathe-
matics of Operations Research, 12(2):257–266, 1994.

13 J. Edmonds. Paths, trees and flowers. Canadian Journal of Mathematics, 17:449–467, 1965.
14 E. Elkind, L. A. Goldberg, P. W. Goldberg, and M. Wooldridge. On the computational complexity

of weighted voting games. Annals of Mathematics and Artificial Intelligence, 56(2):109–131,
2009.

15 S. Ieong and Y. Shoham. Marginal contribution nets: A compact representation scheme for
coalitional games. In Proc. of 6th ACM-EC Conference, pages 193–202. ACM Press, 2005.

16 E. Kalai and E. Zemel. Generalized network problems yielding totally balanced games. Operations
Research, 30:998–1008, 1982.

17 W. Kern and D. Paulusma. Matching games: The least core and the nucleolus. Mathematics of
Operations Research, 28(2):294–308, 2003.

18 D. Liben-Nowell, A. Sharp, T. Wexle, and K. Woods. Computing shapley value in supermodular
coalitional games. In Proc. of 18thCOCOON, 2011.

19 I. Mann and L. S. Shapley. Values of large games, iv: Evaluating the electoral college by
montecarlo techniques. Technical Report RM-2651, RAND Corporation, 1960.

20 T. P. Michalak, K. V. Aadithya, P. L. Szczepanski, B. Ravindran, and N. R. Jennings. Efficient
computation of the shapley value for game-theoretic network centrality. Journal of Artificial
Intelligence Research, 46:607–650, 2013.

21 H. Moulin. Fair Division and Collective Welfare. The MIT Press, 2003.
22 M. D. Plummer. Matching theory - a sampler: from Dénes König to the present. Discrete

Mathematics, 100:177–219, 1992.
23 A. Roth and M. A. O. Sotomayor. Two-Sided Matching: A Study in Game Theoretic Modelling

and Analysis. Cambridge University Press, 1990.
24 L. S. Shapley. A value for n-person games. Annals of Math Studies, 28:307–317, 1953.
25 L. S. Shapley and M. Shubik. The Assignment Game I: The Core. International Journal of Game

Theory, 1:111–130, 1972.
26 T. Solymosi and T. E. S. Raghavan. An algorithm for finding the nucleolus of assignment games.

International Journal of Game Theory, 23:119–143, 1994.
27 S. Ueda, M. Kitaki, A. Iwasaki, and M. Yokoo. Concise characteristic function representations in

coalitional games based on agent types. In T. Walsh, editor, Proc. of 22nd IJCAI, pages 393–399.
AAAI Press, 2011.

28 E. Winter. The Shapley value. In Handbook of Game Theory with Economic Applications,
chapter 53, pages 2025–2054. Elsevier, 2002.

	Introduction
	Preliminaries
	General insights

	Exact algorithms for restricted graph classes
	Graphs with a constant number of clique or coclique modules
	Graphs of degree at most two

	Computational complexity of the general problem
	An approximation algorithm
	Conclusions

