arXiv:0810.0532v2 [cs.MA] 17 Oct 2008

Three new complexity results for resource allocation problems

Bart de Keijzer (B.deKeijzer@student.tudelft.nl)

October 17, 2008

Abstract
We prove the following results for task allocation of indivisible resources:

e The problem of finding a leximin-maximal resource allocation is in P if the agents
have max-utility functions and atomic demands.

e Deciding whether a resource allocation is Pareto-optimal is coNP-complete for agents
with (1-)additive utility functions.

e Deciding whether there exists a Pareto-optimal and envy-free resource allocation is
Y:2-complete for agents with (1-)additive utility functions.

1 Introduction

In this text we prove complexity bounds for various problems in the field of resource allocation.
These results come forth from an attempt to prove two open problems that were stated in
the work of Bouveret, Lang et al ([I] and [2]). The problems are about resource allocation.
In a resource allocation problem we have a set of agents (or alternatively, players) and a set
of resources (or equivalently, goods, tasks, items, etc.). The goal is to allocate the resources
to the agents such that some requirements are satisfied. These requirements may vary. In
our case we are interested in finding fair allocations. The concept of fairness is not clear, and
there are different criteria for deciding whether or not an allocation is fair. Two of these are
envy-freeness and leximin-mazximality. We will define these criteria (formally) later on. In
the problems we consider, the resources are indivisible and a resource can not be shared by
two or more agents.
The two open problems of the aforementioned papers that we consider are:

1. In [I]: The problem of finding a leximin-maximal resource allocation for agents with
max-utility functions and atomic demands is in NP. Could it be that it’s in NPC (i.e.
NP-complete), or is it perhaps in P?

2. In [2]: What is the complexity of deciding whether there exists a Pareto-efficient and
envy-free resource allocation, when the agents have additive utility functions?

Some of the more technical notions we just mentioned will be defined and explained later
in this text. We do, however, assume that the reader is acquainted with computational
complexity theory (especially the classes P, NP, coNP, and the classes of the polynomial
hierarchy), the matching problem for bipartite graphs, logic, and the satisfiability problem.

The first of these two problems is part of a quite an extensive series of problems and
subproblems. The authors show for all of these problems that they are either in P or in NPC.

The only problem for which it remained an open question whether it is in P or in NPC (or
possibly in between) is this one, where the agents have max-utility and a leximin-optimal
allocation must be found. In section [2| we fill in the last open question of this series: we give
a polynomial time algorithm for finding such an allocation, hence we prove that this problem
is in P

The second problem is also part of a collection of problems that the authors prove complete
for various complexity classes. This particular problem is again the last open problem in this
series. We prove in section {4 that this problem is ¥5-complete (a class in the second level of
the polynomial hierarchy) by a reduction from the complement of the language V33CNF (that
is a restriction of the more well-known problem known as 2QSATy or 2TQBFy): a complete
problem for II5, which is naturally the complement of 5.

In the process of trying to prove the XE-completeness of the second problem, we stum-
bled on another interesting result, namely that the problem of deciding whether an alloca-
tion of resources to agents is Pareto-efficient (also called: Pareto-optimal, efficient) is coNP-
complete for agents with additive utility functions. We will give this proof in section
coNP-completeness of this problem has already been proved in the case of agents with > 2-
additive utility functions (implied from [3]), but not yet in the case of (1-)additive utility
functions.

2 Leximin-maximal allocations with max-utility and atomic
demands

In this section, first, we make some definitions. After that we define the problem. Finally we
give a polynomial time algorithm to solve the problem.

2.1 Preliminaries

We first define formally the problem to solve. In a resource allocation problem, a set of
resources must be divided among a set of agents. Such a division of resources to agents we
call an allocation.

The allocation must satisfy a certain set of constraints. Each agent has preferences on
bundles of resources it may receive. The way these preferences are represented varies from
setting to setting. In our case we use a cardinal preference structure: We represent the extent
to which an agent values the bundle of resources he gets as real numbers. See for example [4]
for examples of preference structures.

Formally, we use the following definition for resource allocation settings:

Definition 1 ((Indivisible) resource allocation setting). An indivisible resource allocation
problem instance is a 5-tuple (A, O,U,C,u.), where A = {ai,...,a,} is a set agents, O =
{01, ...,0m} is a finite set of resources. U = {uy,...,u,} is a set of utility functions, u; is the
utility function of agent a;. For all u € U, u: 2 — R. C is a finite set of constraints, and u..
is a collective utility function to be defined later.

Definition 2 (Allocation of indivisible resources). Given a resource allocation problem setting
(A,0,U,C,u.), an allocation is a mapping a : A — 2©.

1Of course we're talking about complexity classes for decision problems here. In [I], only the decision
variant of this problem is considered. An algorithm from the decision variant of this problem is easily obtained
if we have an algorithm for the optimization variant.

Definition 3 (Admissability of an allocation). Given a resource allocation setting (A, O, U, C, u.),
an allocation a is admissable if it satisfies all constraints in C.

For the specific case of the resource allocation problem that we are interested in, there is
only one constraint in C, namely the preemption constraint. Also, we restrict ourselves to a
special case of max-utility functions. The definitions of these concepts are as follows.

Definition 4 (Preemption constraint). Given a resource allocation setting (A, O,U,C,u.)
and an allocation a, then a satisfies the preemption constraint cpreempt iff Vi € A : Vj € A :
(j#1) — (a(i) Na(j) = @). We write a F cpreempt-

In words, the preemption constraint requires that an item is allocated to no more than
one agent.

Definition 5 (max-utility function). In a resource allocation setting (A4, O, U, C, u.), a utility
function v € U is a max-utility function if uw(0’ € 2°) = max{d,(0)|o C O'}, where d,, :
20 R.

In words, a max-utility function has an associated demand function d. The max-utility of
a set of resources (0’ is the subset of O’ for which the demand is the highest. We are interested
in the following special case of max-utility functions

Definition 6 (max-utility function with atomic demands). w is a max-utility function with
atomic demands if w is a max-utility function as defined in definition and d, has an
associated atomic demand set D,, = {r;,...,r»} C R such that

0,(0 €20 — {ri if O :‘{oi} for 1 §i§m‘
0 otherwise

This means: agents only express demands for single resources. Their utility for a set of
resources is the highest demand they have for each of the individual resources of that set.
Note that a max-utility function is completely represented by its associated atomic demand
set.

Now we are ready to discuss the collective utility function mentioned in definition [I} The
purpose of the collective utility function wu. is to express the quality of an allocation. For this
we need to be able to compare the answers that u. gives for any two different allocations.
This implies:

o u.:(A—2° - X,
e we need to specify X,

e we need to define a transitive comparison relation <x over X.

In a lot of cases we can say for example X = R or X = N. The comparison relation is then
simply <. This is the case for classical utilitarian collective utility functions or egalitarian
collective utility functions [4]. For us, the relation is a bit more complex. We are concerned
with leximin-egalitarian collective utility functions.

Definition 7 (Leximin-egalitarian collective utility). Given a resource allocation setting
(A,0,U,C,uc). ue: (A — 29) — X is a leximin-egalitarian collective utility function iff
X =R" and for all allocations a: u.(al) = Z, where

ui(al(1))

un(al(n))

Definition 8 (Leximin-egalitarian comparison relation). The leximin-egalitarian comparison

relation <|eximin is defined as follows: Let @ € R™ and ¥ € R™ and let u! and v_% be the sorted
versions of 4 and ¥ respectively. Now, it holds that

— — — -

77-<|eximinﬂ‘<:>5|i:v‘]'<i:7)T ANV, <u

—
—
—

= U

J J i i

Definition 9 (Leximin-maximality). Given a resource allocation setting (A, O, U, C, u.), with
u. being a leximin-egalitarian collective utility function. An admissable allocation a is leximin-
maximal if there exists no admissable allocation a’ such that uc(a) <jeximin Ue(a’).

A leximin-maximal allocation has a desirable ‘fairness’-property to it: The most important
priority in a leximin-maximal allocation, is that the lowest utility among all the agents is as
high as possible. As a second most important priority, the second-lowest utility among all
the agents is made as high as possible, etcetera.

Finally we are ready to state the problem that we will prove to be in P.

Definition 10 (LMMUAB-ALLOCATION (i.e. Leximin-maximal max-utility atomic bids
resource allocation)). A problem instance of LMMUAB-ALLOCATION is a resource alloca-
tion problem setting (A, O,U,C, u.) and a vector K, where

e u. is a leximin-egalitarian collective utility function,

o C= {Cpreempt}a

e Yu € U : u is a max-utility function with atomic demands.
e K e R

It is sufficient to represent a LMMUAB-ALLOCATION-instance as the triple (A, O, D),
where D = {Di,...,D,} is a set of atomic demand sets, and for 1 < i < n, D; is the atomic
demand set associated with a; and w;.

The task is to determine if there exists an admissable allocation a such that

K <Jeximin uc(a)-

We prove LMMUAB-ALLOCATION in P by giving a polynomial time algorithm for its
optimization variant.

Definition 11 (LMMUAB-ALLOCATION-OPT (i.e. Leximin-maximal max-utility atomic
bids resource allocation, optimization variant)). A problem instance of LMMUAB-ALLOCATION-
OPT is the same as a problem instance of LMMUAB-ALLOCATION, but without the vector

K. The task is to find a leximin-maximal, admissable allocation.

2.2 A polynomial time algorithm for LMMUAB-ALLOCATION-OPT
Consider the following algorithm for LMMUAB-ALLOCATION-OPT:

Algorithm A:
Input: [, an instance of LMMUAB-ALLOCATION-OPT.
That is, I = (A ={a1,...,an,},0 ={01,...,0m},D ={D1,...,Dy}),
and for 1 < 1 < n,DZ- = {7"2'71, e 771i,m}-
Output: a, a leximin-maximal allocation for I.
Begin
1. Create a complete weighted bipartite graph G = (V = (LU R), E),
where L and R are the left and right parts of the graph respectively.
We set L:= O, R := A.
2. Generate weights ¢; ; for all {a;,0;} € E such that
bij 2 2w 3l yromigy b
3. Find with the Hungarian algorithm [5] a minimum weighted bipartite
matching M on G, using the weights computed in step 2.
4. Foralli,j € M, set a(a;) := {o;}.
End

First please note: a minimum weighted bipartite matching is a maximum matching in a
weighted bipartite graph such that the cumulative weight of the matching (i.e. the sum of the
weights of the edges in the matching) is minimal. See for example [6].

We will now prove that this algorithm is correct and runs in polynomial time. From these
two facts it follows that the decision variant of this problem also runs in polynomial time and
hence is in P

Theorem 12. Algorithm A is a correct algorithm for LMMUAB-ALLOCATION-OPT, i.e.
the allocation that algorithm A outputs on an LMMUAB-ALLOCATION-OPT-instance as
nput, is leximin-mazimal.

Proof. First note that there exists a leximin-maximal allocation in which every agent gets
at most one resource. This is due to the combination of max-utility functions with atomic
demands: of a bundle allocated to an agent, only a single resource in that bundle decides the
agent’s utility of that bundle, so we could just as well remove all the other items from the
bundle.

Step 4 allocates an item to an agent if the corresponding edge is in M. Because M
is a minimum weighted matching, an agent is allocated at most 1 item. What remains is
proving that if our algorithm has found a minimum weighted matching M, then the algorithm
constructs a leximin-maximal a. Suppose that is not the case: call the leximin-maximal
allocation appt, and assume our algorithm returns an a such that u.(a) <eximin Uc(a@opPT)-
By the definition of the leximin order <|eximin this means that

T

Fi:Vj<i: uc(a); = uc(aopT); A uc(a)zT < uc(aopT)

T
i

We will now prove that there exists not such an ¢, resulting in a contradiction. We prove
by induction that for all 1 <i < n: uc(a)g = UC(GOPT)ZT. For the remainder of the proof, let
MopT be the matching that corresponds to agpT, in the same way as M corresponds to a.

Base case uc(a)l = ’U/C(G,OPT)I. First of all, by construction of the weights in step 3, for all
1<i1<n,1<L i < n,1<j3<m,1< j, <m:r; < TR Ei,j > Ei’,j’- So the edge with
highest weight in M corresponds to the agent with the lowest utility of the allocation, hence
this utility corresponds to uc(a); Secondly, let e and egpt be the edges with the highest
weight that are in M and MopT respectively. Now, consider the set of edges E~ with weights
that are strictly greater than the weight of epopt. By construction of the weights, it follows
that any matching in which an ¢’ € F- is included, always has a greater cumulative weight
than a matching in which egp is included as the edge with the highest weight. Step 4 of the
algorithm returns the matching with minimum cumulative weight, so the weight of e must be
the weight of egpT.

Induction hypothesis Vj <i: uc(a)} = UC(GOPT>}.

Induction step uc(a)iT = UC(CLOPT),LT. This follows more or less trivially from the same
arguments as given for the base case: let e’ and e’bPT be the edges with the ¢’th highest
weight that are in M and Mgpt respectively. Now, consider the set of i’th highest edges El>
with weights that are strictly greater than the weight of e%PT and strictly less than the weight
of edge elggf 1 < j <n—1. By construction of the weights, it follows that any matching in
which an ¢’ € El> is included as an 7’th highest edge, always has a greater cumulative weight
than a matching in which eng is included as an #’th highest edge. Step 3 of the algorithm
returns the matching with minimum cumulative weight, so the weight of e’ must be the weight
of e%PT.

O

Theorem 13. Algorithm A runs in polynomial time.

Proof. The complexities of the individual steps of the algorithm areﬂ

e In step 1, m + n nodes and mn edges are constructed. This takes O(mn) time.

e In step 2 mn weights are computed. This step is not described in a very constructive
way, but it can be easily seen that it can be done by first sorting the union of all the
demand vectors, and subsequently constructing the weights from the highest to the
lowest element in the sorted array. In this step, the sorting is the most intensive part
and takes O(mnlogmn) time.

e In step 3 the Hungarian algorithm for minimum weighted bipartite matchings is ran.
This algorithm needs a helper shortest-path algorithm. If we use Dijkstra’s algorithm as
a helper algorithm for the Hungarian algorithm, then this step can be done in O((m +
n)log(m + n) + (m + n)(m?n?)) time [6].

e Step 4 is clearly done in O(m + n) time.

Adding up the complexities of these steps, we conclude that the algorithm can run in
O((m + n)log(m +n) + (m + n)(m?*n?)) time. O

Corollary 14 (from theorems [12|and [L3). LMMUAB-ALLOCATION is in P.

2We assume a RAM-model where the elementary arithmetic operations take unit time.

3 Complexity of deciding whether an allocation is pareto op-
timal for agents with additive utility

In this section we prove that deciding whether an allocation of resources among a set of
agents is coNP-complete if the agents have additive utility functions. We will make use of the
definitions given in section [2.1] As said in the introduction of this paper, coNP-completeness
has already been proved for the case where agents have k-additive utility functions and k& > 2.

Definition 15 (k-additive utility). In a resource allocation setting (A, O, U,C,u.), a utility
function u; of an agent a; is k-additive if for each set ' C O with |T'| = k there exists a
coefficient o and for all R C O it holds that

u;(R) = Z ar.

TCR
k-additive utility functions are a generalisation of additive utility functions.

Definition 16 (additive utility). An additive utility function is a k-additive utility function
with £ = 1, i.e. a l-additive utility function. An additive utility function can be represented
as a set of coefficients: one coefficient for each item in O.

Next, we define the notion of Pareto-efficiency.

Definition 17 (Pareto-efficiency). In a resource allocation setting (A4, O, U, C, u.), an admiss-
able allocation a is Pareto-efficient (also called: Pareto-optimal, or simply efficient) if there
exists not a different admissable allocation a’ where the utility of at least one agent is higher
than in allocation a, and the utilities of all other agents are not lower than in allocation a.
More formal: allocation a is Pareto-optimal if there exists no allocation a’ such that

Ja; € A:ui(d(a;)) > wila(a;)) A (Va; € A :uj(d(aj)) > uj(alay))).

If such an allocation a’ does exist, then a is not Pareto-optimal and we say that o’ Pareto-
dominates a. Also we say that a can be Pareto-improved to a’ if o’ is an allocation that
Pareto-dominates a. The process of reallocating items to get from a to o’ is called a Pareto-
improvement. If for a there is no Pareto-improvent possible, then clearly a is Pareto-optimal.

Now we state the problem and prove it coNP-complete.

Definition 18 (PO-ALLOCATION-ADDITIVE (i.e. Pareto-Optimal Allocation with Addi-
tive utility functions)). A problem instance of PO-ALLOCATION-ADDITIVE is a resource
allocation problem setting (A, O, U, C, u.) and an associated admissable allocation a : A — 20,
where

o C= {Cpreempt}a
e Vu € U : u is an additive utility function.

The problem is to decide whether a is Pareto-optimal. The collective utility function u,.
can be disregarded here, so the problem is representable as the 4-tuple (A, O,V,a). In this
4-tuple, V' = {v1,...,v,} represents the utility functions of U. For all 1 < i < n, v; is the
representation of u; as described in definition

Theorem 19. PO-ALLOCATION-ADDITIVE is coNP-complete.

Proof. Showing membership of coNP is easy: If the allocation a of a PO-ALLOCATION-
ADDITIVE-instance is not Pareto-optimal, then a certificate would be an allocation that
Pareto-dominates a.

Proving coNP-hardness for this problem is very difficult. We do it by a Karp reduction
from 3-UNSAT. 3-UNSAT is the problem of deciding whether a propositional formula in
3CNF is unsatisfiable. Because satisfiable instances of such a formula are easy to verify, the
complement of 3-UNSAT is in NP. Hence 3-UNSAT is in coNP.

The reduction is as follows. We are given an instance of 3-UNSAT [with variables
{z1,..., 2y} and clauses {ci,...,c}. A clause is given as a set of at most 3 literals. We
transform this instance to a PO-ALLOCATION-ADDITIVE instance I’ in the following way.
As in the definition, I’ is represented as the 4-tuple (A, O,V a).

e In I', [A] = 2w + w' 4 2: For each variable z; in I, two agents are introduced: Gset(s,)
and dgeg(—g,)- Gset(;) TePresents the set of clauses in which the literal z; occurs. ager(—z;)
represents the set of clauses in which the literal —z; occurs. For each clause ¢; in I, one
agent ac, is introduced in I’. Lastly, 2 additional agents are introduced: Gunassigned and

Qsatisfied -
e InI' |O] =w+w + L+ 1, where L is the total number of literals in the formula. For
each clause ¢; we introduce for each literal / in that clause the resource o, ;. For each

variable z; we introduce the resource o,,. For each clause ¢; we introduce the resource
oc;. Lastly, the resource osatisfied 15 added.

e The additive utility functions V' of the agents are specified as follows. Remember that
we use the following names:

Vo= {vset(x1)7 <. 7vset(xw)}
{’Uset(ﬂxl)a ceey Uset(—vxw)}
U {'Ucla'--avcéﬂ}

U {'Uunassigned » Usatisfied } .

C

All v € V are vectors of coefficients. We name these coefficients as follows. Let a; € A,
and let o; € O. Thus, ¢ and j stand not for numbers in this case, but for subscripts.
Then the coefficient for resource j in the additive utility function of agent ¢ goes by the
name of «; ; (and hence «; ; € v;).

The coeflicients for all resources for all agents are set to zero, with the following excep-

tions:
— All coefficients in {unassigned,z1 s - - - s Yunassigned, ., } are set to 1.
— All coefficients in {satisfied,c; s - - - » Qsatisfied,c,,, } are set to 1.
— All coefficients in {ow; c;, Qeyyeny - -5 Qe e, b aT€ SEE tO 1.

For all coefficients aset(p) o, in

{O‘set(m),xla aset(xg),xy SR aset(xw),xw}
U {aset(ﬂxl),xl ; aset(—mm),a:y cee 7aset(—\xw),:cw}7

Qset(1),z; 15 set to the number of times that [occurs in the formula of I.

8

— All coefficients in
{O‘set(l),(ci,l)‘l <1< w Al E CZ'}

are set to 1.

— All coefficients in
{og @pll <i<w Al e}

are set to 1.

. / .
— Osatisfied,satisfied 1S set to w’ and CUsatisfied,unassigned 1S set to w + 1.

e Lastly, we must specify the allocation a.

All resources {0z, ...,0.,} are allocated to aynassigned-
— For all resources o,,,1 < i < w' we allocate o, to a,.
— All resources o, ;,1 <i <w',l € ¢;, are allocated t0 dgeq(r)-

— The resource ogatisfied 1S allocated to agent asatisfied-

That completes the reduction. It can clearly be done in polynomial time. Before contin-
uing with the correctness proof of this reduction, an example would be appropriate, due to
the complexity of the reduction.

Consider the 3-UNSAT instance given by the formula

(1'1 VxoV ﬁ512‘3) A (—|1‘1 V —x9 V —|1‘3).

We represent this instance as the tuple

< {x17x27w3}7

{er = {z1, 22, 723}, c0 = {21, w2, ~23}})

Now if we run the reduction process on this instance, we get a PO-ALLOCATION-
ADDITIVE instance that is displayed in the table below. The columns of the table represent
the agents and the rows of the table represent the items. The entries in the table are the
coefficients. An entry is displayed in italic if the item of the corresponding row is allocated to
the agent of the corresponding column. Empty cells in the table should be regarded as zero
entries.

ey | Qg | Qset(z1) | Qset(—xq) | Oset(wa) | Oset(—zp) | Uset(xz) | Uset(—xw3) | @unassigned | Usatisfied

0, 1 1 1

Oy 1 1 1

Oz, 2 1

001’1?1 1 1

Ocy,xo 1 1

Ocy,~as 1 1

Ocy —ay 1 1

Ocy,~xs 1

Ocy,~zs 1

Osatisfied 4 2

Now we will continue with the correctness proof. We must show that there only exists
a Pareto-dominating allocation if the formula of the 3-UNSAT instance is satisfiable. This
follows from the following two lemmas and concludes the proof.

Lemma 20. If the 3-UNSAT instance I is a NO-instance, i.e. the formula is satisfiable, then
the allocation a in I' is not Pareto-optimal.

Proof. First have to explain the function of all agents and resources with respect to the 3-
UNSAT instance I. The allocations of resources {0y, ..., 04, } represent to which truth-value
the variables are set. If o,, is allocated to @unassigned, this means that x; is set to no truth-
value. If oy, is allocated to Ggey(y,), this means that z; is set to true, and the clauses in which
the literal z; occurs are made true. If oy, is allocated to Gget(—y,), this means that z; is set to
false, and clauses in which the literal —z; occurs are made true. The agents {a,, ... ,acw,}
represent the clauses of the formula. If resource o. € {o,..., ocw,} is allocated to a.,, it
means that clause ¢; is not satisfied. If resource o, € {oc,,... ,ocw,} is allocated to asatisfied,
it means that clause ¢; is satisfied. In allocation a, all clauses are unsatisfied and all variables
are not assigned a truth-value. If in allocation a, we reallocate some oy, € {z1,...,2y} to
one of the agents Uset(l,,) € {aset(xi), aset(ﬁxi)}, then by construction we can move all of the
resources Oc; [, lz; € ¢j to a.; without lowering the utility of Uset(l,,)- Now, because c; gets 1
extra utility, we are able to reallocate o, t0 Gsatisfied-

The key thing to see here is that the procedure we just described is, from the viewpoint
of I, equivalent to assigning x; some truth value, and making all clauses true in which the
literal occurs that corresponds to that truth-value. In I’ this is the same as reallocating
some specific resources to some specific agents, and this reallocation can be done without
lowering anyone’s utility except for the utility of aunassigned- The utility of aynassigned can only
be compensated if aynassigned gets allocated the resource osatisfied. 1f that happens, then by
construction the utility of aynassigned gets suddenly strictly higher than in allocation a. But
we can only reallocate ostisfied tO Gunassigned if all resources {oc,,...,0c ,} are allocated to
Asatisfied, Otherwise the utility of asatistied would be too low. Reallocating all of these resources
is clearly equivalent with finding a satisfying truth-assignment for the formula.

Now we wil describe the reallocation process in a more systematic way: When the propo-
sitional CNF formula denoted by instance I is satisfiable, there is an allocation a’ that Pareto-
dominates a. It can be obtained in the following way.

1. Take allocation a and reallocate the resources {o4,...,0s,} to the allocation that
corresponds to the assignment that satisfies the formula of I. By doing this, the utility
of aynassigned becomes lower than the utility it has in allocation a. This problem will be
dealt with in step 4.

2. By construction, all of the other resources of the agents that obtained a resource in step
1 can now all be reallocated so that the utility of those agents is not decreased below
the utility they have in allocation a. (The resource they received in step 1 gets them
high enough utility to maintain at least the same utility as in a, even if they lose all of
their other resources.) So we reallocate all those resources ‘appropriately’ to the agents
{acys- .. ,acw,}. By appropriately we mean that a reallocated resource is reallocated to
the single other agent that has non-zero utility for it. By construction, there is precisely
one such agent for each item that is reallocated in this step.

10

3. Because, in step 2, the utility of agents {a.,,...,ac,,} is increased, we can reallocate
the items {oc,,..., 00, } to agent asitisfied- Without giving the agents {ac,,...,ac,,} a
lower utility than in allocation a. Now it is the case that each agent except aynassigned
has a utility that is at least as high as allocation a. aynassigned has no items allocated, so
his utility is 0. The utility of asatisfied is 2w’ in our current allocation, while in allocation
a it was w'.

4. So, as a last step, we can reallocate Osatisfied 1O GQunassigned- Lhe utility of aynassigned is
then w + 1 in our new allocation a’, while it was only w in allocation a. By performing
this last step, the utility of agatisfieq decreases to w, but this is not a problem since the
utility of asatisfied Was also w in allocation a.

O]

Lemma 21. If the 3-UNSAT instance I is a YES-instance, i.e. the formula is unsatisfiable,
then the allocation a in I' is Pareto-optimal.

Proof. In an allocation a’ that Pareto-dominates allocation a, at least one agent has strictly
greater utility in @’ than he has in a, and all the other agents have a utility that is at least as
great. We divide the proof up in cases, and show that in @’ no agent can be the agent that
has strictly greater utility than he has in a, while all other agents don’t have a lower utility
than they have in a.

Agent aynassigned: In @', the utility of agent aynassigned Can only be greater than in a if he gets
the resource ogatisfied- Because the other agents may not have lower utility than they
have in a, agent asatisied n€eds then be allocated the set of items {o,, . .. 0, }. By the
same argument, every agent ac, € {ac,,...,ac,,} needs to get allocated at least one of
the resources {o, i|l € ¢;}. If we allocate such a resource o, ; to a.;, then the utility of
ser(1) gets too low, and we must compensate by allocating the resource oy, 2z; € [to
aset(1)- As explained in the previous lemma, regarding I this is equivalent to setting the
variable z; to a truth value such that clause c; gets satisfied. We must do this for all
clauses, so then there must be an assignment where all of the clauses are satisfied, i.e.
I must be a satisfiable instance. Which it isn’t.

All other cases: It is also impossible to create an allocation a’ that Pareto-dominates a,
where some agent a; # Gunassigned has strictly greater utility than in a, while all the
other agents have a utility that is at least as high as the utility that they had in a:
no matter what agent we choose for the role of a;, it is always neccessary to allocate
at least one of the resources in {0s,,...,04,} to an agent other than aynassigned. This
means that we are required to allocate oOsatisfied tO Gunassigned, and we fall back to the case
we just proved for agent aynassigned-

It is easy to check that this is true for any a; that we pick.

11

4 Complexity of finding an efficient and envy-free allocation
for agents with additive utility

The proof given in the previous section was somewhat of an intermediate result that we came
across in the process of finding a proof for our next theorem. We first make an additional
definition.

Definition 22 (Envy-freeness). Given a resource allocation setting (A = {a1,...,a,},0,U =
{u1,...,un},C,u.) and an admissable allocation a, a is called envy-free iff

Va; € A:Vaj € A:ui(a(a;)) > ui(a(ay)).

We can define an envy-freeness constraint cenvyfree S0 that we can add it to C. a then is
not admissable if a is not envy-free.

If there exists an 4 and there exists a j for which u;(a(a;)) > u;(a(a;)) and @ # j, then a
is not envy-free and we say that a; envies a; in allocation a.

Now we state the problem and give a proof that this problem is ¥5-complete.

Definition 23 (EEF-EXISTENCE-ADDITIVE). In the problem EEF-EXISTENCE-ADDITIVE
we must decide whether there exists a Pareto-efficient and envy-free admissible allocation in
the resource allocation setting (A, O, U, C, u.), where

o C= {Cpreemph Cenvyfree}7
e Vu € U : u is an additive utility function.

The collective utility function u. can be disregarded here, so the problem is representable
as the 3-tuple (4,0, V). In this 3-tuple, V = {v1,...,v,} represents the utility functions of
U. For all 1 <i <n, v; is the representation of u; as described in definition

Theorem 24. EEF-EXISTENCE-ADDITIVE is ¥5-complete.

Proof. Membership of F is easily shown. The problem can be decided by an alternating
turing machine that makes 1 alternation and starts in an existential state: In the existential
state, an allocation a is guessed, and it is checked if this allocation is envy-free. The turing
machine then enters the universal state. In this universal state it is checked for all possible
allocations if an allocation Pareto-dominates a. If this is not the case, then a is Pareto-efficient
and envy-free.

We prove hardness by a Karp reduction from the complement of the problem V43CNEF.
V33CNF is II5-complete, that is, complete for the complement of ¥5. It is perhaps the most
well known complete problem in the second level of the polynomial hierarchy. We selected
this problem from [7], a list of complete problems in the polynomial hierarchy.

An instance of V43CNF consists of two disjoint sets of propositional variables Xy =
{xY,...,xYle} and X3 = {x?,...,:pla)@'} and a propositional formula in 3CNF over the
variables in Xy U X3. This propositional formula is represented as the set of clauses C =
{e1,-- 501 A clause ¢; € C s a set of at most 3 literals. The problem for a V33CNF-
instance is to decide whether for every possible assignment of the variables in Xy, there exists
some assignment of the variables of X3 that makes the formula trud’]

3To remove ambiguity: please note that the assignment of the variables in X3 needs not be the same for
every assignment of the variables in Xy.

12

For this proof we must introduce some additional terminology: given a set of propositional
variables, in a partial truth-assignment, or simply partial assignment to these variables, only
a part of the variables are assigned a truth value, and the other part is left unassigned. Also,
given a partial assignment s on a set of propositional variables and a propositional formula on
these propositional variables, we say that the formula is satisfiable on s iff we can transform
s into a full assignment s’ by assigning in s a truth-value to the unassigned variables, such
that s” satisfies the formula.

We make a minor assumption on the VA3CNF instances. For every variable x € Xy U
X3, both the literals z; and —z; must appear at least once in the formula C. Fortunately,
this assumption can be made without loss of generality: if we have a V33CNF instance
where the assumption doesn’t hold for some variable x € Xy U X3, then we can simply
add the tautological clause {x, -z} to C. We make this assumption in order to reduce the
complicatedness of our reduction.

In this proof we use the following notational conventions. We will use the symbol [to
refer to a literal and we will use for any variable z; € X3 U Xy the symbol [, to refer to a
literal in which z; occurs. Also, if we use the notation —l,,, then by that we mean the positive
literal x; if [, is a negative literal, and we mean the negative literal —z; if I, is a positive
literal. Lastly, We define the set Cj, for each literal of each variable z; € X3U Xy as the set
of clauses in which [, occurs.

The reduction in this proof resembles the reduction in the proof of theorem we reuse
a lot of the same ideas and tricks. The reduction for this proof however, is more complex. We
have to deal this time with universally quantified variables and envy-freeness. Moreover, we
cannot “set” an allocation in advance, as we could in the reduction of the proof of theorem
We will now describe the entire reduction. We advise the reader to work out an example
for a small V33CNF-instance in the table format as we did in the proof of theorem
This is because we won’t give an example in this proof: the table format size of the EEF-
EXISTENCE-ADDITIVE instance is too large to put on this sheet, even for small instances.

Given a Y43CNF-instance

I=(Xy=1{a,... ,xlev‘},Xg = {z7,... ,xlaX3|},C’ ={c1,- -5 q0h)s
we reduce it to a EEF-EXISTENCE-ADDITIVE-instance I’ = (A, O, V') in the following way.

o |A| =4|Xy|+2|X3|+ |C|+ Ly + 3, where Ly is the total number of literal occurences in
helper

C' of variables in Xy. For each variable xiv € Xy, four agents Uget(2¥) Tset(—aY)> aset(xy)

hel . .
and a_ <P vy are introduced. For each variable 7 € X3, two agents a

set(—a) set(—z7)
are introduced. For each clause ¢; € C, the agent a,, is introduced. For all ¢; € C, for

envyprotection
¢yl :

set(z?) and a

each literal [€ ¢; wherein a variable of Xy occurs, we introduce the agent a

envyprotection

The remaining three agents are aynassigned, Oy nassigned

) and Gsatisfied -
For ease of explaining and understanding the rest of the proof, we introduce the following
symbols and terminology:
— We refer to the set {ac,,... ’aC\CI} as Acy. Alternatively, we may refer to those
agents as clause agents.

— We refer to the set {aset(l)\x? € 1} as Aevaa Alternatively, we may refer to those
agents as existential variable assignment agents.

13

— We refer to the set {aset(l)\xy € 1} as Ayvaa Alternatively, we may refer to those
agents as universal variable assignment agents.

— We refer to the set {aZ:tIE’Sr]a:Y € I} as Ayvaha Alternatively, we may refer to those
agents as universal variable assignment helper agents.

— We refer to the set {aenvypmtemon\ € C Al € c} as Ayiepa. Alternatively, we may
refer to those resources as universal literal envy-protection agents.

Using these definitions, we have

— envyprotection
A= Aca U Aevaa U Ayvaa U Ayvaha U Aulepa U {aunassigneda Qnassigned 7asatisfied}-

|O| = 4| Xv|+|X3|+2|C|+ L+ Ly+3, where L is the total number of literal occurences in
the 3CNF formula C, and Ly is the total number of literal occurences in C' of variables

. . . t hel
in Xy. For all variables a:»V € Xy, we introduce the resources o ¥ ocimpensa 'on, OS:t(p;\;)
3 [
hel
and 0P . For all variables x € X3, we introduce the resource o, 3. For each clause

set(—zy)’

ti .
¢; € O, we introduce the resources o, and og, """, For all ¢; € C, for each literal

[€ ¢;, we introduce the resource o, ;. For all ¢; € C, for each literal | € ¢; wherein
envyprotection

a variable of Xy occurs, we introduce the resource o_ ; . The remaining three
1

resources are Osatisfied, Oenvyl aNd Oenvy2.

For ease of explaining and understanding the rest of the proof, we introduce the following
symbols and terminology:

— We refer to the set {oc,...,0¢ } as Oc. Alternatively, we may refer to those
resources as clause resources.
compensatiol compensatio .
— We refer to the set {ocy oo ot L. 7oc|g|’p PO as Ocer. Alternatively, we may

refer to those resources as clause compensation resources.

— We refer to the set {ocjlc€ C ANl €cAhay € lNay € Xy} as Oy Alternatively,
we may refer to those resources as universal literal resources.

— We refer to the set {o.ilce C ANl e cAhzelNx e X3} as Ogy. Alternatively, we
may refer to those resources as existential literal resources.

— We refer to the set Oy, U, as O),. Alternatively, we may refer to those resources
as literal resources.
— We refer to the set {o,v,...,0,v } as Oy,. Alternatively, we may refer to those
1 [Xyl
resources as universal variable resources.
— We refer to the set {o_3,...,0 3 as Oeayr. Alternatively, we may refer to those
xl’ Y x‘ | € 9
X3
resources as existential variable resources.

— We refer to the set OuyrUOeyr as Oy,. Alternatively, we may refer to those resources
as variable resources.

compensation compensation .
— We refer to the set {oSY"PESTHON [oSYMPENSIIOM a8 Oyver. Alternatively, we may
"L'l "E‘Xv‘
refer to those resources as universal variable compensation resources.
- helper heIper helper helper
We refer to the set {Oset(a:j)’ s Ot) } U {o Oer(-a¥) "Oset(”fxv\)} as Ouyvahr-

Alternatively, we may refer to those resources as universal variable assignment
helper resources.

14

— We refer to the set {oir}vypmted'onlc € C Al € c} as Oyjepr- Alternatively, we may
refer to those resources as universal literal envy-protection resources.

Using these definitions, we have

0= Ocr U Occr U Oulr U Oelr u Ouvr U Oevr U Ouvcr U Ouvahr U Oulepr U {Osatisfieda Oenvyl, 0envy2}-

To complete the reduction, we specify the additive utility functions. Due to the extensive
use of subscripts and superscripts for the agents and resources, we don’t use the same
notation for this as we did in the proof for theorem All members of V' are vectors
of coefficients. v; € V is the vector representing the additive utility function of agent
a;. The members of v; are coefficients. In v; there is one coeflicient for each resource in
O. We name these coefficients as follows. Let a € A, and let 0 € O. Then we simply
denote the utility-coefficient of agent a for resource o as ala, o).

In the list below, let M be an extremely large number. By default all coefficients of all
agents are set to zero, with the following exceptions:

— For all o;; € Oc:

alae;,oc,] = M,

a[asatisﬁedaoci] = 17

X envyprotection o
Vi€ c:ala,, ,0¢;] == M.
compensation
— For all og,™P € Ocer:
compensation

alae,;, 0g™P | = M-1,

al

— For all o.; € Oy

— For all o.; € Oy

— For all o,v € Oy

— For all 0,3 € Oeyr:

Qunassigned Oc;

compensatlon] — 1

Oé[ac, OC,Z} 17
hel
a[as:t(ple)rv o] = 1,
a[ai?lvyprotectionv Oc,l} — 1.
a[ac, Oc,l] 17
a[aset(l)a Oc,l] = L
a[aset(aziv)’ Oxiv] = 1
O‘[aset(—\zfﬁ Owiv] = L
a[aset(x?)’ Ox?] = ’Cx? E
a[aset(—\az?)’ OLE?] = ’Cﬂm? B
= 1.

a[aunassigneda 037?]

15

compensation

— For all 0y € Ouver:

k3

compensationy |
O‘[a’set(a:iv)7 0.] = 1
3

compensation] |
O‘[aset(—\xYﬁoxzf] =1

. compensation — 1
a[aunasmgneda O.v] R
7

helper

— For all Oget(l) € Ouvahr:
*q
helper helper
ala = |
[set(lzy)’ set(lziv)] | Z}Z|7
helper L
a[aset(lwiv)a Set(lz-\?)] = 1,
K
a[a helper] — 1
Set(—\lzy)7 Oset(lzv) - .
1
— For au Oinlvyprotectlon c Oulepr:
envyprotection _envyprotection L
a[a’c,l ' el] = M
— For osatisfied:
a[aunassigned> Osatisfied] = |X3| + |XV| + |C‘ +1,
a[asatisfied’ Osatisfied] = |C|
— For oenyy1:
a[aunassigned, Oenvyl] = 2x O5[aunassigned7 Osatisfied]a
1
a[asatisfied70envy1] = 5
— For oenvy2:
a[aunassigneda 0envy2] = a[aunassigneda Oenvyl] + ‘XEI‘ + ’XV’ + ’C|7

[0 maetigned + Oenwy2] 1= M.

That completes the reduction. It should be obvious that generating this EEF-EXISTENCE-
ADDITIVE-instance from the VA3CNF instance takes polynomial time. We now continue
with the correctness proof.

V33CNF is a II5-complete problem, and we want to prove EEF-EXISTENCE-ADDITIVE
is ¥0-complete. Therefore we need to show that in I’ there is only a Pareto-efficient, envy-free
(EEF) allocation if there exists some assignment to the variables in Xy for which there is no
assignment to the variables in X35 which makes the 3CNF-formula C' true.

Now we will outline the correctness-proof for this reduction. After that we finish the proof
by giving the definition and lemmas that are ommitted in the outline.

We define in definition [25] the specific set of allocations for I’, that correspond to a specific
type of partial truth-assignment to the variables in I. Namely, assignments that satisfy the
following two conditions:

16

1. All universally quantified variables are set to either true or false, and
2. all existential variables are left unassigned.

In lemma we prove that all allocations that correspond to such truth-assignments are
envy-free. We call these allocations Xy-allocations. We will show in lemma that in I’, any
EEF allocation must be an Xy-allocation. Next, we will show in lemmas [28] and [29] that for
an Xy-allocation, a Pareto-improvement is possible only if in I the formula can get satisfied
on the partial truth-assignment that corresponds to this Xy-allocation. Now if [is a YES-
instance of VA3CNF, then clearly the formula is satisfiable on all partial assignments with
the two aforementioned conditions, hence a pareto-improvement is possible on all envy-free
allocations. So then I’ is a NO-instance of EEF-EXISTENCE-ADDITIVE. On the other
hand, if I is a NO-instance of Y3d3CNF, then clearly there must be a partial assignment
satisfying the 2 aforementioned conditions for which the formula is not satisfiable. Hence
there is in this case an envy-free allocation that is pareto-optimal. The remainder of the

proof consists of definition [25] and lemmas and

Definition 25 (Xy-assignments and Xy-allocations (corrected)). For I, we define an Xy-
assignment as a partial assignment to the variables in Xy U X3 where all variables in Xy are
set to either true or false, and all variables in X3 are not assigned to a truth value. Given an
Xy-assignment s, we define the corresponding Xy-allocation in the following way:

1. All agents a., € Acas get allocated the resource o,.

2. For all 27 € X3, all agents Oset(l 5) € Aevaa get allocated the resources {oc; . |l,2 € c}.

i

3. For all J:V € Xy, for all pairs of agents Uget(z¥) € Apvaa, @ Oset(-a¥) € Ayvaa. Allocate o oY to
one of the two agents, it doesn’t matter which one, say Gset() Now, if x; is true in S,

allocate 0:::2);\;) t0 Gget(—) and allocate ohetl?j;v) to a::tl?f; o) Otherwise, if x; is false in
s, allocate these two resources the other way around: allocate ohel’()e\r,) t ::tl?i;) nd

helper :
allocate o set(—Y) to aset(ﬁlzy).

tecti cecti
4. All agents aenvypm €N € Ayjepa get the resource oe"l"ypro ection

5. Gunassigned gets allocated all of the resources Oevr U Ocer U Ouver U {0envy1 }-

6 envyprotection

unassigned gets allocated the resource oenvy2

7. asatisfied gets allocated the resource ogatisfied-

9. The only resources that have not been allocated up to this point are the universal literal

. . . e otectio
resources oq;. If [is not true in s, then o.; can be allocated to either af;Y** " or
K

they are allocated to ahel?g It doesn’t matter which of the two. If [is true in s, then

0., must be allocated to a::tl?l‘;r, and thus may not be allocated to aenlvypmtecnon

Lemma 26. All Xy-allocations are envy-free.

17

Proof. Let a be any Xy-allocation for I’ and let s be the corresponding Xy-assignment for I.
For every agent we will show that he doesn’t envy any other agent. In this proof we say that
an agent wants a resource if the agent has a non-zero utility-coefficient for that resource. For
simplicity we also say that an agent has a resource if he is allocated that resource.

envyprotection ; . .
unassigned doesn’t envy any agent because he has the single resource for which he has

a non-zero utility-coefficient.

® agatisfied doesn’t envy any agent. Its utility in allocation a is |C|; the total utility of the
|C| 4+ 1 resources that he wants but doesn’t have is |C| + 1. For all of these |C] + 1
resources, dsatisfied nas a utility-coefficient of 1. So asatisfied Would only envy an agent if
there is an agent in a that has all of these |C| + 1 resources, and that’s not the case.

® Gynassigned doesn’t envy any other agent because the only items he wants but doesn’t

envyprotection . d the latter is

have are Oenvy2 and Ogtisfied- The former is allocated to Oynassigned

) envyprotection .- .
allocated to asatisfied- Qunassigned doesn’t envy Oynassigned because the utility-coefficient

that aynassigned has for oenvy2 is equal to (and not higher than) the utility that aynassigned
currently has in a. Gunassigned also doesn’t envy dsaisfied because the utility-coefficient
that aunassigned has for osatisfied is lower than the utility that aypassigned currently has in
a.

envyprotection

c,l
. tecti .
cient of M. For aS}YP " there are two more items that he wants. For one of those

items he has a utifity—coefﬁcient of M. For the other item he has a utility-coefficient of

1. These items are not both allocated to the same agent, so aznlvypmtedion

envyprotection

e For all a ol

€ Aulepa: @ has an item for which he has a utility coeffi-

envies no-one.

o All a., € Ac, have no envy: a., has a utility of M. The total utility of all items that a,
wants but doesn’t have is M — 1 + |¢;|. For the resource og?mpensation, ac; has a utility
coefficient of M — 1. For the other resources that a., wants but doesn’t have (at most
3), a, has a utility coefficient of 1. These are literal resources. Literal resources and
ogfmpensation are not all allocated to the same agent in allocation a, so a., doesn’t envy

any agent.

e For all agey(;) € Aevaas Gser(ry has a utility of || in a. The maximal utility they can have
is 2|C}|, 50 aget(;y doesn’t envy anyone because he already has half of his total possible
utility.

helper helper
set(l) € Auvaha; aset(l)
they can have is 2|Cy|, 50 agey(;y doesn’t envy anyone because he already has half of his

total possible utility.

e For all a has a utility of at least |Cj| in a. The maximal utility

o All ager(s) € Auvaa have a utility of 1 in a. The maximal utility they can have is 4.
There are 3 items that age(;) wants but doesn’t have. For all of these 3 items, age(y)
has a utility-coefficient of 1. ag() doesn’t envy anyone because each of these 3 items

is allocated to a different agent: one of these 3 items is allocated to aunassigned; one is
helper helper

allocated t0 aget(—y), and one is allocated to either et (1) set(~1)"

or a
U

Lemma 27. All EEF-allocations must be Xy-allocations.

18

Proof. We show this by reasoning about how the resources must be allocated in order to
achieve envy-freeness and Pareto-optimality. After having done this, it turns out that the set
of allocations that are possibly EEF is exactly the set of all Xy-allocations.

First of all, it doesn’t make sense to allocate a resource to an agent whose utility-coefficient
is zero for that resource. A Pareto-improvement is always possible in such an allocation, by
simply reallocating the resource to an agent that has a positive utility-coefficient for it. This is
why we will only consider allocating resources to agents who have positive utility-coefficients

for the resources. By this argument it immediately follows that all oznlvypmtedion € Oylepr must

envyprotection

be allocated to a,,

envyprotection
Oenvy2 Mmust be allocated to Qynassigned > OF else he would envy agent aynassigned- Also, we

see that aynassigned always envies asatisfied if Oenvy1 isn’t allocated to Gunassigneds because aunassigned
has a utility-coefficient of 2(X35 + Xy) + 2 for oenvy1. This is more than half of the maximal
utility it is still able to get (given that oenyy2 is allocated to ai:\g;g:jt'on)

Next, it follows that osatisieq must be allocated to agatisfied, since if it would be allocated to
Qunassigned then asatisfied always envies Qunassigned because Qunassigned then has the items osatisfied
and oenvy1. If Gsatisfied Would get this bundle of items, then he has a utility that’s more than
half of his total possible utility, so asatisfied WOUld envy aynassigned in that case.

Given our current set of EEF-allocation-requirements up till now, it’s clear that aynassigned
must get allocated all of the resources Oeyr U Ouyer U Ocer. Only if we allocate all of these
resources t0 aynassigned, then the utility of aynassigned is high enough to not envy ai:\;zgirg:gnon

At this point, it is certain that for all o., € O, o., must be allocated to a.,. This must

be the case because: firstly, a., has a utility-coefficient of M for this resource; secondly, a.,
compensation

has a utility of M — 1 for og; , but according to our current set of EEF-allocation-
requirements, oﬁfmpensat'on must already be allocated to aunassigned; and thirdly, a., has a

utility-coefficient of 1 for all other resources that a., wants. That is very low compared to
M, so even if a., would get all of these resources instead of o, a., would still envy the agent
that gets o;.

Because all items 0,3 € Qe must be allocated to Gyunassigned; the agents Ut (z3) must
get allocated all of the resources that Oger(z3) Wants, except for 0,3. These are exactly the

set of resources {o;|x; € l}. Allocating these resources to Oget(2?) makes his utility equal
to a[aset(x?),ox?], and therefore it is ensured that Oet(a? doesn’t envy anyone. Analogous
reasoning holds for the agents Oget(—g)’ They must get allocated all of the resources that
Oset(~a) wants, except for 0,3 Allocating these resources to a) makes his utility equal
to a[aset(ﬁz?), oxia}, and therefore it is ensured that age(—,3) doesn’t envy anyone.

For all pairs of universal variable assignment agents Get(y;) and dset(—s,), We have the
following situation: the total possible utility that both agents can get is 4: they both have
four resources that they want, and they both have a utility of 1 for each resource. Also they
both want exactly the same four resources. However, we already concluded that the resources

;;T;’Snsat'on d ;;TE;?;‘H'O" must be allocated to aunassigned- According to this requirement,
the total possible utility that both agents can still get is 3. Gger(s;) and Gsey(—y,) are the only
agents that can have a positive utility-coefficient for the resource o,v, so we can only allocate
this resource to one of these two agents. If we allocate it to either aéent, SaYy dser(l,,), then the

other agent aget(—y,) Will envy ag(;,) unless he gets allocated one of the other two resources

“la, le;

set(—a?

that are left (a:::tlz’;r) and xgztl(pf;)) We can choose either one to allocate t0 asey(

)- After we

—la,
helper

have done this, our only possibility is to allocate the other resource to Oet(—l.

) (if we allocate

19

it to Uset(l,,) OF Uset(~l,,) then there will be envy among age(;,) and aset(ﬁlmi)).

o,
For the universal literal resources, the following holds. A universal literal resource o |

3

helper
set(l_v)

helper

helper .pr helper
ifo set(l v)’

set(ziv) set(xiv) or else a

must be allocated to a is not assigned to a, will envy either

helper
set(l_v)’

helper

set(c?) we have the possibility

Oget(z¥) OF Gget(—gY): In the case that o is assigned to a

envyprotection _helper
Cvle ’ Set(lzv
A i

to allocate o ,, to one of the agents in {a.,a)}. But if we would allocate

7

envyprotection
Oc,ly tO ac, then a Vyp :
i

c’lz\?/
i

Having this bundle would give M +1 to a

would envy a. because a. has the bundle of items {o¢, 0. }

envyprotection
C’l;v.v

envyprotection

,and a el

has currently only M

utility. So we cannot allocate o ., to a, and the only possibifities left are to assign o ., to

. envyprotection helper
either N or aset(lzv).
The requirements we just described clearly restrict the set of allocations that are possibly
EEF, to the set of Xy-allocations.]

Lemma 28. Given an Xy-assignment s for I, and the Xy-allocation a in I' that corresponds
to s. If the propositional 3CNF-formula C is satisfiable on s, then there is an allocation a
that Pareto-dominates a.

Proof. Let s be the Xy-assignment and a be the corresponding Xy-allocation. Given a, it
is possible to reallocate some resources to yield a Pareto-dominating allocation a’ where the
utility of aynassigned is increased, and the utility of the other agents is at least as high as in a.

First note that the only way to increase the utility of aynassigned is to reallocate the resource
Osatisfied {TOM Usatisfied tO Qunassigned - If this happens, then Gunassigned gets ‘XV| + |XEI| + |C| +1
extra utility, so in that case Gunassigned can lose |Xy| 4 |X3| + |C| utility, and he will still
have higher utility than in a. We can only move oOgtisfied 1O Gunassigned if We reallocate all
of the clause resources to asatisfied, Otherwise the utility of asatisieq Would be too low. If we
reallocate all of these clause resources, then all clause agents would lose M utility. We can
compensate this by reallocating all of the clause compensation resources to the clause agents
(this gives M — 1 utility to each clause agent). There are two problems with this move: first
of all, by doing this, aunassigned l0ses |C| utility; and secondly each clause resource only gets
M — 1 utility, so we need to allocate each clause resource at least 1 more utility in order to
compensate for the loss of M utility of each clause agent. The first problem turns out not
to be a problem at all, because aynassigned has a “surplus” of | Xy| + | X3| + |C| utility, and by
reallocating all clause compensation resources, dynassigned loses only |C| utility, so Gynassigned 15
still allowed to lose | Xy| + | X3| utility. The second problem can be remedied by reallocating
at least 1 literal resource to each clause agent. A clause agent a., has a utility-coefficient of
1 for a literal resource o, ; and a utility-coefficient of 0 for all other literal resources. Literal
resources can be either existential literal resources or universal literal resources:

1. For any universal variable we can execute the following procedure. Step 1: for all

compensation compensation
0y P € Ouver, if :U}Z is assigned to true (false) in s, reallocate 0y P from
[3 v

Gunassigned tO the universal variable assignment agent that has currently got the resource
helper helper
set(xz;) (set(—x;

to “spend” for aynassigned- Step 2: if :Uiv is assigned to true (false) in s, reallocate the

helper helper helper helper

Set(Ii) (set(ﬁmi) Set(Ii) (set(ﬁzi))'

)). Qunassigned loses | Xy| utility by this move, so there is still |X3| utility

item o) from Gget(s,) to @ Note that by executing steps

20

1 and 2, no universal variable assignment agent loses any utility. Step 3: if :ry is
assigned to true (false) in s, then for all of the literal resources o, ,v € {o, v|z; € c}

hel hel
(OC’_‘%V € {ocﬁxy\xy € ¢}), we move Oc 4 (ocﬁxy)from aseet?;g) (as:t?j;y)) to a.. Note

that by this last step, no universal variable assignment helper agent loses any utility.
When we execute the procedure we just described, we can move a certain set of clause
resources to asatisfied Without lowering anyone’s utility. By construction, this set of clause
resources corresponds exactly the set of clauses that are satisfied by the Xy-assignment
s. The clause resources that correspond to clauses that still need to get satisfied, still
need to get reallocated. We will see how to do this in the next step:

2. For any existential variable af;?, an existential literal resource o.; . is allocated in a to an
existential variable assignment agent age(; 5). If we reallocate o.; 5 to a, then we have

to compensate this by moving an o, to Oset(23)- In a, oy, is allocz;ted tO Gunassigned- SO
if we reallocate all of the existential variable resources, unassigned l0ses | X3| utility. So
after reallocating the existential variable resources, aynassigned may not lose any utility
anymore, since we still want aynassigned to have strictly greater utility than in a. We can
reallocate an existential variable resource 0,3 only to Oset(a?) OF Oget(~g3)- Altogether

this means that for any existential variable x?, we can give extra utility to either the
clause agents {ac|x; € ¢} or to the clause agents {a.|—z; € ¢}. Remember that this
extra utility is needed for the clause agents in order to be able to reallocate the clause
resources tO Gsatisfied- 1N this sense, reallocating all of the clause resources to dsatisfied
is equivalent to finding a truth-assignment for the unassigned variables of s such that
C is satisfied. Such an assignment exists by our assumption, hence from a, a Pareto-
improvement to a’ is possible. a’ is clearly not EEF because it is not an Xy-allocation.
(More concretely, in a', asatisfied €nvies Gunassigned DECauUse dynassigned has the bundle of

itemS {aenvyly asatisfied}')

O]

Lemma 29. Given an Xy-assignment s for I, and the Xy-allocation a in I' that corresponds
to s. If the propositional 3CNF-formula C' is unsatisfiable on s, then a is EEF.

Proof. By lemma a is envy-free, so we only need to show that a is Pareto-optimal. We
do this by proving the following two things:

1. There doesn’t exist an allocation a’ that Pareto-dominates a in which all clause-resources
are allocated to asatisfied-

2. Any allocation @’ that Pareto-dominates a must have all clause-resources allocated to

Qsatisfied -

Proof for 1: This is a lot like our story in the previous lemma. We will try to make a
Pareto-dominating allocation a’ where all clause resources are allocated to dsatisfied.- We
do this by trying to transform a into a’, and we will see that this is not possible.

If we take a, and reallocate the clause resources to agatisfied, then all of the clause agents
lose M utility. The only way to compensate is reallocating all of the clause compensation

21

resources to the clause agents and reallocating to every clause agent at least one literal
resource. If we reallocate the clause compensation resources then the utility of aunassigned
is lowered by |C| and needs to be compensated. The only way to do so is to reallocate
Osatisfied O Gunassigned- This is no problem: the utility of asatisfies Was |C| in allocation a,
and now it is still |C].

The reallocation of at least one literal resource to every clause agent is going to be the
problem. There are literal resources allocated to four types of agents:

e Some universal literal resources may in a be allocated to universal literal envy-
protection agents. It is impossible to reallocate such literals because it is impossible
to compensate the utility of these agents by giving them another resource. The
only resources these agents want but don’t have are the clause resources, but the
are already reallocated to asatisfied-

e Some universal literal resources may in a be allocated to universal variable assign-

ment helper agents a::tl'(’;r who already have resource 0:::'(’;;. It is impossible to

reallocate these literal resources: the only resources that a::tlze;r wants but doesn’t
have can be literal resources that are allocated to a universal literal envy-protection
agent. We can not reallocate these literal resources, as we argued in the previous

item of this list.

e Some universal literal resources may in a be allocated to universal variable as-

signment helper agents a::tlze)r ::tl?l'“;r. In this case, it is

possible to reallocate these literal resources to the clause agents. The only way to

who do not have resource o

compensate the loss of utility of agent ag:tl?sr by reallocating the resource 02::?3
from one of the two universal variable assignment agents to ahelper Subsequently

set(l) *
we can compensate the loss of the universal variable assignment agent by reallocat-

ing a universal variable compensation resource from aynassigned t0 him. aynassigned
may lose all of its universal variable compensation resources. Its utility will still
remain higher than it was in a because it has received the resource osatisfied-

Just as in the previous lemma, the procedure we just mentioned will add at least
1 extra utility to a certain set of clause agents. This set of clause agents are
the clause agents that correspond to the clauses that are satisfied by the partial
truth-assignment s.

e The existential literal resources are allocated to the existential variable assignment
agents. It is possible to reallocate some of these existential literal resources to the
clause agents. As we already pointed out in the previous lemma, for any existential
variable o7, we can give extra utility to either the clause agents {a.|z; € ¢} or to
the clause agents {a.|-z; € c}.

So, we can give a literal to the clause agents that correspond to clauses satisfied by
s. And the remaining clause agents we can give a literal if it is possible to reallocate
an existential literal resource to these clause agent. This is obviously equivalent to
finding a truth-assignment to the variables in X3 that satisfies formula C' on s. By our
assumption such a truth-assignment doesn’t exist, so there exists no allocation a’ that
Pareto-dominates a in which all clause-resources are allocated to asstisfied-

22

Proof for 2: For each agent, we show that we can only transform a to a Pareto-
dominating allocation a’ and increase that agent’s utility if we allocate all clause-
resources t0 Asatisfied-

For agent aynassigned: The only way to improve the utility of aynassigned is to reallocate
Osatisfied {TOM Gsatisfied tO Gunassigned- But then sat would lose |C| utility. The only
way to remedy this is to reallocate all of the |C| clause-resources to asatisfied-

For all existential variable assignment assignment agents as; 5): The only way

l.3)
i
to increase the utility of Oset(l_5) 18 to reallocate 043 from aynassigned t0 Oset(l_5)- Now,
Aunassigned 10ses 1 utility, so we need to increase aynassigned’s utility by allocating him

the resource osatisfied- S0 we fall back to the case for aynassigned-

compensation t
y set(zY)
Uset(l) is not possible. In that scenario we would again fall back to the case for

For all universal variable assignment agents as(; ,): Reallocatinga

aunassizgned. Reallocating an item from ager(—;) t0 aget(;) does not help. This ac-
tion removes 1 utility from agey(—;). Hence we would need to be able to increase
the utility of ager(—), but ager V)Z and Gget(—) have exactly the same utility co-

efficients, i.e. they are clones of each other. Sé), needing to improve the utility of

Oset(~1) is the same problem as needing to improve the utility of Oset(l_y)-

We can try one more thing to improve the utility of agq) O Gger(). Given

that z) is true in s (if 2y is false in s, the reasoning is analogous), we can try

to increase the utility of ager() OF Ggey(by reallocating to either agent the

~lv)
k2 1

helper
set(—zY)

helper
resource o v
set(—z))

with this move, this move can only possibly be done if in a, o

from a . Because we remove half of the total possible utility

helper
set(—zY)

the only resource that a

helper
vy Is

set(—x;

helper
set(—x
impossible: it is easily seen that it would require reallocating a clause resource to

a universal literal envy-protection agent, without lowering anyone’s utility below
the utility he has in allocation a. We will show that this is not possible when we

arrive at the case for the universal literal envy-protection agents.
helper

v) has. But even in this case it will turn out that it’s

For all universal variable assignment helper agents a : There are two cases

set(lwiv)
. hel hel hel hel
here: either a <P . has resource o, - Fr | or a_ 't . doesn’t have resource o.<.> ..
set(lv) set(l_v) set(l_v) set(l_v)
. . . . hel

In the former case, it is possible to try to increase the utility of as:t?le;) by reallo-

x

1

helper t helper
set(l_v) set(lv)

and we have to increase his utility. Therefore we fall back to the case for set(l y)-

cating the resource o If we do this, then age(;) gets into trouble

helper
set(l v)

to him a literal resource for which he has a non-zero utility—coeﬂiéient. If there is
such a literal resource, then it is allocated in a to a universal literal envy-protection
agent. This would require reallocating a clause resource to a universal literal envy-
protection agent, without lowering anyone’s utility below the utility he has in

In the second case we can only try to increase the utility of a by allocating

23

allocation a. We will show that this is not possible when we arrive the case for the
universal literal envy-protection agents.

For all clause agents a.;: The utility of a clause agent a., can only be improved by
reallocating 1 or more of the literal-resources to him for which a., has non-zero
utility. Let o, ; be this literal resource. If we reallocate o, ; to a.,, then we would
in turn need to improve the utility of an existential variable assignment agent,
universal variable assignment helper agent or a universal literal envy-protection
agent. For the first two, we refer back to their cases, that we already handled in
this list. For the last one, the universal literal envy-protection agent, we will show
that it’s impossible to increase his utility. We arrive at this case now:

envyprotection

For all universal literal envy-protection agents a_,; : The only way to in-

. 1e envyprotection .
crease the utility of a_; P is to reallocate the clause resource o, from a. to

envyprotection

ol . By this move, a. would lose M utility. To compensate it we need at

least to allocate o‘éompensation from aynassigned t0 ac. This implies that we will need

to increase the utility of aynassigned- From the case we already handled for agent
Aunassigned, We conclude that we would need to assign all of the clause resources to
Osatisfied -

For agent agatisiieq: We can try to reallocate one or more clause-resources to asatisfied-
If we do that, then we need to improve the utility of at least one clause agent.
As shown as a previous case in this list, improving the utility of this clause agent
implies that we need to move all of the clause resources to asatisfied- Another
possibility is to try to reallocate @envy1 tO Gsatisfied- But then we would need to
improve the utility of aunassigned- As shown, this implies that we would need to
move all of the clause resources to dsatisfied-

For agent ai:‘gspirgo::jtion: Obviously we can not improve the utility for this agent, be-

cause in a it already has gotten allocated the single resource that he wants.

References

[1] Sylvain Bouveret, Hélene Fargier, Jérome Lang, and Michel Lemaitre. Allocation of indi-
visible goods: a general model and some complexity results. In F. Dignum, V. Dignum,
S. Koenig, S. Kraus, M. P. Singh, and M. Wooldridge, editors, Proceedings of AAMAS 05,
Utrecht, The Nederlands, July 2005. ACM Press.

[2] Sylvain Bouveret and Jérome Lang. Efficiency and envy-freeness in fair division of in-
divisible goods: Logical representation and complexity. Journal of Artificial Intelligence
Research, 32:525-564, June 2008.

[3] Y. Chevaleyre, U. Endriss, S. Estivie, and N. Maudet. Multiagent resource allocation
with k-additive utility functions. In Proceeding of the DIMACS-LAMSADE Workshop on
Computer Science and Decision Theory (Annales du LAMSADE 3), pages 83-100, 2004.

24

[4] Yann Chevaleyre, Paul E. Dunne, Ulle Endriss, Jérome Lang, Michel Lemaitre, Nicolas
Maudet, Julian Padget, Steve Phelps, Juan A. Rodriguez Aguilar, and Paulo Sousa. Issues
in multiagent resource allocation. Informatica, 30:3-31, 2006. Survey paper.

[5] H. W. Kuhn. The Hungarian method for the assignment problem. Naval Research Logistic
Quarterly, 2:83-97, 1955.

[6] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization : Algo-
rithms and Complexity. Dover Publications, July 1998.

[7] M. Schaefer and C. Umans. Completeness in the polynomial-time hierarchy: a com-
pendium. SIGACT News, September 2002.

25

	Introduction
	Leximin-maximal allocations with max-utility and atomic demands
	Preliminaries
	A polynomial time algorithm for LMMUAB-ALLOCATION-OPT

	Complexity of deciding whether an allocation is pareto optimal for agents with additive utility
	Complexity of finding an efficient and envy-free allocation for agents with additive utility

