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Abstract. We study strong equilibria in network creation games. These form a
classical and well-studied class of games where a set of players form a network
by buying edges to their neighbors at a cost of a fixed parameter α. The cost of a
player is defined to be the cost of the bought edges plus the sum of distances to
all the players in the resulting graph. We identify and characterize various struc-
tural properties of strong equilibria, which lead to a characterization of the set of
strong equilibria for all α in the range (0, 2). For α > 2, Andelman et al. (2006)
prove that a star graph in which every leaf buys one edge to the center node is
a strong equilibrium, and conjecture that in fact any star is a strong equilibrium.
We resolve this conjecture in the affirmative. Additionally, we show that when α
is large enough (≥ 2n) there exist non-star trees that are strong equilibria. For the
strong price of anarchy, we provide precise expressions when α is in the range
(0, 2), and we prove a lower bound of 3/2 when α ≥ 2. Lastly, we aim to charac-
terize under which conditions (coalitional) improvement dynamics may converge
to a strong equilibrium. To this end, we study the (coalitional) finite improvement
property and (coalitional) weak acyclicity property. We prove various conditions
under which these properties do and do not hold. Some of these results also hold
for the class of pure Nash equilibria.

1 Introduction

The Internet is a large-scale network that has emerged mostly from the spontaneous,
distributed interaction of selfish agents. Understanding the process of creating of such
networks is an interesting scientific problem. Insights into this process may help to un-
derstand and predict how networks emerge, change, and evolve. This holds in particular
for social networks.

The field of game theory has developed a large number of tools and models to ana-
lyze the interaction of many independent agents. The Internet and many other networks
can be argued to have formed through interaction between many strategic agents. It is
therefore natural to use game theory to study the process of network formation. Indeed,
this has been the subject of study in many research papers, e.g. [15,1,6,2,16,14,22], to
mention only a few of them.

We focus here on the classical network creation model of [15], which is probably the
class of network formation game that is most prominently studied by algorithmic game



theorists. This model stands out due to its simplicity and elegance: It is simply defined
as a game on n players, where each player may choose an arbitrary set of edges that
connects herself to a subset of other players, so that a graph forms where the vertices
are the players. Buying any edge costs a fixed amount α ∈ R, which is the same for every
player. Now, the cost of a player is defined as the total cost of set of edges she bought,
plus the sum of distances to all the other players in the graph. A network creation game
is therefore determined by two parameters: α and n.

Another reason for why these network creation games are an ineresting topic of
study, are the surprisingly challenging questions that emerge from this simple class of
games. For example, it is (as of writing) unknown whether the price of anarchy of these
network creation games is bounded by a constant, where the term price of anarchy is
defined as the factor by which the total cost of a pure Nash equilibrium is away from
the minimum possible total cost [20,21].

In the present work, we study strong equilibria, which are a refinement of the pure
Nash equilibrium solution concept. Strong equilibria are defined as pure Nash equilibria
that are resilient against strategy changes that are made collectively by arbitrary sets of
players, in addition to strategy changes that are made by individual players (see [5]).
Generally, such an equilibrium may not exist, since this is already the case for pure
Nash equilibria. On the other hand, in case they do exist, then strong equilibria are
extremely robust, and they are likely to describe the final outcome of a game in case
they are, in a realistic sense, “easy to attain” for the players. Fortunately, as [4] points
out, in network creation games, strong equilibria are guaranteed to exist except in a very
limited number of cases. The combination of the facts that strong equilibria are robust,
and are almost always guaranteed to exist, calls for a detailed study of these equilibria
in network creation games, which is what we do in the present work.

We provide in this paper a complete characterization of the set of all strong equi-
libria for α ∈ (0, 2). Moreover, for α > 2 we prove in the affirmative the conjecture of
[4] that any strategy profile that forms a star graph (i.e., a tree of depth 1) is a strong
equilibrium. We also show that for large enough α (namely, for α ≥ 2n), there exist
strong equilibria that result in trees that are not stars.

The price of anarchy restricted to strong equilibria is called the strong price of an-
archy. This notion was introduced in [4], where also the strong price of anarchy of
network creation games was studied first. The authors prove there that the strong price
of anarchy is at most 2. We contribute to the understanding of the strong price of an-
archy by providing a sequence of examples of strong equilibria where the strong price
of anarchy converges to 3/2, thereby providing the first non-trivial lower bound (to the
best of our knowledge).

Regarding the reachability and the likelihood for the players to actually attain a
strong equilibrium, we study the question whether they can be reached by response dy-
namics, i.e., the process where we start from any strategy profile, and we repeatedly let
a player or a set of players make a change of strategies that is beneficial for each player
in the set, i.e., decreases their cost. In particular, we are interested in whether network
creation games posess the coalitional finite improvement property (that is: whether such
response dynamics are guaranteed to result in a strong equilibrium), and the coalitional
weak acyclicity property (that is: whether there exists a sequence of coalitional strategy
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changes that ends in a strong equilibrium when starting from any strategy profile). We
prove various conditions under which these properties are satisfied. Roughly, we show
that coalitional weak acyclicity holds when α ∈ (0, 1] or when starting from a strategy
profile that forms a tree (for α ∈ (0, n/2]), but that the coalitional finite improvement
property is unfortunately not satisfied for any α. Some of these results hold for pure
Nash equilibria as well.

1.1 Our Contributions

A key publication that is strongly related to our work is [4], where the authors study
the existence of strong equilibria in network creation games. The authors prove that
the strong price of anarchy of network creation games does not exceed 2 and provide
insights into the structure and existence of strong equilibria. This is to the best of our
knowledge the only paper studying strong equilibria in network creation games. Let us
therefore summarize how the present paper complements and contributes to the results
in [4]: First, we provide additional results on the strong equilibrium structure, such that
together with the results from [4] we obtain a characterization of strong equilibria for
α ∈ (0, 2). Furthermore, in [4] it was conjectured that all strategy profiles that form a star
(and such that no edge is bought by two players at the same time) are strong equilibria.
We answer this conjecture positively. Because [4] does not provide examples of strong
equilibria that are not stars (for α > 2), this may suggest the conjecture that all strong
equilibria form a star for α > 2. We show however that the latter is not true: We provide
a family of examples of strong equilibria which form trees of diameter four (hence, not
stars). More interestingly, the latter sequence of examples has a price of anarchy that
converges to 3/2, thereby providing (again, to the best of our knowledge) the first non-
trivial lower bound on the strong price of anarchy. Related to this set of results, we want
to mention the following interesting open questions for future research: (i.) What is the
exact strong price of anarchy of the class of network creation games? Our work shows
that it must lie in the interval [3/2, 2]. (ii.) Does there exist a non-star strong equilibrium
for α ∈ (2, 2n)? (iii.) Do there exist strong equilibria that form trees of arbitrarily high
diameter, and do there exist strong equilibria that are not trees?

A second theme of our paper is to investigate under which circumstances the coali-
tional finite improvement and coalitional weak acyclicity properties are satisfied, as
satisfying those properties contribute to the credibility of strong equilibria as a realistic
solution concept. We show to this end that coalitional weak acyclicity always holds for
α ∈ (0, 1] and holds for α ∈ (1, n/2) in case the starting strategy profile is a tree. We
prove on the negative side that for all α there exists a number of players n such that the
coalitional finite improvement property does not hold. The only special case for which
we manage to establish existence of the coalitional finite improvement property is for
n = 3 and α > 1. With regard to convergence of response dynamics to strong equilibria,
an interesting question that we leave open is whether the coalitional weak acyclicity
property holds for α > n/2, and for α ∈ (1, n/2) when starting at non-tree strategy pro-
files. We will see throughout that some of our results on these properties also hold for
the set of pure Nash equilibria.

An overview of results is summarized in the tables below. Table 1 provides an
overview for our characterization and structure theorems for strong equilibria, Table 2
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shows our bounds on the strong price of anarchy, and Table 3 shows our results on
the finite improvement and weak acyclicity properties of network creation games. Due
to space constraints, the proofs of many of our results have been omitted and will be
published in a full version of the paper.

α ∈ (0, 1) α = 1 α ∈ (1, 2) α ≥ 2

strong
equilibria

Characterized (in [4])
Characterized
(Theorem 1)

Characterized
(Proposition 1)

Every star is a
strong equilibrium

(Theorem 2),
existence of

non-star strong
equilibria

(Theorem 3)

Table 1. Overview of strong equilibria characterization results and structural results.

α ∈ (0, 1) α = 1 α ∈ (1, 2) α ≥ 2

strong price of
anarchy

1 (Trivial)
10/9 if n ≤ 4 and

(3n + 2)/3n if
n ≥ 5 (Theorem 4)

(2α + 8)/(3α + 6)
if n = 3, and

(4α+16)/(6α+12)
if n = 4

(Proposition 3)

At least 3/2
(Theorem 5) and

at most 2 [4]

Table 2. Overview of bounds on the strong price of anarchy .

α ∈ (0, 1) α = 1 α ∈ (1, 2) α = 2 α > 2

c-FIP
Negative
(Lemma 6)

Negative
(Lemma 6)

Negative
(Lemma 6)

Negative
(Lemma 6)

Negative (in
[9])

Positive for n = 3 (Lemma 4)

c-weak
acyclicity

Positive
(Corollary of

Lemma 8)

Positive
(Proposition 9)

Positive with respect to trees for α ∈ (1, n/2)
(Lemma 11)

Table 3. Summary of results on the c-FIP and c-weak acyclicity of network creation games.

2 Related Literature

We discussed already extensively the works [4] and [15]. The latter is the article in
which network creation games were first defined. Moreover, [15] conjectured that there
exists an A ∈ R≥0 such that all non-transient equilibria (where transience stands for a
particular notion of instability) are trees for α ≥ A.

This conjecture was subsequently disproved by [1], where the authors construct
non-tree equilibria for abitrarily high α. These equilbiria are strict (i.e., for no player
there is a deviation that keeps her cost unchanged) and therefore non-transient, and their
construction uses finite affine planes. In this paper, the authors moreover show that the
price of anarchy is constant for α ≤

√
n and for α ≥ 12n log n, as for the second case

they prove that any pure equilibrium is a tree. In [27], the latter bound was improved,
as it was shown there that for α ≥ 273n all pure equilibria are trees. Later on, in [24],
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this was further improved by showing that it even holds for α ≥ 65n. Very recently, in
[3], further progress has been made in this direction by showing that every pure Nash
equilibrium is a tree already when α > 17n, and that the price of anarchy is bounded
by a constant for α > 9n. In [12], some constant bounds on the price of anarchy were
improved, and it was shown that for α ≤ n1−ε the price of anarchy is constant, for all
ε ≥ 0. It remains an open question whether the price of anarchy is constant for all
α ∈ R≥0. In particular, the best known bound on the price of anarchy for α ∈ [n1−ε , 9n]
is 2O(

√
log n), shown in [12]. For all other choices of α the price of anarchy is known

to be constant. The master’s thesis [25] provides some simplified proofs for some of
the above facts, and proves that if an equilibrium graph has bounded degree, then the
price of anarchy is bounded by a constant. It also studies some related computational
questions.

Many other variants of network creation games have been considered as well. A ver-
sion where disconnected players incur a finite cost rather than an infinite one was stud-
ied in [9]. In [1], a version is introduced where the distance cost of a player i to another
player j is weighted by some number wi j. A special case of this weighted model was
proposed in [26]. The paper [12] introduces a version of the game where the distance
cost of a player is defined the maximum distance from i to any other player (instead of
the sum of distances), and studies the price of anarchy for these games. Further results
on those games can be found in [27]. Another natural variant of a cost sharing game
is one where both endpoints of an edge can contribute to its creation, as proposed in
[26], or must share its creation cost equally as proposed in [11] and further investigated
in [12]. In [6], a version of the game is studied where the edges are directed, and the
distance of a player i to another player j is the minimum length of a directed path from i
to j. The literature on these games and generalizations thereof (see e.g., [14,13,8]) con-
cerns existence of equilibria and the properties of response dynamics. See [7,16,18,17]
for another undirected network creation model and properties of pure equilibria in those
models. Further, in the very recent paper [10], a variant of network creation games is
studied where the cost of buying an edge to a player is proportional to the number of
neighbors of that player.

In [2], the authors analyze the outcomes of the game under the assumption that
the players consider deviations by swapping adjacent edges. Better response dynamics
under this assumption have been studied in [22]. A modified version of this model is
introduced in [26], where players can only swap their own edges. The authors prove
some structural results on the pure equilibria that can then arise. Furthermore, in [23]
the deviation space is enriched by allowing the players to add edges, and various price
of anarchy type bounds are established under this assumption. In [19], the dynamics of
play in various versions of network creation games are further investigated.

3 Preliminaries

A network creation game Γ is a game played by n ≥ 3 players where the strategy set of
Si of a player i ∈ [n] = {1, . . . , n} is given by Si = {s : s ⊆ [n] \ {i}}. That is, each player
chooses a subset of other players. Let S = ×i∈[n]Si be the strategy profiles of Γ and for
a subset K ⊆ [n] of players let SK = ×i∈KSi. Given a strategy profile s ∈ S, we define
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G(s) as the undirected graph with vertex set [n] and edge set {{i, j} : j ∈ si ∨ i ∈ s j}. For
a graph G on vertex set [n], we denote by dG(i, j) the length of the shortest path from i
to j in G (and we define the distance between two disconnected vertices as infinity).

The cost of player i under s is given by ci(s) = cb
i (si) + cd

i (s), where cb
i (si) = α|si| is

referred to as the building cost, α ∈ R≥0 is a player-independent constant, and cd
i (s) =∑n

j=1 dG(s)(i, j) is referred to as the distance cost. The interpretation given to this game
is that the players buy edges to other players and that creates a network. Buying a single
edge costs α. The shortest distance dG(s)(i, j) to each other player j is furthermore added
to the cost of a player i. We denote a network creation game by the pair (n, α)

For a strategy profile s ∈ S let d(s) =
∑

i cd
i (s). The social cost of strategy profile

s, denoted C(s), is defined as the sum of all individual costs: C(s) =
∑

i∈[n] ci(s) =

α
∑

i |si| + d(s).
We study the strong equilibria of this game. A strong equilibrium of an n-player

cost minimization game Γ with strategy profile set S = ×n
i=1Si is an s ∈ S such that for

all K ⊆ [n] and for all s′K ∈ SK there exists a player i ∈ K such that, ci(s) ≤ ci(s′K , s−K),
where ci is the cost function of player i and (s′K , s−K) denotes the vector obtained from
s by replacing the |K| elements at index set K with the elements s′K . (A pure Nash
equilibrium is a strategy profile that satisfies the latter condition only for singleton K.)
Strong equilibria are guaranteed to exist in almost all network creation games, as we
will explain later.

We are interested in determining the strong price of anarchy [4]. The strong price of
anarchy of a network creation game Γ is the ratio PoA(Γ) = max{C(s)/C(s∗) : s ∈ SE},
where s∗ is a social optimum, i.e., a strategy profile that minimizes the social cost.
Furthermore SE is the set of strong equilibria of the game.

A strategy profile s is called rational if there is no player pair i, j ∈ [n] such that
j ∈ si and i ∈ s j. It is clear that all pure Nash equilibria (and thus all strong equilibria)
of any network creation game are rational, as are all the social optima. When s is a
rational strategy profile, the social cost can be written as C(s) = α|E(G(s))| + d(s),
where E(G(s)) denotes the edge set of the graph G(s).

We write degG(s)(i) to denote the degree of player i in graph G(s), and we denote by
diam(G(s))) the diameter of G(s). We define the free-riding function f : S × [n] → N
by the formula f (s, i) = degG(s)(i) − |si|. For any strategy profile s ∈ S we have the
following lower bound for the cost of player i,

ci(s) ≥ 2n − 2 − degG(s)(i) + |si|α = 2n − 2 − f (s, i) + |si|(α − 1). (1)

Moreover, we see that in case s is rational,∑
i∈[n]

|si| = |E| =
∑
i∈[n]

f (s, i). (2)

Graph theory notions. We define an n-star to be a tree of n vertices with diameter 2,
i.e., it is a tree where one vertex is connected to all other vertices. It is straightforward
to verify that (1) is tight when G(s) is an n-star, and (more generally) when G(s) has
diameter at most 2. We denote by Kn the complete undirected graph on vertex set [n].
We denote by Cn the undirected cycle on vertex set [n]. We denote by Pn the undirected
path on vertex set [n]. Lastly, we define a centroid vertex of a tree T = (V, E) as a
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vertex v ∈ V that minimizes max{|Vi| : (Vi, Ei) ∈ CT−v}, where CT−v denotes the set of
connected components of the subgraph of T induced by V \ {v}.

Coalitional improvement dynamics. A sequence of strategy profiles (s1, s2, . . .) is called
a path if for every k > 1 there exists a player i ∈ [n] such that sk = (s′i , s

k−1
−i ). We call

a path an improvement path if for all k > 1 holds ci(sk) < ci(sk−1) where i is the player
who deviated from sk−1. We say that it is an improvement cycle if additionally there
exists a constant T such that sk+T = sk for all k ≥ 1. A sequence of strategies (s1, s2, . . .)
is called a best response improvement path if for all k > 1 and all i such that sk

i , sk−1
i

we have ci(sk) < ci(sk−1) and there is no s′i ∈ Si such that ci(s′i , s
k
−i) < ci(sk) (that is:

sk
i is a best response to sk−1

−i ). A sequence of strategies (s1, s2, . . .) is called a coalitional
improvement path if for all k > 1 and all i such that sk

i , sk−1
i we have ci(sk) < ci(sk−1).

A game has the (coalitional) finite improvement property ((c-)FIP) if every (coali-
tional) improvement path is finite. A game has finite best response property (FBRP) if
every best response improvement path is finite. We call a game (c-)weakly acyclic if for
every s ∈ S there exists a finite (coalitional) improvement path starting from s. Lastly,
we call a network creation game (c-)weakly acyclic with respect to a class of graphs G
if for every s ∈ S such that G(s) ∈ G, there exists a (coalitional) finite improvement
path starting from s.

4 Structural Properties of Strong Equilibria

We provide in this section various results that imply a full characterization of strong
equilibria for α ∈ (0, 2), and we resolve a conjecture of [4] by showing that any rational
strategy s ∈ S such that G(s) is a star is a strong equilibrium for all α ≥ 2. Moreover,
we give a family of examples of strategy profiles that form trees of diameter 4 (hence
do not form stars) and are strong equilibria when α ≥ 2n. First, for α ∈ (0, 1) the strong
equilibrium set is straighforward to derive, as has been pointed out in [4]: in this case a
strategy profile is a strong equilibrium if and only if it is rational and forms the complete
graph. It is easy to see that this characterization also holds for the set of Nash equilibria.

For α = 1, the situation is more complex. First, we can show that the following
lemma holds for all α < 2.

Lemma 1. Fix α < 2 and suppose that s ∈ S is a strong equilibrium. For each sequence
of players (i0, i1, . . . , ik = i0) such that k ≥ 3 in G(s) there exists an t ∈ {0, . . . , k − 1}
such that (it, it+1) ∈ E(G(s)). In other words, the complement of G(s) is a forest.

Therefore, if α < 2 and s ∈ S is a strong equilibrium, then there is no independent set
of size 3 in G(s). Also, if α < 2 and |V | ≥ 4, then a strategy profile s ∈ S, such that G(s)
is a star is not a strong equilibrium. Since when α ∈ [1, 2), a rational strategy profile
that forms a star is a Nash equilibrium, this implies that the pure Nash equilibria and
strong equilibria do not coincide.

In order to characterize the strong equilibria for α = 1, we first provide a character-
ization of the pure Nash equilibria.

Lemma 2. For α = 1, a strategy profile s ∈ S is a Nash equilibrium if and only if s is
rational and G(s) has diameter at most 2.
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The following theorem then characterizes the set of strong equilibria for α = 1.

Theorem 1. For α = 1, a strategy profile s ∈ S is a strong equilibrium if and only if s
is rational, G(s) has diameter at most 2, and the complement of G(s) is a forest.

For α ∈ (1, 2), it was shown in [4] that strong equilibria do not exist for n ≥ 5. It
can be shown that for n = 3 the set of strong equilibria are the rational strategy profiles
that form the 3-star. (Hence, all pure Nash equilibria are strong equilibria in this case).
For n = 4 we observe that the only strong equilibria are those that form the cycle on 4
vertices such that every player buys exactly one edge. Thus, the following proposition
completes our characterization of strong equilibria for α ∈ (1, 2).

Proposition 1. Let α ∈ (1, 2) and let s ∈ S. Then: (i.) If n = 3, strategy profile s is a
strong equilibrium if and only if s is rational and G(s) is a 3-star. (ii.) If n = 4, strategy
profile s is a strong equilibrium if and only if s is rational, |si| = 1 for all i, and G(s) is
a cycle. (iii.) If n ≥ 5, s is not a strong equilibrium.

Next, we prove the following conjecture of [4].

Theorem 2. Let α ≥ 2 and s ∈ S. If s is rational and G(s) is a star, then s is a strong
equilibrium.

The proof of this theorem relies on two lemmas. The first lemma provide bounds on the
free-riding function of player sets who manage to deviate profitably, while the second
lemma bounds the change in the free-riding function for players who do not deviate.

Lemma 3. Let α ≥ 2 let s ∈ S be a rational strategy profile such that G(s) is a star. Let
K ⊆ [n] be a set of players and let s′ = (s′K , s−K) be a profitable deviation for K, i.e., for
all i ∈ K, it holds that ci(s′K , s−K) < ci(s). Then for every i ∈ K such that degG(s)(i) = 1
it holds that f (s′, i) > f (s, i) and f (s′, i) − f (s, i) ≥ |s′i | − |si| + 1.

Lemma 4. Let α ≥ 2 and let s ∈ S be a rational strategy profile such that G(s) is a
star. Let K ⊆ [n] be a player set and s′ = (s′K , s−K) be a strategy profile that decreases
the costs of all members of K. Then

∑
j∈[n]\K f (s′, j) − f (s, j) > −|K|. Moreover, if K

contains a vertex i such that degG(s)(i) > 1 then
∑

j∈[n]\K f (s′, j) − f (s, j) ≥ 0.

Proof of Theorem 2. Let s ∈ S be a strategy profile that is rational such that G(s) is a
star. It is easy to see that s is a Nash equilibrium (see also [15]). Suppose that K ∈ [n]
and s′ ∈ SK are such that strategy profile s′ = (s′K , s−K) decreases the costs of all players
in K. Let k = |K|, we have two cases to consider.

If degG(s)(i) = 1 for all i ∈ K, then
∑

i∈K( f (s′, i) − f (s, i)) ≥ k +
∑

i∈K(|s′i | − |si|) =

k +
∑

i∈[n](|s′i | − |si|) = k +
∑

i∈[n]( f (s′, i) − f (s, i)), where the inequality follows from
Lemma 3 and the last equality follows from (2). Hence

∑
i∈[n]\K f (s′, i) − f (s, i) ≤ −k,

which is the contradiction with Lemma 4.
If K contains the center vertex i (i.e., the vertex for which degG(s)(i) > 1), then∑

j∈K\{i}( f (s′, j) − f (s, j)) ≥ (k − 1) +
∑

j∈K\{i}(|s′j| − |s j|) = (k − 1) +
∑

j∈[n](|s′j| − |s j|) −
(|s′i | − |si|) = (k − 1) +

∑
j∈[n] ( f (s′, j) − f (s, j)) − (|s′i | − |si|), where again the inequality

follows from Lemma 3 and the last equality follows from (2).
Since i is a central vertex, we have cd

i (s′) ≥ cd
i (s). Moreover, i ∈ K, hence ci(s′) <

ci(s). This implies that cb
i (s′) < cb

i (s) or equivalently |s′i | < |si|. So
∑

j∈K\{i}( f (s′, j) −
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f (s, j)) ≥ k +
∑

j∈[n]( f (s′, j)− f (s, j)). Thus: −k ≥
∑

j∈[n]\K( f (s′, j)− f (s, j)) + ( f (s′, i)−
f (s, i)) ≥ f (s′, i) − f (s, i), where the last inequality follows from Lemma 4. On the
other hand we have f (s′, i)− f (s, i) ≥ −(k− 1), since the change from s to s′ could have
removed at most k − 1 edges going to player i, which is a contradiction. �

Next, for α > 2, we present a family of strong equilibria none of which forms a star.
The graphs resulting from these strong equilibria are trees of diameter 4.

Example 1. Our examples are paramatrized by two values A ∈ N, A ≥ 4 and k ∈ N.
Let α ≥ 2n, and let n = Ak + 2. In the following strategy profile s the only players who
buy edges are 1, . . . , A − 1 and n, i.e., for all i ∈ [n], A ≤ i < n, it holds that si = ∅.
We denote player n by R.The total number of edges bought by players {1, . . . , A − 1,R}
is n − 1 = Ak + 1 such that G(s) is a tree. L1 = {A, A + 1, . . . , (A − 1)k} and L2 =

{(A − 1)k + 1, . . . , n − 1} denote the remaining k + 1 players who do not buy edges. The
strategy sets are defined as follows: Player R buys edges to L2. Each player in [A − 1]
buys an edge to k − 1 players of L1 in such a way that the degree in G(s) equals 1 for
every player in L1. Moreover, each player in [A − 1] buys an edge to R. Thus, each
player in {1, . . . , A − 1} buys k edges, R buys k + 1 edges, and all the remaining players
(i.e., in L1 and L2) buy no edges and are leaves in G(s). Figure 1 depicts this strategy
profile.

Fig. 1. Depiction of the graph G(s) formed by the strong equilibrium s. The graph G(s) is a is
a tree of diameter 4. Strategy profile s is a strong equilibrium for α ≥ 2n and n = A · k + 2
where A ∈ N, A ≥ 4 is the number of players that buy edges and k ∈ N. One player (called R)
buys k + 1 edges to leaves. The remaining A − 1 players (that buy edges) each buy k − 1 edges
to leaves and one edge to R. In the depicted instance of the example we have: A = 5, k = 4,
L1 = {5, 6, . . . , 16}, L2 = {17, 18, . . . , 21} and the set of players buying edges is {1, . . . , 4} ∪ {R}.

Despite that s is relatively easy to define, establishing that s is a strong equilibrium
is challenging.

Theorem 3. If α ≥ 2n, strategy profile s forms a (non-star) tree and is a strong equi-
librium.
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Proof. In s, there are four different types of node: The root R, the players 1 . . . , A−1, the
leaves L1, and the leaves L2. The distance costs for each of these types are as follows.

cd
i (s) =


2n − A − k − 2 if i = R (3a)
3n − A − 3k − 2 if i ∈ [A − 1] (3b)
3n − A − k − 4 if i ∈ L2 (3c)
4n − A − 3k − 4 if i ∈ L1 (3d)

Proposition 2. Let s ∈ S. For all i ∈ [n], cd
i (s) ≥= 2n − 2 − degG(s)(i).

To show that s is a strong equilibrium, suppose for contradiction that K ⊆ [n] and
s′K ∈ SK are such that in s′ = (s′K , s−K) it holds that ci(s′) < ci(s) for all i ∈ K. Under
this assumption, using (3a − 3d), we show that no player in K buys more edges under
s′ than it does under s.

Lemma 5. For all i ∈ K, it holds that |s′i | ≤ |si|.

The proofs of this lemma and the following lemma are omitted. Since G(s) is a tree,
it has the minimum number of edges among all connected graphs. Combining this with
the lemma above yields that every player buys in s′ exactly as many edges as in s.

Corollary 1. Graph G(s′) is a tree, and for all i ∈ [n], it holds that |s′i | = |si|.

Lemma 6. Player R is not in K.

Denote by LK = { j ∈ L1 | ∃i ∈ K : j ∈ si} the leaves in L1 that are directly connected
to a player in K in G(s). Let CR be the players in the connected component of G(∅, s−K)
containing R. Let i ∈ argi′ max{dG(s′)(i′,CR) : i′ ∈ K} be a player in K that has the
highest distance to CR among all players in K.

Lemma 7. The distance dG(s′)(i,CR) of i to CR in G(s′) is as least 2.

In s, the distance from i to CR is 1. As CR contains at least k+2 vertices, by deviating
from s to s′ the distance increase of player i to CR is at least k + 1. We complete the
proof of Theorem 3 by showing that by deviating from s to s′, the distance decrease
of player i to the players of [n] \ CR does not exceed k + 1. This is sufficient, as it
implies that ci(s′) ≥ ci(s) which contradicts that i ∈ K. To see this, observe that in G(s)
player i has in his neighborhood at most one player in K. If in G(s′) there are two or
more players in K in i’s neighborhood, then one of them is further away from CR than i
(contradicting the definition of i), or there is a cycle in G(s′) (contradicting Corollary 1).
Let us separately compute the distance improvement to nodes in LK and to nodes in K:

– In G(s), the distance from i to all |K| − 1 players in K is 2. In G(s′) the distance
from i to at most one player in K is 1, while at least K − 2 player are at distance 2
from i. Therefore, the total decrease in distance from i to players in K is at most 1.

– In G(s), there are k − 1 players of LK at distance 1 from i, and the remaining |LK | −

k + 1 players of LK are at distance 3 from i. In G(s′) there are at most k players
at distance 1 from i, there are at most k − 1 players at distance 2 from i (since the
unique player i′ of K that is directly connected to i (and buys the edge (i′, i)) has
at most k − 1 connections to LK). Hence at least |LK | − 2k + 1 players of LK are at
distance 3 from i. Therefore, the total decrease in distance from i to players in LK

is at most (k − 1) + (3|LK | − 3k + 3) − k − (2k − 2) − (3|LK | − 6k + 3) = k + 1.
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It follows that by deviating from s to s′, the maximum possible distance improvement
for i to players in [n] \ CR is k + 2, while the distance to at least k + 2 vertices of CR

increases by 1. As |s′i | = |si| by Corollary 1, the building cost of i is not affected by the
deviation, so the deviation is not profitable for i; a contradiction. �

5 Bounds on the Strong Price of Anarchy

In this section we analyze the strong price of anarchy of network creation games. First,
for α < 2, we provide exact expressions on the strong price of anarchy using the various
insights of Section 4. Subsequently, for higher values of α, we provide a sequence of
examples that converges to a price of anarchy of 3/2. This shows that the strong price
of anarchy of the complete class of network creation games must lie in the interval
[3/2, 2], due to the upper bound of 2 established in [4]. It is trivial that for α ∈ (0, 1), the
strong price of anarchy is 1. This holds because any rational strategy profile that forms
the complete graph minimizes the social cost. The picture turns out to be relatively
complex for α = 1.

Theorem 4. For α = 1, the strong price of anarchy is 10/9 if n ∈ {3, 4}, and the strong
price of anarchy is (3n + 2)/3n if n ≥ 5.

Proof. By Theorem 1, for α = 1 a strategy profile s is a strong equilibrium always if
and only if it is rational and forms a graph of diameter at most 2 that is the complement
of a forest. This means that vertices connected by an edge are distance 1 apart, and
vertices not connected by an edge are distance 2 apart. A forest F has at most n − 1
edges, so we obtain the following bound on the social cost of a strong equilibrium:
α(n(n−1)/2−|F|)+2(2|F|+n(n−1)/2−|F|) = 3n(n−1)/2+|F| ≤ 3n(n−1)/2+(n−1). This
bound is achieved for n ≥ 5 by taking for F any Hamiltonian path. Thus for α = 1 and
n ≥ 5, given that the social optimum forms a complete graph, we obtain that the strong
price of anarchy is (3n(n−1)/2+(n−1))/(3n(n−1)/2) = (3n(n−1)+2(n−1))(3n(n−1)) =

3n + 2/3n. For n = 4, the maximum size forest (such that the complement of it has
diameter 2) has only 2 edges, and for n = 3 it has only 1 edge. Therefore, the strong
price of anarchy for α = 1 and n ∈ {3, 4} equals 10/9. �

For α ∈ (1, 2), there exists no strong equilibrium if n ≥ 5 (see [4]). Therefore, it
remains to derive the strong equilibria for α ∈ (1, 2) and n ∈ {3, 4}.

Proposition 3. For α ∈ (1, 2) the strong price of anarchy is (2α + 8)/(3α + 6) if n = 3,
and the strong price of anarchy is (4α + 16)/(6α + 12) if n = 4.

For α > 2 it seems very challenging to prove precise bounds on the strong price of
anarchy. However, it is known that for α ≥ 2 the strong price of anarchy is at most 2
[4]. We now complement this bound by showing that for Example 1 (given in Section
4), the strong price of anarchy is at least 3/2.

Theorem 5. The price of anarchy of network creation games is at least 3/2.
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Proof. Let x ≥ 4 and consider the strong equilibrium s given in Example 1, for α = 2n
and k = A = x. The players in L1 each have a distance cost of 4n − 4 − A − 3k =

4x2 + 4 − x − 3x. Since |L1| = (A − 1)(k − 1) = x2 − 2x + 1 the total distance cost of s is
at least 4x4 − 12x3 + 16x2 − 12x + 4. Moreover, G(s) is a tree, so the total building cost
of s equals (n − 1)α = (Ak + 1)2(Ak + 2) = 2x4 + 6x2 + 4. Therefore, the social cost of
s satisfies C(s) ≥ 6x4 − 12x3 + 22x2 − 12x + 4.

For α ≥ 2, the social optimum forms an n-star. Thus, the optimal social cost is
(n − 1)α + 2(n − 1)2 = 2n(n − 1) + 2(n − 1)2 ≤ 4n(n − 1) = 4x4 + 12x2 + 8 Combining
these two bounds and taking x to infinity, we obtain that the strong price of anarchy is
at least limx→∞(6x4 − 12x3 + 22x2 − 12x + 4)/(4x4 + 12x2 + 8) = 3/2. �

6 Convergence of Coalitional Improvement Dynamics

In this section we study the c-FIP and coalitional weak acyclicity of network creation
games. On the positive side, c-weak acyclicity holds for α ∈ (0, 2)3 and for all α ≤
n/2 in case the starting strategy profile forms a tree. On the other hand, our negative
results encompass that the c-FIP is not satisfied for any α.4 First, running best response
dynamics on a network creation game ends up in a pure Nash equilibrium.

Lemma 8. For α < 1, every network creation game has the FBRP.

From Lemma 8 and the fact that Nash equilibria and strong equilibria coincide for
α < 1 (as we also pointed out in Section 4), we obtain as a corollary that for α < 1,
every network creation game is c-weakly acyclic. For α = 1 we can also show weak
acyclicity and c-weak acyclicity.

Lemma 9. For α = 1, every network creation game is weakly acyclic and c-weakly
acyclic.

We may also prove that for α ∈ (1, 2) and n ∈ {3, 4}, network creation games are
c-weakly acyclic. (Recall that for α ∈ (1, 2) and n ≥ 5, strong equilibria do not exist.)

Proposition 4. For α > 1 and n = 3 network creation games have the c-FIP. For
α ∈ (1, 2) and n = 4, network creation games are c-weakly acyclic.

For α ≤ n/2 we can show that c-weak acyclicity is satisfied as long as our starting
strategy profile forms a tree. This result relies on the following lemma about centroid
vertices of trees.

Lemma 10. Let T = (V, E) be a tree, and let v ∈ V be a centroid vertex of T . It holds
that max{|Vi| : (Vi, Ei) ∈ CT−v} ≤ (1/2)|V |.

Lemma 11. For α ∈ (1, n/2), let s ∈ S be such that G(s) is a tree. Then there exists
an improvement path resulting in a strong equilibrium. Hence, every network creation
game is weakly acyclic and c-weakly acyclic with respect to trees.

3 Except for α ∈ (1, 2) and n ≥ 5, in which case we know that strong equilibria do not exist.
4 An exception to this is that we can prove that the coalitional finite improvement property is

satisfied for the very special case that α > 1 and n = 3.
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Proof. Let s ∈ S and suppose G(s) is a tree. Let v ∈ [n] be a centroid vertex of G(s).
Consider the following sequence of deviations. If there is a player i such that dG(s)(i, v) ≥
2, then s′i = si ∪ {v} and s′ = (s′i , s−i). Repeat this step with s = s′ until dG(s)(i, v) = 1 for
all i ∈ V \ {v}. Observe that since v is a centroid vertex of G(s), by Lemma 10, player i
decreases the distance to at least n/2 players by at least 1 by buying an edge to v. This
exceeds the cost of α, hence this deviation is profitable. Otherwise, if there is no player
i such that dG(s)(i, v) ≥ 2, and G(s) is not a star, then there are players i, j ∈ [n] such that
i , v, j , v and j ∈ si, then let s′i = si \ { j}. Repeat this step until G(s) is a star. Observe
that player i is better off by the strategy change. She saves α > 1 in her building cost
and her distance cost increases by only 1, since for each player not in i’s neighborhood
there is a shortest path through v. Hence the only loss is the distance increase between
i and j. If s is rational after this sequence of deviations, then we have reached a strong
equilibrium by Theorem 2. Otherwise there are i, j such that i ∈ s j and j ∈ si. We set
s′i = si \ { j} and repeat this step until we reach a rational s. �

However, we may show that in general, network creation games do not have the
c-FIP, regardless of the choice of α.

Theorem 6. For every α there exists a number of players n such that network creation
game (n, α) does not have the c-FIP.

This above theorem is proved by providing examples for α < 1, α = 1, α ∈ (1, 2), and
α = 2 separately. For α > 2, the example in Theorem 1 of [9] implies that network
creation games are not potential games. Hence they do not possess the FIP and the
c-FIP for this range of α.
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