
Three new complexity results for resource allocation problems

Bart de Keijzer (B.deKeijzer@student.tudelft.nl)

October 17, 2008

Abstract

We prove the following results for task allocation of indivisible resources:

• The problem of finding a leximin-maximal resource allocation is in P if the agents
have max-utility functions and atomic demands.

• Deciding whether a resource allocation is Pareto-optimal is coNP-complete for agents
with (1-)additive utility functions.

• Deciding whether there exists a Pareto-optimal and envy-free resource allocation is
Σp

2-complete for agents with (1-)additive utility functions.

1 Introduction

In this text we prove complexity bounds for various problems in the field of resource allocation.
These results come forth from an attempt to prove two open problems that were stated in
the work of Bouveret, Lang et al ([1] and [2]). The problems are about resource allocation.
In a resource allocation problem we have a set of agents (or alternatively, players) and a set
of resources (or equivalently, goods, tasks, items, etc.). The goal is to allocate the resources
to the agents such that some requirements are satisfied. These requirements may vary. In
our case we are interested in finding fair allocations. The concept of fairness is not clear, and
there are different criteria for deciding whether or not an allocation is fair. Two of these are
envy-freeness and leximin-maximality. We will define these criteria (formally) later on. In
the problems we consider, the resources are indivisible and a resource can not be shared by
two or more agents.

The two open problems of the aforementioned papers that we consider are:

1. In [1]: The problem of finding a leximin-maximal resource allocation for agents with
max-utility functions and atomic demands is in NP. Could it be that it’s in NPC (i.e.
NP-complete), or is it perhaps in P?

2. In [2]: What is the complexity of deciding whether there exists a Pareto-efficient and
envy-free resource allocation, when the agents have additive utility functions?

Some of the more technical notions we just mentioned will be defined and explained later
in this text. We do, however, assume that the reader is acquainted with computational
complexity theory (especially the classes P, NP, coNP, and the classes of the polynomial
hierarchy), the matching problem for bipartite graphs, logic, and the satisfiability problem.

The first of these two problems is part of a quite an extensive series of problems and
subproblems. The authors show for all of these problems that they are either in P or in NPC.

1

ar
X

iv
:0

81
0.

05
32

v2
 [

cs
.M

A
]

 1
7

O
ct

 2
00

8

The only problem for which it remained an open question whether it is in P or in NPC (or
possibly in between) is this one, where the agents have max-utility and a leximin-optimal
allocation must be found. In section 2 we fill in the last open question of this series: we give
a polynomial time algorithm for finding such an allocation, hence we prove that this problem
is in P1.

The second problem is also part of a collection of problems that the authors prove complete
for various complexity classes. This particular problem is again the last open problem in this
series. We prove in section 4 that this problem is Σp

2-complete (a class in the second level of
the polynomial hierarchy) by a reduction from the complement of the language ∀∃3CNF (that
is a restriction of the more well-known problem known as 2QSAT∀ or 2TQBF∀): a complete
problem for Πp

2, which is naturally the complement of Σp
2.

In the process of trying to prove the Σp
2-completeness of the second problem, we stum-

bled on another interesting result, namely that the problem of deciding whether an alloca-
tion of resources to agents is Pareto-efficient (also called: Pareto-optimal, efficient) is coNP-
complete for agents with additive utility functions. We will give this proof in section 3.
coNP-completeness of this problem has already been proved in the case of agents with ≥ 2-
additive utility functions (implied from [3]), but not yet in the case of (1-)additive utility
functions.

2 Leximin-maximal allocations with max-utility and atomic
demands

In this section, first, we make some definitions. After that we define the problem. Finally we
give a polynomial time algorithm to solve the problem.

2.1 Preliminaries

We first define formally the problem to solve. In a resource allocation problem, a set of
resources must be divided among a set of agents. Such a division of resources to agents we
call an allocation.

The allocation must satisfy a certain set of constraints. Each agent has preferences on
bundles of resources it may receive. The way these preferences are represented varies from
setting to setting. In our case we use a cardinal preference structure: We represent the extent
to which an agent values the bundle of resources he gets as real numbers. See for example [4]
for examples of preference structures.

Formally, we use the following definition for resource allocation settings:

Definition 1 ((Indivisible) resource allocation setting). An indivisible resource allocation
problem instance is a 5-tuple 〈A,O, U, C, uc〉, where A = {a1, . . . , an} is a set agents, O =
{o1, . . . , om} is a finite set of resources. U = {u1, . . . , un} is a set of utility functions, ui is the
utility function of agent ai. For all u ∈ U , u : 2O → R. C is a finite set of constraints, and uc

is a collective utility function to be defined later.

Definition 2 (Allocation of indivisible resources). Given a resource allocation problem setting
〈A,O, U, C, uc〉, an allocation is a mapping a : A→ 2O.

1Of course we’re talking about complexity classes for decision problems here. In [1], only the decision
variant of this problem is considered. An algorithm from the decision variant of this problem is easily obtained
if we have an algorithm for the optimization variant.

2

Definition 3 (Admissability of an allocation). Given a resource allocation setting 〈A,O, U, C, uc〉,
an allocation a is admissable if it satisfies all constraints in C.

For the specific case of the resource allocation problem that we are interested in, there is
only one constraint in C, namely the preemption constraint. Also, we restrict ourselves to a
special case of max-utility functions. The definitions of these concepts are as follows.

Definition 4 (Preemption constraint). Given a resource allocation setting 〈A,O, U, C, uc〉
and an allocation a, then a satisfies the preemption constraint cpreempt iff ∀i ∈ A : ∀j ∈ A :
(j 6= i)→ (a(i) ∩ a(j) = ∅). We write a � cpreempt.

In words, the preemption constraint requires that an item is allocated to no more than
one agent.

Definition 5 (max-utility function). In a resource allocation setting 〈A,O, U, C, uc〉, a utility
function u ∈ U is a max-utility function if u(O′ ∈ 2O) = max{du(o)|o ⊆ O′}, where du :
2O → R.

In words, a max-utility function has an associated demand function d. The max-utility of
a set of resources O′ is the subset of O′ for which the demand is the highest. We are interested
in the following special case of max-utility functions

Definition 6 (max-utility function with atomic demands). u is a max-utility function with
atomic demands if u is a max-utility function as defined in definition 5, and du has an
associated atomic demand set Du = {ri, . . . , rm} ⊂ R such that

du(O′ ∈ 2O) =

{
ri if O′ = {oi} for 1 ≤ i ≤ m
0 otherwise

.

This means: agents only express demands for single resources. Their utility for a set of
resources is the highest demand they have for each of the individual resources of that set.
Note that a max-utility function is completely represented by its associated atomic demand
set.

Now we are ready to discuss the collective utility function mentioned in definition 1. The
purpose of the collective utility function uc is to express the quality of an allocation. For this
we need to be able to compare the answers that uc gives for any two different allocations.
This implies:

• uc : (A→ 2O)→ X,

• we need to specify X,

• we need to define a transitive comparison relation ≺X over X.

In a lot of cases we can say for example X = R or X = N. The comparison relation is then
simply ≤. This is the case for classical utilitarian collective utility functions or egalitarian
collective utility functions [4]. For us, the relation is a bit more complex. We are concerned
with leximin-egalitarian collective utility functions.

3

Definition 7 (Leximin-egalitarian collective utility). Given a resource allocation setting
〈A,O, U, C, uc〉. uc : (A → 2O) → X is a leximin-egalitarian collective utility function iff
X = Rn and for all allocations a: uc(al) = ~x, where

~x =

u1(al(1))
...

un(al(n))

 .
Definition 8 (Leximin-egalitarian comparison relation). The leximin-egalitarian comparison
relation ≺leximin is defined as follows: Let ~u ∈ Rn and ~v ∈ Rn and let ~u↑ and ~v↑ be the sorted
versions of ~u and ~v respectively. Now, it holds that

~v ≺leximin ~u⇔ ∃i : ∀j < i : ~v↑j = ~
u↑j ∧

~
v↑i <

~
u↑i .

Definition 9 (Leximin-maximality). Given a resource allocation setting 〈A,O, U, C, uc〉, with
uc being a leximin-egalitarian collective utility function. An admissable allocation a is leximin-
maximal if there exists no admissable allocation a′ such that uc(a) ≺leximin uc(a′).

A leximin-maximal allocation has a desirable ‘fairness’-property to it: The most important
priority in a leximin-maximal allocation, is that the lowest utility among all the agents is as
high as possible. As a second most important priority, the second-lowest utility among all
the agents is made as high as possible, etcetera.

Finally we are ready to state the problem that we will prove to be in P.

Definition 10 (LMMUAB-ALLOCATION (i.e. Leximin-maximal max-utility atomic bids
resource allocation)). A problem instance of LMMUAB-ALLOCATION is a resource alloca-
tion problem setting 〈A,O, U, C, uc〉 and a vector K, where

• uc is a leximin-egalitarian collective utility function,

• C = {cpreempt},

• ∀u ∈ U : u is a max-utility function with atomic demands.

• K ∈ Rn

It is sufficient to represent a LMMUAB-ALLOCATION-instance as the triple 〈A,O, D〉,
where D = {D1, . . . , Dn} is a set of atomic demand sets, and for 1 ≤ i ≤ n, Di is the atomic
demand set associated with ai and ui.

The task is to determine if there exists an admissable allocation a such that

K ≺leximin uc(a).

We prove LMMUAB-ALLOCATION in P by giving a polynomial time algorithm for its
optimization variant.

Definition 11 (LMMUAB-ALLOCATION-OPT (i.e. Leximin-maximal max-utility atomic
bids resource allocation, optimization variant)). A problem instance of LMMUAB-ALLOCATION-
OPT is the same as a problem instance of LMMUAB-ALLOCATION, but without the vector
K. The task is to find a leximin-maximal, admissable allocation.

4

2.2 A polynomial time algorithm for LMMUAB-ALLOCATION-OPT

Consider the following algorithm for LMMUAB-ALLOCATION-OPT:

Algorithm A:
Input: I, an instance of LMMUAB-ALLOCATION-OPT.

That is, I = 〈A = {a1, . . . , an},O = {o1, . . . , om}, D = {D1, . . . , Dn}〉,
and for 1 ≤ i ≤ n,Di = {ri,1, . . . , ri,m}.

Output: a, a leximin-maximal allocation for I.
Begin

1. Create a complete weighted bipartite graph G = (V = (L ∪R), E),
where L and R are the left and right parts of the graph respectively.
We set L := O, R := A.

2. Generate weights `i,j for all {ai, oj} ∈ E such that
`i,j ≥

∑
{(i′,j′)|ri′,j′>ri,j} `i′,j′ .

3. Find with the Hungarian algorithm [5] a minimum weighted bipartite
matching M on G, using the weights computed in step 2.

4. For all i, j ∈M , set a(ai) := {oj}.
End

First please note: a minimum weighted bipartite matching is a maximum matching in a
weighted bipartite graph such that the cumulative weight of the matching (i.e. the sum of the
weights of the edges in the matching) is minimal. See for example [6].

We will now prove that this algorithm is correct and runs in polynomial time. From these
two facts it follows that the decision variant of this problem also runs in polynomial time and
hence is in P

Theorem 12. Algorithm A is a correct algorithm for LMMUAB-ALLOCATION-OPT, i.e.
the allocation that algorithm A outputs on an LMMUAB-ALLOCATION-OPT-instance as
input, is leximin-maximal.

Proof. First note that there exists a leximin-maximal allocation in which every agent gets
at most one resource. This is due to the combination of max-utility functions with atomic
demands: of a bundle allocated to an agent, only a single resource in that bundle decides the
agent’s utility of that bundle, so we could just as well remove all the other items from the
bundle.

Step 4 allocates an item to an agent if the corresponding edge is in M . Because M
is a minimum weighted matching, an agent is allocated at most 1 item. What remains is
proving that if our algorithm has found a minimum weighted matching M , then the algorithm
constructs a leximin-maximal a. Suppose that is not the case: call the leximin-maximal
allocation aOPT, and assume our algorithm returns an a such that uc(a) ≺leximin uc(aOPT).
By the definition of the leximin order ≺leximin this means that

∃i : ∀j < i : uc(a)↑j = uc(aOPT)↑j ∧ uc(a)↑i < uc(aOPT)↑i .

We will now prove that there exists not such an i, resulting in a contradiction. We prove
by induction that for all 1 ≤ i ≤ n : uc(a)↑i = uc(aOPT)↑i . For the remainder of the proof, let
MOPT be the matching that corresponds to aOPT, in the same way as M corresponds to a.

5

Base case uc(a)↑1 = uc(aOPT)↑1. First of all, by construction of the weights in step 3, for all
1 ≤ i ≤ n, 1 ≤ i′ ≤ n, 1 ≤ j ≤ m, 1 ≤ j′ ≤ m : ri,j < ri′,j′ ⇔ `i,j > `i′,j′ . So the edge with
highest weight in M corresponds to the agent with the lowest utility of the allocation, hence
this utility corresponds to uc(a)↑1. Secondly, let e and eOPT be the edges with the highest
weight that are in M and MOPT respectively. Now, consider the set of edges E> with weights
that are strictly greater than the weight of eOPT. By construction of the weights, it follows
that any matching in which an e′ ∈ E> is included, always has a greater cumulative weight
than a matching in which eOPT is included as the edge with the highest weight. Step 4 of the
algorithm returns the matching with minimum cumulative weight, so the weight of e must be
the weight of eOPT.

Induction hypothesis ∀j < i : uc(a)↑j = uc(aOPT)↑j .

Induction step uc(a)↑i = uc(aOPT)↑i . This follows more or less trivially from the same
arguments as given for the base case: let ei and eiOPT be the edges with the i’th highest
weight that are in M and MOPT respectively. Now, consider the set of i’th highest edges Ei

>

with weights that are strictly greater than the weight of eiOPT and strictly less than the weight
of edge ei−j

OPT, 1 ≤ j ≤ n− 1. By construction of the weights, it follows that any matching in
which an e′ ∈ Ei

> is included as an i’th highest edge, always has a greater cumulative weight
than a matching in which eiOPT is included as an i’th highest edge. Step 3 of the algorithm
returns the matching with minimum cumulative weight, so the weight of ei must be the weight
of eiOPT.

Theorem 13. Algorithm A runs in polynomial time.

Proof. The complexities of the individual steps of the algorithm are2:

• In step 1, m+ n nodes and mn edges are constructed. This takes O(mn) time.

• In step 2 mn weights are computed. This step is not described in a very constructive
way, but it can be easily seen that it can be done by first sorting the union of all the
demand vectors, and subsequently constructing the weights from the highest to the
lowest element in the sorted array. In this step, the sorting is the most intensive part
and takes O(mn logmn) time.

• In step 3 the Hungarian algorithm for minimum weighted bipartite matchings is ran.
This algorithm needs a helper shortest-path algorithm. If we use Dijkstra’s algorithm as
a helper algorithm for the Hungarian algorithm, then this step can be done in O((m+
n) log(m+ n) + (m+ n)(m2n2)) time [6].

• Step 4 is clearly done in O(m+ n) time.

Adding up the complexities of these steps, we conclude that the algorithm can run in
O((m+ n) log(m+ n) + (m+ n)(m2n2)) time.

Corollary 14 (from theorems 12 and 13). LMMUAB-ALLOCATION is in P.
2We assume a RAM-model where the elementary arithmetic operations take unit time.

6

3 Complexity of deciding whether an allocation is pareto op-
timal for agents with additive utility

In this section we prove that deciding whether an allocation of resources among a set of
agents is coNP-complete if the agents have additive utility functions. We will make use of the
definitions given in section 2.1. As said in the introduction of this paper, coNP-completeness
has already been proved for the case where agents have k-additive utility functions and k ≥ 2.

Definition 15 (k-additive utility). In a resource allocation setting 〈A,O, U, C, uc〉, a utility
function ui of an agent ai is k-additive if for each set T ⊆ O with |T | = k there exists a
coefficient αT and for all R ⊆ O it holds that

ui(R) =
∑
T⊆R

αT .

k-additive utility functions are a generalisation of additive utility functions.

Definition 16 (additive utility). An additive utility function is a k-additive utility function
with k = 1, i.e. a 1-additive utility function. An additive utility function can be represented
as a set of coefficients: one coefficient for each item in O.

Next, we define the notion of Pareto-efficiency.

Definition 17 (Pareto-efficiency). In a resource allocation setting 〈A,O, U, C, uc〉, an admiss-
able allocation a is Pareto-efficient (also called: Pareto-optimal, or simply efficient) if there
exists not a different admissable allocation a′ where the utility of at least one agent is higher
than in allocation a, and the utilities of all other agents are not lower than in allocation a.
More formal: allocation a is Pareto-optimal if there exists no allocation a′ such that

∃ai ∈ A : ui(a′(ai)) > ui(a(ai)) ∧ (∀aj ∈ A : uj(a′(aj)) ≥ uj(a(aj))).

If such an allocation a′ does exist, then a is not Pareto-optimal and we say that a′ Pareto-
dominates a. Also we say that a can be Pareto-improved to a′ if a′ is an allocation that
Pareto-dominates a. The process of reallocating items to get from a to a′ is called a Pareto-
improvement. If for a there is no Pareto-improvent possible, then clearly a is Pareto-optimal.

Now we state the problem and prove it coNP-complete.

Definition 18 (PO-ALLOCATION-ADDITIVE (i.e. Pareto-Optimal Allocation with Addi-
tive utility functions)). A problem instance of PO-ALLOCATION-ADDITIVE is a resource
allocation problem setting 〈A,O, U, C, uc〉 and an associated admissable allocation a : A→ 2O,
where

• C = {cpreempt},

• ∀u ∈ U : u is an additive utility function.

The problem is to decide whether a is Pareto-optimal. The collective utility function uc

can be disregarded here, so the problem is representable as the 4-tuple 〈A,O, V, a〉. In this
4-tuple, V = {v1, . . . , vn} represents the utility functions of U . For all 1 ≤ i ≤ n, vi is the
representation of ui as described in definition 16.

7

Theorem 19. PO-ALLOCATION-ADDITIVE is coNP-complete.

Proof. Showing membership of coNP is easy: If the allocation a of a PO-ALLOCATION-
ADDITIVE-instance is not Pareto-optimal, then a certificate would be an allocation that
Pareto-dominates a.

Proving coNP-hardness for this problem is very difficult. We do it by a Karp reduction
from 3-UNSAT. 3-UNSAT is the problem of deciding whether a propositional formula in
3CNF is unsatisfiable. Because satisfiable instances of such a formula are easy to verify, the
complement of 3-UNSAT is in NP. Hence 3-UNSAT is in coNP.

The reduction is as follows. We are given an instance of 3-UNSAT I with variables
{x1, . . . , xw} and clauses {c1, . . . , cw′}. A clause is given as a set of at most 3 literals. We
transform this instance to a PO-ALLOCATION-ADDITIVE instance I ′ in the following way.
As in the definition, I ′ is represented as the 4-tuple 〈A,O, V, a〉.

• In I ′, |A| = 2w + w′ + 2: For each variable xi in I, two agents are introduced: aset(xi)

and aset(¬xi). aset(xi) represents the set of clauses in which the literal xi occurs. aset(¬xi)

represents the set of clauses in which the literal ¬xi occurs. For each clause ci in I, one
agent aci is introduced in I ′. Lastly, 2 additional agents are introduced: aunassigned and
asatisfied.

• In I ′, |O| = w +w′ + L+ 1, where L is the total number of literals in the formula. For
each clause ci we introduce for each literal l in that clause the resource oci,l. For each
variable xi we introduce the resource oxi . For each clause ci we introduce the resource
oci . Lastly, the resource osatisfied is added.

• The additive utility functions V of the agents are specified as follows. Remember that
we use the following names:

V = {vset(x1), . . . , vset(xw)}
∪ {vset(¬x1), . . . , vset(¬xw)}
∪ {vc1 , . . . , vc′w}
∪ {vunassigned, vsatisfied}.

All v ∈ V are vectors of coefficients. We name these coefficients as follows. Let ai ∈ A,
and let oj ∈ O. Thus, i and j stand not for numbers in this case, but for subscripts.
Then the coefficient for resource j in the additive utility function of agent i goes by the
name of αi,j (and hence αi,j ∈ vi).

The coefficients for all resources for all agents are set to zero, with the following excep-
tions:

– All coefficients in {αunassigned,x1 , . . . , αunassigned,xw} are set to 1.
– All coefficients in {αsatisfied,c1 , . . . , αsatisfied,cw′} are set to 1.
– All coefficients in {αc1,c1 , αc2,c2 , . . . , αcw′ ,cw′} are set to 1.
– For all coefficients αset(l),xi

in

{αset(x1),x1
, αset(x2),x2

, . . . , αset(xw),xw
}

∪ {αset(¬x1),x1
, αset(¬x2),x2

, . . . , αset(¬xw),xw
},

αset(l),xi
is set to the number of times that l occurs in the formula of I.

8

– All coefficients in
{αset(l),(ci,l)|1 ≤ i ≤ w

′ ∧ l ∈ ci}

are set to 1.

– All coefficients in
{αci,(ci,l)|1 ≤ i ≤ w

′ ∧ l ∈ ci}

are set to 1.

– αsatisfied,satisfied is set to w′ and αsatisfied,unassigned is set to w + 1.

• Lastly, we must specify the allocation a.

– All resources {ox1 , . . . , oxw} are allocated to aunassigned.

– For all resources oci , 1 ≤ i ≤ w′ we allocate oci to aci .

– All resources oci,l, 1 ≤ i ≤ w′, l ∈ ci, are allocated to aset(l).

– The resource osatisfied is allocated to agent asatisfied.

That completes the reduction. It can clearly be done in polynomial time. Before contin-
uing with the correctness proof of this reduction, an example would be appropriate, due to
the complexity of the reduction.

Consider the 3-UNSAT instance given by the formula

(x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ ¬x3).

We represent this instance as the tuple

〈 {x1, x2, x3},
{c1 = {x1, x2,¬x3}, c2 = {¬x1,¬x2,¬x3}} 〉

Now if we run the reduction process on this instance, we get a PO-ALLOCATION-
ADDITIVE instance that is displayed in the table below. The columns of the table represent
the agents and the rows of the table represent the items. The entries in the table are the
coefficients. An entry is displayed in italic if the item of the corresponding row is allocated to
the agent of the corresponding column. Empty cells in the table should be regarded as zero
entries.

ac1 ac2 aset(x1) aset(¬x1) aset(x2) aset(¬x2) aset(x3) aset(¬x3) aunassigned asatisfied

ox1 1 1 1
ox2 1 1 1
ox3 2 1
oc1 1 1
oc2 1 1

oc1,x1 1 1
oc1,x2 1 1
oc1,¬x3 1 1
oc2,¬x1 1 1
oc2,¬x2 1 1
oc2,¬x3 1 1
osatisfied 4 2

9

Now we will continue with the correctness proof. We must show that there only exists
a Pareto-dominating allocation if the formula of the 3-UNSAT instance is satisfiable. This
follows from the following two lemmas and concludes the proof.

Lemma 20. If the 3-UNSAT instance I is a NO-instance, i.e. the formula is satisfiable, then
the allocation a in I ′ is not Pareto-optimal.

Proof. First have to explain the function of all agents and resources with respect to the 3-
UNSAT instance I. The allocations of resources {ox1 , . . . , oxw} represent to which truth-value
the variables are set. If oxi is allocated to aunassigned, this means that xi is set to no truth-
value. If oxi is allocated to aset(xi), this means that xi is set to true, and the clauses in which
the literal xi occurs are made true. If oxi is allocated to aset(¬xi), this means that xi is set to
false, and clauses in which the literal ¬xi occurs are made true. The agents {ac1 , . . . , acw′}
represent the clauses of the formula. If resource oci ∈ {oc1 , . . . , ocw′} is allocated to aci , it
means that clause ci is not satisfied. If resource oci ∈ {oc1 , . . . , ocw′} is allocated to asatisfied,
it means that clause ci is satisfied. In allocation a, all clauses are unsatisfied and all variables
are not assigned a truth-value. If in allocation a, we reallocate some oxi ∈ {x1, . . . , xw} to
one of the agents aset(lxi)

∈ {aset(xi), aset(¬xi)}, then by construction we can move all of the
resources ocj ,lxi

, lxi ∈ cj to acj without lowering the utility of aset(lxi)
. Now, because cj gets 1

extra utility, we are able to reallocate ocj to asatisfied.
The key thing to see here is that the procedure we just described is, from the viewpoint

of I, equivalent to assigning xi some truth value, and making all clauses true in which the
literal occurs that corresponds to that truth-value. In I ′ this is the same as reallocating
some specific resources to some specific agents, and this reallocation can be done without
lowering anyone’s utility except for the utility of aunassigned. The utility of aunassigned can only
be compensated if aunassigned gets allocated the resource osatisfied. If that happens, then by
construction the utility of aunassigned gets suddenly strictly higher than in allocation a. But
we can only reallocate osatisfied to aunassigned if all resources {oc1 , . . . , ocw′} are allocated to
asatisfied, otherwise the utility of asatisfied would be too low. Reallocating all of these resources
is clearly equivalent with finding a satisfying truth-assignment for the formula.

Now we wil describe the reallocation process in a more systematic way: When the propo-
sitional CNF formula denoted by instance I is satisfiable, there is an allocation a′ that Pareto-
dominates a. It can be obtained in the following way.

1. Take allocation a and reallocate the resources {ox1 , . . . , oxw} to the allocation that
corresponds to the assignment that satisfies the formula of I. By doing this, the utility
of aunassigned becomes lower than the utility it has in allocation a. This problem will be
dealt with in step 4.

2. By construction, all of the other resources of the agents that obtained a resource in step
1 can now all be reallocated so that the utility of those agents is not decreased below
the utility they have in allocation a. (The resource they received in step 1 gets them
high enough utility to maintain at least the same utility as in a, even if they lose all of
their other resources.) So we reallocate all those resources ‘appropriately’ to the agents
{ac1 , . . . , acw′}. By appropriately we mean that a reallocated resource is reallocated to
the single other agent that has non-zero utility for it. By construction, there is precisely
one such agent for each item that is reallocated in this step.

10

3. Because, in step 2, the utility of agents {ac1 , . . . , acw′} is increased, we can reallocate
the items {oc1 , . . . , ocw′} to agent asatisfied. Without giving the agents {ac1 , . . . , acw′} a
lower utility than in allocation a. Now it is the case that each agent except aunassigned

has a utility that is at least as high as allocation a. aunassigned has no items allocated, so
his utility is 0. The utility of asatisfied is 2w′ in our current allocation, while in allocation
a it was w′.

4. So, as a last step, we can reallocate osatisfied to aunassigned. The utility of aunassigned is
then w+ 1 in our new allocation a′, while it was only w in allocation a. By performing
this last step, the utility of asatisfied decreases to w, but this is not a problem since the
utility of asatisfied was also w in allocation a.

Lemma 21. If the 3-UNSAT instance I is a YES-instance, i.e. the formula is unsatisfiable,
then the allocation a in I ′ is Pareto-optimal.

Proof. In an allocation a′ that Pareto-dominates allocation a, at least one agent has strictly
greater utility in a′ than he has in a, and all the other agents have a utility that is at least as
great. We divide the proof up in cases, and show that in a′ no agent can be the agent that
has strictly greater utility than he has in a, while all other agents don’t have a lower utility
than they have in a.

Agent aunassigned: In a′, the utility of agent aunassigned can only be greater than in a if he gets
the resource osatisfied. Because the other agents may not have lower utility than they
have in a, agent asatisfied needs then be allocated the set of items {oc1 , . . . , ocw′}. By the
same argument, every agent aci ∈ {ac1 , . . . , acw′} needs to get allocated at least one of
the resources {oci,l|l ∈ ci}. If we allocate such a resource oci,l to aci , then the utility of
aset(l) gets too low, and we must compensate by allocating the resource oxj , xj ∈ l to
aset(l). As explained in the previous lemma, regarding I this is equivalent to setting the
variable xi to a truth value such that clause cj gets satisfied. We must do this for all
clauses, so then there must be an assignment where all of the clauses are satisfied, i.e.
I must be a satisfiable instance. Which it isn’t.

All other cases: It is also impossible to create an allocation a′ that Pareto-dominates a,
where some agent ai 6= aunassigned has strictly greater utility than in a, while all the
other agents have a utility that is at least as high as the utility that they had in a:
no matter what agent we choose for the role of ai, it is always neccessary to allocate
at least one of the resources in {ox1 , . . . , oxw} to an agent other than aunassigned. This
means that we are required to allocate osatisfied to aunassigned, and we fall back to the case
we just proved for agent aunassigned.

It is easy to check that this is true for any ai that we pick.

11

4 Complexity of finding an efficient and envy-free allocation
for agents with additive utility

The proof given in the previous section was somewhat of an intermediate result that we came
across in the process of finding a proof for our next theorem. We first make an additional
definition.

Definition 22 (Envy-freeness). Given a resource allocation setting 〈A = {a1, . . . , an},O, U =
{u1, . . . , un}, C, uc〉 and an admissable allocation a, a is called envy-free iff

∀ai ∈ A : ∀aj ∈ A : ui(a(ai)) ≥ ui(a(aj)).

We can define an envy-freeness constraint cenvyfree so that we can add it to C. a then is
not admissable if a is not envy-free.

If there exists an i and there exists a j for which ui(a(aj)) > ui(a(ai)) and i 6= j, then a
is not envy-free and we say that ai envies aj in allocation a.

Now we state the problem and give a proof that this problem is Σp
2-complete.

Definition 23 (EEF-EXISTENCE-ADDITIVE). In the problem EEF-EXISTENCE-ADDITIVE
we must decide whether there exists a Pareto-efficient and envy-free admissible allocation in
the resource allocation setting 〈A,O, U, C, uc〉, where

• C = {cpreempt, cenvyfree},

• ∀u ∈ U : u is an additive utility function.

The collective utility function uc can be disregarded here, so the problem is representable
as the 3-tuple 〈A,O, V 〉. In this 3-tuple, V = {v1, . . . , vn} represents the utility functions of
U . For all 1 ≤ i ≤ n, vi is the representation of ui as described in definition 16.

Theorem 24. EEF-EXISTENCE-ADDITIVE is Σp
2-complete.

Proof. Membership of Σp
2 is easily shown. The problem can be decided by an alternating

turing machine that makes 1 alternation and starts in an existential state: In the existential
state, an allocation a is guessed, and it is checked if this allocation is envy-free. The turing
machine then enters the universal state. In this universal state it is checked for all possible
allocations if an allocation Pareto-dominates a. If this is not the case, then a is Pareto-efficient
and envy-free.

We prove hardness by a Karp reduction from the complement of the problem ∀∃3CNF.
∀∃3CNF is Πp

2-complete, that is, complete for the complement of Σp
2. It is perhaps the most

well known complete problem in the second level of the polynomial hierarchy. We selected
this problem from [7], a list of complete problems in the polynomial hierarchy.

An instance of ∀∃3CNF consists of two disjoint sets of propositional variables X∀ =
{x∀1 , . . . , x∀|X∀|} and X∃ = {x∃1 , . . . , x∃|X∃|} and a propositional formula in 3CNF over the
variables in X∀ ∪ X∃. This propositional formula is represented as the set of clauses C =
{c1, . . . , c|C|}. A clause ci ∈ C is a set of at most 3 literals. The problem for a ∀∃3CNF-
instance is to decide whether for every possible assignment of the variables in X∀, there exists
some assignment of the variables of X∃ that makes the formula true3.

3To remove ambiguity: please note that the assignment of the variables in X∃ needs not be the same for
every assignment of the variables in X∀.

12

For this proof we must introduce some additional terminology: given a set of propositional
variables, in a partial truth-assignment, or simply partial assignment to these variables, only
a part of the variables are assigned a truth value, and the other part is left unassigned. Also,
given a partial assignment s on a set of propositional variables and a propositional formula on
these propositional variables, we say that the formula is satisfiable on s iff we can transform
s into a full assignment s′ by assigning in s a truth-value to the unassigned variables, such
that s′ satisfies the formula.

We make a minor assumption on the ∀∃3CNF instances. For every variable x ∈ X∀ ∪
X∃, both the literals xi and ¬xi must appear at least once in the formula C. Fortunately,
this assumption can be made without loss of generality: if we have a ∀∃3CNF instance
where the assumption doesn’t hold for some variable x ∈ X∀ ∪ X∃, then we can simply
add the tautological clause {x,¬x} to C. We make this assumption in order to reduce the
complicatedness of our reduction.

In this proof we use the following notational conventions. We will use the symbol l to
refer to a literal and we will use for any variable xi ∈ X∃ ∪ X∀ the symbol lxi to refer to a
literal in which xi occurs. Also, if we use the notation ¬lxi , then by that we mean the positive
literal xi if lxi is a negative literal, and we mean the negative literal ¬xi if lxi is a positive
literal. Lastly, We define the set Clxi

for each literal of each variable xi ∈ X∃ ∪X∀ as the set
of clauses in which lxi occurs.

The reduction in this proof resembles the reduction in the proof of theorem 19: we reuse
a lot of the same ideas and tricks. The reduction for this proof however, is more complex. We
have to deal this time with universally quantified variables and envy-freeness. Moreover, we
cannot “set” an allocation in advance, as we could in the reduction of the proof of theorem
19. We will now describe the entire reduction. We advise the reader to work out an example
for a small ∀∃3CNF-instance in the table format as we did in the proof of theorem 19.
This is because we won’t give an example in this proof: the table format size of the EEF-
EXISTENCE-ADDITIVE instance is too large to put on this sheet, even for small instances.

Given a ∀∃3CNF-instance

I = 〈X∀ = {x∀1 , . . . , x∀|X∀|}, X∃ = {x∃1 , . . . , x∃|X∃|}, C = {c1, . . . , c|C|}〉,

we reduce it to a EEF-EXISTENCE-ADDITIVE-instance I ′ = 〈A,O, V 〉 in the following way.

• |A| = 4|X∀|+ 2|X∃|+ |C|+L∀+ 3, where L∀ is the total number of literal occurences in
C of variables in X∀. For each variable x∀i ∈ X∀, four agents aset(x∀i), aset(¬x∀i), a

helper

set(x∀i)

and ahelper

set(¬x∀i)
are introduced. For each variable x∃i ∈ X∃, two agents aset(x∃i) and aset(¬x∃i)

are introduced. For each clause ci ∈ C, the agent aci is introduced. For all ci ∈ C, for
each literal l ∈ ci wherein a variable of X∀ occurs, we introduce the agent aenvyprotection

ci,l
.

The remaining three agents are aunassigned, aenvyprotection
unassigned , and asatisfied.

For ease of explaining and understanding the rest of the proof, we introduce the following
symbols and terminology:

– We refer to the set {ac1 , . . . , ac|C|} as Aca. Alternatively, we may refer to those
agents as clause agents.

– We refer to the set {aset(l)|x∃i ∈ l} as Aevaa Alternatively, we may refer to those
agents as existential variable assignment agents.

13

– We refer to the set {aset(l)|x∀i ∈ l} as Auvaa Alternatively, we may refer to those
agents as universal variable assignment agents.

– We refer to the set {ahelper
set(l) |x

∀
i ∈ l} as Auvaha Alternatively, we may refer to those

agents as universal variable assignment helper agents.

– We refer to the set {aenvyprotection
c,l |c ∈ C ∧ l ∈ c} as Aulepa. Alternatively, we may

refer to those resources as universal literal envy-protection agents.

Using these definitions, we have

A = Aca ∪Aevaa ∪Auvaa ∪Auvaha ∪Aulepa ∪ {aunassigned, a
envyprotection
unassigned , asatisfied}.

• |O| = 4|X∀|+|X∃|+2|C|+L+L∀+3, where L is the total number of literal occurences in
the 3CNF formula C, and L∀ is the total number of literal occurences in C of variables
in X∀. For all variables x∀i ∈ X∀, we introduce the resources ox∀i

, ocompensation

x∀i
, ohelper

set(x∀i)

and ohelper

set(¬x∀i)
. For all variables x∃i ∈ X∃, we introduce the resource ox∃i

. For each clause

ci ∈ C, we introduce the resources oci and ocompensation
ci . For all ci ∈ C, for each literal

l ∈ ci, we introduce the resource oci,l. For all ci ∈ C, for each literal l ∈ ci wherein
a variable of X∀ occurs, we introduce the resource oenvyprotection

ci,l
. The remaining three

resources are osatisfied, oenvy1 and oenvy2.

For ease of explaining and understanding the rest of the proof, we introduce the following
symbols and terminology:

– We refer to the set {oc1 , . . . , oc|C|} as Ocr. Alternatively, we may refer to those
resources as clause resources.

– We refer to the set {ocompensation
c1 , . . . , ocompensation

c|C| } as Occr. Alternatively, we may
refer to those resources as clause compensation resources.

– We refer to the set {oc,l|c ∈ C ∧ l ∈ c ∧ x∀ ∈ l ∧ x∀ ∈ X∀} as Oulr. Alternatively,
we may refer to those resources as universal literal resources.

– We refer to the set {oc,l|c ∈ C ∧ l ∈ c ∧ x ∈ l ∧ x ∈ X∃} as Oelr. Alternatively, we
may refer to those resources as existential literal resources.

– We refer to the set Oulr∪Oelr as Olr. Alternatively, we may refer to those resources
as literal resources.

– We refer to the set {ox∀1
, . . . , ox∀|X∀|

} as Ouvr. Alternatively, we may refer to those

resources as universal variable resources.

– We refer to the set {ox∃1
, . . . , ox∃|X∃|

} as Oevr. Alternatively, we may refer to those

resources as existential variable resources.

– We refer to the set Ouvr∪Oevr as Ovr. Alternatively, we may refer to those resources
as variable resources.

– We refer to the set {ocompensation

x∀1
, . . . , ocompensation

x∀|X∀|
} as Ouvcr. Alternatively, we may

refer to those resources as universal variable compensation resources.

– We refer to the set {ohelper

set(x∀i)
, . . . , ohelper

set(x∀|X∀|
)
} ∪ {ohelper

set(¬x∀i)
, . . . , ohelper

set(¬x∀|X∀|
)
} as Ouvahr.

Alternatively, we may refer to those resources as universal variable assignment
helper resources.

14

– We refer to the set {oenvyprotection
c,l |c ∈ C ∧ l ∈ c} as Oulepr. Alternatively, we may

refer to those resources as universal literal envy-protection resources.

Using these definitions, we have

O = Ocr∪Occr∪Oulr∪Oelr∪Ouvr∪Oevr∪Ouvcr∪Ouvahr∪Oulepr∪{osatisfied, oenvy1, oenvy2}.

• To complete the reduction, we specify the additive utility functions. Due to the extensive
use of subscripts and superscripts for the agents and resources, we don’t use the same
notation for this as we did in the proof for theorem 19. All members of V are vectors
of coefficients. vi ∈ V is the vector representing the additive utility function of agent
ai. The members of vi are coefficients. In vi there is one coefficient for each resource in
O. We name these coefficients as follows. Let a ∈ A, and let o ∈ O. Then we simply
denote the utility-coefficient of agent a for resource o as α[a, o].

In the list below, let M be an extremely large number. By default all coefficients of all
agents are set to zero, with the following exceptions:

– For all oci ∈ Ocr:

α[aci , oci] := M,

α[asatisfied, oci] := 1,

∀l ∈ ci : α[aenvyprotection
ci,l

, oci] := M.

– For all ocompensation
ci ∈ Occr:

α[aci , o
compensation
ci

] := M − 1,

α[aunassigned, o
compensation
ci

] := 1.

– For all oc,l ∈ Oulr:

α[ac, oc,l] := 1,

α[ahelper
set(l) , oc,l] := 1,

α[aenvyprotection
c,l , oc,l] := 1.

– For all oc,l ∈ Oelr:

α[ac, oc,l] := 1,
α[aset(l), oc,l] := 1.

– For all ox∀i
∈ Ouvr:

α[aset(x∀i), ox∀i
] := 1,

α[aset(¬x∀i), ox∀i
] := 1.

– For all ox∃i
∈ Oevr:

α[aset(x∃i), ox∃i
] := |Cx∃i

|,
α[aset(¬x∃i), ox∃i

] := |C¬x∃i
|,

α[aunassigned, ox∃i
] := 1.

15

– For all ocompensation

x∀i
∈ Ouvcr:

α[aset(x∀i), o
compensation

x∀i
] := 1,

α[aset(¬x∀i), o
compensation

x∀i
] := 1,

α[aunassigned, o
compensation

x∀i
] := 1.

– For all ohelper
set(l

x∀
i
) ∈ Ouvahr:

α[ahelper
set(l

x∀
i
), o

helper
set(l

x∀
i
)] := |Cl

x∀
i

|,

α[aset(l
x∀

i
), o

helper
set(l

x∀
i
)] := 1,

α[aset(¬l
x∀

i
), o

helper
set(l

x∀
i
)] := 1.

– For all oenvyprotection
c,l ∈ Oulepr:

α[aenvyprotection
c,l , oenvyprotection

c,l] := M.

– For osatisfied:

α[aunassigned, osatisfied] := |X∃|+ |X∀|+ |C|+ 1,
α[asatisfied, osatisfied] := |C|.

– For oenvy1:

α[aunassigned, oenvy1] := 2× α[aunassigned, osatisfied],

α[asatisfied, oenvy1] :=
1
2
.

– For oenvy2:

α[aunassigned, oenvy2] := α[aunassigned, oenvy1] + |X∃|+ |X∀|+ |C|,
α[aenvyprotection

unassigned , oenvy2] := M.

That completes the reduction. It should be obvious that generating this EEF-EXISTENCE-
ADDITIVE-instance from the ∀∃3CNF instance takes polynomial time. We now continue
with the correctness proof.
∀∃3CNF is a Πp

2-complete problem, and we want to prove EEF-EXISTENCE-ADDITIVE
is Σp

2-complete. Therefore we need to show that in I ′ there is only a Pareto-efficient, envy-free
(EEF) allocation if there exists some assignment to the variables in X∀ for which there is no
assignment to the variables in X∃ which makes the 3CNF-formula C true.

Now we will outline the correctness-proof for this reduction. After that we finish the proof
by giving the definition and lemmas that are ommitted in the outline.

We define in definition 25 the specific set of allocations for I ′, that correspond to a specific
type of partial truth-assignment to the variables in I. Namely, assignments that satisfy the
following two conditions:

16

1. All universally quantified variables are set to either true or false, and

2. all existential variables are left unassigned.

In lemma 26 we prove that all allocations that correspond to such truth-assignments are
envy-free. We call these allocations X∀-allocations. We will show in lemma 27 that in I ′, any
EEF allocation must be an X∀-allocation. Next, we will show in lemmas 28 and 29 that for
an X∀-allocation, a Pareto-improvement is possible only if in I the formula can get satisfied
on the partial truth-assignment that corresponds to this X∀-allocation. Now if I is a YES-
instance of ∀∃3CNF, then clearly the formula is satisfiable on all partial assignments with
the two aforementioned conditions, hence a pareto-improvement is possible on all envy-free
allocations. So then I ′ is a NO-instance of EEF-EXISTENCE-ADDITIVE. On the other
hand, if I is a NO-instance of ∀∃3CNF, then clearly there must be a partial assignment
satisfying the 2 aforementioned conditions for which the formula is not satisfiable. Hence
there is in this case an envy-free allocation that is pareto-optimal. The remainder of the
proof consists of definition 25 and lemmas 26, 27, 28 and 29.

Definition 25 (X∀-assignments and X∀-allocations (corrected)). For I, we define an X∀-
assignment as a partial assignment to the variables in X∀ ∪X∃ where all variables in X∀ are
set to either true or false, and all variables in X∃ are not assigned to a truth value. Given an
X∀-assignment s, we define the corresponding X∀-allocation in the following way:

1. All agents aci ∈ Aca get allocated the resource oci .

2. For all x∃i ∈ X∃, all agents aset(l
x∃

i
) ∈ Aevaa get allocated the resources {oc,l

x∃
i

|lx∃i ∈ c}.

3. For all x∀i ∈ X∀, for all pairs of agents aset(x∀i) ∈ Auvaa, aset(¬x∀i) ∈ Auvaa. Allocate ox∀i
to

one of the two agents, it doesn’t matter which one, say aset(l
x∀

i
). Now, if xi is true in s,

allocate ohelper

set(x∀i)
to aset(¬l

x∀
i
) and allocate ohelper

set(¬x∀i)
to ahelper

set(¬l
x∀

i
). Otherwise, if xi is false in

s, allocate these two resources the other way around: allocate ohelper

set(x∀i)
to ahelper

set(¬l
x∀

i
) and

allocate ohelper

set(¬x∀i)
to aset(¬l

x∀
i
).

4. All agents aenvyprotection
c,l ∈ Aulepa get the resource oenvyprotection

c,l .

5. aunassigned gets allocated all of the resources Oevr ∪ Occr ∪ Ouvcr ∪ {oenvy1}.

6. aenvyprotection
unassigned gets allocated the resource oenvy2

7. asatisfied gets allocated the resource osatisfied.

8.

9. The only resources that have not been allocated up to this point are the universal literal
resources oc,l. If l is not true in s, then oc,l can be allocated to either aenvyprotection

c,l or

they are allocated to ahelper
set(l) . It doesn’t matter which of the two. If l is true in s, then

oc,l must be allocated to ahelper
set(l) , and thus may not be allocated to aenvyprotection

c,l .

Lemma 26. All X∀-allocations are envy-free.

17

Proof. Let a be any X∀-allocation for I ′ and let s be the corresponding X∀-assignment for I.
For every agent we will show that he doesn’t envy any other agent. In this proof we say that
an agent wants a resource if the agent has a non-zero utility-coefficient for that resource. For
simplicity we also say that an agent has a resource if he is allocated that resource.

• aenvyprotection
unassigned doesn’t envy any agent because he has the single resource for which he has

a non-zero utility-coefficient.

• asatisfied doesn’t envy any agent. Its utility in allocation a is |C|; the total utility of the
|C| + 1 resources that he wants but doesn’t have is |C| + 1. For all of these |C| + 1
resources, asatisfied has a utility-coefficient of 1. So asatisfied would only envy an agent if
there is an agent in a that has all of these |C|+ 1 resources, and that’s not the case.

• aunassigned doesn’t envy any other agent because the only items he wants but doesn’t
have are oenvy2 and osatisfied. The former is allocated to aenvyprotection

unassigned and the latter is

allocated to asatisfied. aunassigned doesn’t envy aenvyprotection
unassigned because the utility-coefficient

that aunassigned has for oenvy2 is equal to (and not higher than) the utility that aunassigned

currently has in a. aunassigned also doesn’t envy asatisfied because the utility-coefficient
that aunassigned has for osatisfied is lower than the utility that aunassigned currently has in
a.

• For all aenvyprotection
c,l ∈ Aulepa: aenvyprotection

c,l has an item for which he has a utility coeffi-

cient of M . For aenvyprotection
c,l , there are two more items that he wants. For one of those

items he has a utility-coefficient of M . For the other item he has a utility-coefficient of
1. These items are not both allocated to the same agent, so aenvyprotection

c,l envies no-one.

• All aci ∈ Aca have no envy: aci has a utility of M . The total utility of all items that aci

wants but doesn’t have is M − 1 + |ci|. For the resource ocompensation
ci , aci has a utility

coefficient of M − 1. For the other resources that aci wants but doesn’t have (at most
3), aci has a utility coefficient of 1. These are literal resources. Literal resources and
ocompensation
ci are not all allocated to the same agent in allocation a, so aci doesn’t envy

any agent.

• For all aset(l) ∈ Aevaa, aset(l) has a utility of |Cl| in a. The maximal utility they can have
is 2|Cl|, so aset(l) doesn’t envy anyone because he already has half of his total possible
utility.

• For all ahelper
set(l) ∈ Auvaha, ahelper

set(l) has a utility of at least |Cl| in a. The maximal utility
they can have is 2|Cl|, so aset(l) doesn’t envy anyone because he already has half of his
total possible utility.

• All aset(l) ∈ Auvaa have a utility of 1 in a. The maximal utility they can have is 4.
There are 3 items that aset(l) wants but doesn’t have. For all of these 3 items, aset(l)

has a utility-coefficient of 1. aset(l) doesn’t envy anyone because each of these 3 items
is allocated to a different agent: one of these 3 items is allocated to aunassigned, one is
allocated to aset(¬l), and one is allocated to either ahelper

set(l) or ahelper
set(¬l).

Lemma 27. All EEF-allocations must be X∀-allocations.

18

Proof. We show this by reasoning about how the resources must be allocated in order to
achieve envy-freeness and Pareto-optimality. After having done this, it turns out that the set
of allocations that are possibly EEF is exactly the set of all X∀-allocations.

First of all, it doesn’t make sense to allocate a resource to an agent whose utility-coefficient
is zero for that resource. A Pareto-improvement is always possible in such an allocation, by
simply reallocating the resource to an agent that has a positive utility-coefficient for it. This is
why we will only consider allocating resources to agents who have positive utility-coefficients
for the resources. By this argument it immediately follows that all oenvyprotection

c,l ∈ Oulepr must

be allocated to aenvyprotection
c,l .

oenvy2 must be allocated to aenvyprotection
unassigned , or else he would envy agent aunassigned. Also, we

see that aunassigned always envies asatisfied if oenvy1 isn’t allocated to aunassigned, because aunassigned

has a utility-coefficient of 2(X∃ + X∀) + 2 for oenvy1. This is more than half of the maximal
utility it is still able to get (given that oenvy2 is allocated to aenvyprotection

unassigned).
Next, it follows that osatisfied must be allocated to asatisfied, since if it would be allocated to

aunassigned, then asatisfied always envies aunassigned because aunassigned then has the items osatisfied

and oenvy1. If asatisfied would get this bundle of items, then he has a utility that’s more than
half of his total possible utility, so asatisfied would envy aunassigned in that case.

Given our current set of EEF-allocation-requirements up till now, it’s clear that aunassigned

must get allocated all of the resources Oevr ∪ Ouvcr ∪ Occr. Only if we allocate all of these
resources to aunassigned, then the utility of aunassigned is high enough to not envy aenvyprotection

unassigned .
At this point, it is certain that for all oci ∈ Ocr, oci must be allocated to aci . This must

be the case because: firstly, aci has a utility-coefficient of M for this resource; secondly, aci

has a utility of M − 1 for ocompensation
ci , but according to our current set of EEF-allocation-

requirements, ocompensation
ci must already be allocated to aunassigned; and thirdly, aci has a

utility-coefficient of 1 for all other resources that aci wants. That is very low compared to
M , so even if aci would get all of these resources instead of oci , aci would still envy the agent
that gets oci .

Because all items ox∃i
∈ Oevr must be allocated to aunassigned, the agents aset(x∃i) must

get allocated all of the resources that aset(x∃i) wants, except for ox∃i
. These are exactly the

set of resources {oc,l|xi ∈ l}. Allocating these resources to aset(x∃i) makes his utility equal
to α[aset(x∃i), ox∃i

], and therefore it is ensured that aset(x∃i) doesn’t envy anyone. Analogous
reasoning holds for the agents aset(¬x∃i): They must get allocated all of the resources that
aset(¬x∃i) wants, except for ox∃i

. Allocating these resources to aset(¬x∃i) makes his utility equal
to α[aset(¬x∃i), ox∃i

], and therefore it is ensured that aset(¬x∃i) doesn’t envy anyone.
For all pairs of universal variable assignment agents aset(xi) and aset(¬xi), we have the

following situation: the total possible utility that both agents can get is 4: they both have
four resources that they want, and they both have a utility of 1 for each resource. Also they
both want exactly the same four resources. However, we already concluded that the resources
ocompensation

set(xi)
and ocompensation

set(¬xi)
must be allocated to aunassigned. According to this requirement,

the total possible utility that both agents can still get is 3. aset(xi) and aset(¬xi) are the only
agents that can have a positive utility-coefficient for the resource ox∀i

, so we can only allocate
this resource to one of these two agents. If we allocate it to either agent, say aset(lxi)

, then the
other agent aset(¬lxi)

will envy aset(lxi)
unless he gets allocated one of the other two resources

that are left (xhelper
set(xi)

and xhelper
set(¬xi)

). We can choose either one to allocate to aset(¬lxi)
. After we

have done this, our only possibility is to allocate the other resource to ahelper
set(¬lxi)

(if we allocate

19

it to aset(lxi)
or aset(¬lxi)

then there will be envy among aset(lxi)
and aset(¬lxi)

).
For the universal literal resources, the following holds. A universal literal resource oc,l

x∀
i

must be allocated to ahelper

set(x∀i)
if ohelper

set(x∀i)
is not assigned to ahelper

set(l
x∀

i
), or else ahelper

set(l
x∀

i
) will envy either

aset(x∀i) or aset(¬x∀i). In the case that ohelper

set(x∀i)
is assigned to ahelper

set(l
x∀

i
), we have the possibility

to allocate oc,l
x∀

i

to one of the agents in {ac, a
envyprotection
c,l

x∀
i

, ahelper
set(l

x∀
i
)}. But if we would allocate

oc,l
x∀

i

to ac, then aenvyprotection
c,l

x∀
i

would envy ac because ac has the bundle of items {oc, oc,l
x∀

i

}.

Having this bundle would give M + 1 to aenvyprotection
c,l

x∀
i

, and aenvyprotection
c,l

x∀
i

has currently only M

utility. So we cannot allocate oc,l
x∀

i

to ac, and the only possibilities left are to assign oc,l
x∀

i

to

either aenvyprotection
c,l

x∀
i

or ahelper
set(l

x∀
i
).

The requirements we just described clearly restrict the set of allocations that are possibly
EEF, to the set of X∀-allocations.

Lemma 28. Given an X∀-assignment s for I, and the X∀-allocation a in I ′ that corresponds
to s. If the propositional 3CNF-formula C is satisfiable on s, then there is an allocation a′

that Pareto-dominates a.

Proof. Let s be the X∀-assignment and a be the corresponding X∀-allocation. Given a, it
is possible to reallocate some resources to yield a Pareto-dominating allocation a′ where the
utility of aunassigned is increased, and the utility of the other agents is at least as high as in a.

First note that the only way to increase the utility of aunassigned is to reallocate the resource
osatisfied from asatisfied to aunassigned. If this happens, then aunassigned gets |X∀|+ |X∃|+ |C|+ 1
extra utility, so in that case aunassigned can lose |X∀| + |X∃| + |C| utility, and he will still
have higher utility than in a. We can only move osatisfied to aunassigned if we reallocate all
of the clause resources to asatisfied, otherwise the utility of asatisfied would be too low. If we
reallocate all of these clause resources, then all clause agents would lose M utility. We can
compensate this by reallocating all of the clause compensation resources to the clause agents
(this gives M − 1 utility to each clause agent). There are two problems with this move: first
of all, by doing this, aunassigned loses |C| utility; and secondly each clause resource only gets
M − 1 utility, so we need to allocate each clause resource at least 1 more utility in order to
compensate for the loss of M utility of each clause agent. The first problem turns out not
to be a problem at all, because aunassigned has a “surplus” of |X∀|+ |X∃|+ |C| utility, and by
reallocating all clause compensation resources, aunassigned loses only |C| utility, so aunassigned is
still allowed to lose |X∀|+ |X∃| utility. The second problem can be remedied by reallocating
at least 1 literal resource to each clause agent. A clause agent aci has a utility-coefficient of
1 for a literal resource oci,l and a utility-coefficient of 0 for all other literal resources. Literal
resources can be either existential literal resources or universal literal resources:

1. For any universal variable we can execute the following procedure. Step 1: for all
ocompensation

x∀i
∈ Ouvcr, if x∀i is assigned to true (false) in s, reallocate ocompensation

x∀i
from

aunassigned to the universal variable assignment agent that has currently got the resource
ohelper

set(xi)
(ohelper

set(¬xi)
). aunassigned loses |X∀| utility by this move, so there is still |X∃| utility

to “spend” for aunassigned. Step 2: if x∀i is assigned to true (false) in s, reallocate the
item ohelper

set(xi)
(ohelper

set(¬xi)
) from aset(xi) to ahelper

set(xi)
(ahelper

set(¬xi)
). Note that by executing steps

20

1 and 2, no universal variable assignment agent loses any utility. Step 3: if x∀i is
assigned to true (false) in s, then for all of the literal resources oc,x∀i

∈ {oc,x∀i
|xi ∈ c}

(oc,¬x∀i
∈ {oc,¬x∀i

|x∀i ∈ c}), we move oc,x∀i
(oc,¬x∀i

)from ahelper

set(x∀i)
(ahelper

set(¬x∀i)
) to ac. Note

that by this last step, no universal variable assignment helper agent loses any utility.

When we execute the procedure we just described, we can move a certain set of clause
resources to asatisfied without lowering anyone’s utility. By construction, this set of clause
resources corresponds exactly the set of clauses that are satisfied by the X∀-assignment
s. The clause resources that correspond to clauses that still need to get satisfied, still
need to get reallocated. We will see how to do this in the next step:

2. For any existential variable x∃i , an existential literal resource oc,l
x∃

i

is allocated in a to an

existential variable assignment agent aset(l
x∃

i
). If we reallocate oc,l

x∃
i

to ac, then we have

to compensate this by moving an oxi to aset(x∃i). In a, oxi is allocated to aunassigned. So
if we reallocate all of the existential variable resources, aunassigned loses |X∃| utility. So
after reallocating the existential variable resources, aunassigned may not lose any utility
anymore, since we still want aunassigned to have strictly greater utility than in a. We can
reallocate an existential variable resource ox∃i

only to aset(x∃i) or aset(¬x∃i). Altogether
this means that for any existential variable x∃i , we can give extra utility to either the
clause agents {ac|xi ∈ c} or to the clause agents {ac|¬xi ∈ c}. Remember that this
extra utility is needed for the clause agents in order to be able to reallocate the clause
resources to asatisfied. In this sense, reallocating all of the clause resources to asatisfied

is equivalent to finding a truth-assignment for the unassigned variables of s such that
C is satisfied. Such an assignment exists by our assumption, hence from a, a Pareto-
improvement to a′ is possible. a′ is clearly not EEF because it is not an X∀-allocation.
(More concretely, in a′, asatisfied envies aunassigned because aunassigned has the bundle of
items {aenvy1, asatisfied}.)

Lemma 29. Given an X∀-assignment s for I, and the X∀-allocation a in I ′ that corresponds
to s. If the propositional 3CNF-formula C is unsatisfiable on s, then a is EEF.

Proof. By lemma 26, a is envy-free, so we only need to show that a is Pareto-optimal. We
do this by proving the following two things:

1. There doesn’t exist an allocation a′ that Pareto-dominates a in which all clause-resources
are allocated to asatisfied.

2. Any allocation a′ that Pareto-dominates a must have all clause-resources allocated to
asatisfied.

Proof for 1: This is a lot like our story in the previous lemma. We will try to make a
Pareto-dominating allocation a′ where all clause resources are allocated to asatisfied. We
do this by trying to transform a into a′, and we will see that this is not possible.

If we take a, and reallocate the clause resources to asatisfied, then all of the clause agents
lose M utility. The only way to compensate is reallocating all of the clause compensation

21

resources to the clause agents and reallocating to every clause agent at least one literal
resource. If we reallocate the clause compensation resources then the utility of aunassigned

is lowered by |C| and needs to be compensated. The only way to do so is to reallocate
osatisfied to aunassigned. This is no problem: the utility of asatisfied was |C| in allocation a,
and now it is still |C|.
The reallocation of at least one literal resource to every clause agent is going to be the
problem. There are literal resources allocated to four types of agents:

• Some universal literal resources may in a be allocated to universal literal envy-
protection agents. It is impossible to reallocate such literals because it is impossible
to compensate the utility of these agents by giving them another resource. The
only resources these agents want but don’t have are the clause resources, but the
are already reallocated to asatisfied.

• Some universal literal resources may in a be allocated to universal variable assign-
ment helper agents ahelper

set(l) who already have resource ohelper
set(l) . It is impossible to

reallocate these literal resources: the only resources that ahelper
set(l) wants but doesn’t

have can be literal resources that are allocated to a universal literal envy-protection
agent. We can not reallocate these literal resources, as we argued in the previous
item of this list.

• Some universal literal resources may in a be allocated to universal variable as-
signment helper agents ahelper

set(l) who do not have resource ohelper
set(l) . In this case, it is

possible to reallocate these literal resources to the clause agents. The only way to
compensate the loss of utility of agent ahelper

set(l) by reallocating the resource ohelper
set(l)

from one of the two universal variable assignment agents to ahelper
set(l) . Subsequently

we can compensate the loss of the universal variable assignment agent by reallocat-
ing a universal variable compensation resource from aunassigned to him. aunassigned

may lose all of its universal variable compensation resources. Its utility will still
remain higher than it was in a because it has received the resource osatisfied.
Just as in the previous lemma, the procedure we just mentioned will add at least
1 extra utility to a certain set of clause agents. This set of clause agents are
the clause agents that correspond to the clauses that are satisfied by the partial
truth-assignment s.

• The existential literal resources are allocated to the existential variable assignment
agents. It is possible to reallocate some of these existential literal resources to the
clause agents. As we already pointed out in the previous lemma, for any existential
variable x∃i , we can give extra utility to either the clause agents {ac|xi ∈ c} or to
the clause agents {ac|¬xi ∈ c}.

So, we can give a literal to the clause agents that correspond to clauses satisfied by
s. And the remaining clause agents we can give a literal if it is possible to reallocate
an existential literal resource to these clause agent. This is obviously equivalent to
finding a truth-assignment to the variables in X∃ that satisfies formula C on s. By our
assumption such a truth-assignment doesn’t exist, so there exists no allocation a′ that
Pareto-dominates a in which all clause-resources are allocated to asatisfied.

22

Proof for 2: For each agent, we show that we can only transform a to a Pareto-
dominating allocation a′ and increase that agent’s utility if we allocate all clause-
resources to asatisfied.

For agent aunassigned: The only way to improve the utility of aunassigned is to reallocate
osatisfied from asatisfied to aunassigned. But then sat would lose |C| utility. The only
way to remedy this is to reallocate all of the |C| clause-resources to asatisfied.

For all existential variable assignment assignment agents aset(l
x∃

i
): The only way

to increase the utility of aset(l
x∃

i
) is to reallocate ox∃i

from aunassigned to aset(l
x∃

i
). Now,

aunassigned loses 1 utility, so we need to increase aunassigned’s utility by allocating him
the resource osatisfied. So we fall back to the case for aunassigned.

For all universal variable assignment agents aset(l
x∀

i
): Reallocating acompensation

set(x∀i)
to

aset(l
x∀

i
) is not possible. In that scenario we would again fall back to the case for

aunassigned. Reallocating an item from aset(¬l
x∀

i
) to aset(l

x∀
i
) does not help. This ac-

tion removes 1 utility from aset(¬l
x∀

i
). Hence we would need to be able to increase

the utility of aset(¬l
x∀

i
), but aset(l

x∀
i
) and aset(¬l

x∀
i
) have exactly the same utility co-

efficients, i.e. they are clones of each other. So, needing to improve the utility of
aset(¬l

x∀
i
) is the same problem as needing to improve the utility of aset(l

x∀
i
).

We can try one more thing to improve the utility of aset(l
x∀

i
) or aset(l

x∀
i
). Given

that x∀i is true in s (if x∀i is false in s, the reasoning is analogous), we can try
to increase the utility of aset(l

x∀
i
) or aset(¬l

x∀
i
) by reallocating to either agent the

resource ohelper

set(¬x∀i)
from ahelper

set(¬x∀i)
. Because we remove half of the total possible utility

of ahelper

set(¬x∀i)
with this move, this move can only possibly be done if in a, ohelper

set(¬x∀i)
is

the only resource that ahelper

set(¬x∀i)
has. But even in this case it will turn out that it’s

impossible: it is easily seen that it would require reallocating a clause resource to
a universal literal envy-protection agent, without lowering anyone’s utility below
the utility he has in allocation a. We will show that this is not possible when we
arrive at the case for the universal literal envy-protection agents.

For all universal variable assignment helper agents ahelper
set(l

x∀
i
): There are two cases

here: either ahelper
set(l

x∀
i
) has resource ohelper

set(l
x∀

i
) or ahelper

set(l
x∀

i
) doesn’t have resource ohelper

set(l
x∀

i
).

In the former case, it is possible to try to increase the utility of ahelper
set(l

x∀
i
) by reallo-

cating the resource ohelper
set(l

x∀
i
) to ahelper

set(l
x∀

i
). If we do this, then aset(l

x∀
i
) gets into trouble

and we have to increase his utility. Therefore we fall back to the case for aset(l
x∀

i
).

In the second case we can only try to increase the utility of ahelper
set(l

x∀
i
) by allocating

to him a literal resource for which he has a non-zero utility-coefficient. If there is
such a literal resource, then it is allocated in a to a universal literal envy-protection
agent. This would require reallocating a clause resource to a universal literal envy-
protection agent, without lowering anyone’s utility below the utility he has in

23

allocation a. We will show that this is not possible when we arrive the case for the
universal literal envy-protection agents.

For all clause agents aci: The utility of a clause agent aci can only be improved by
reallocating 1 or more of the literal-resources to him for which aci has non-zero
utility. Let oci,l be this literal resource. If we reallocate oci,l to aci , then we would
in turn need to improve the utility of an existential variable assignment agent,
universal variable assignment helper agent or a universal literal envy-protection
agent. For the first two, we refer back to their cases, that we already handled in
this list. For the last one, the universal literal envy-protection agent, we will show
that it’s impossible to increase his utility. We arrive at this case now:

For all universal literal envy-protection agents aenvyprotection
c,l : The only way to in-

crease the utility of aenvyprotection
c,l is to reallocate the clause resource oc from ac to

aenvyprotection
c,l . By this move, ac would lose M utility. To compensate it we need at

least to allocate ocompensation
c from aunassigned to ac. This implies that we will need

to increase the utility of aunassigned. From the case we already handled for agent
aunassigned, we conclude that we would need to assign all of the clause resources to
asatisfied.

For agent asatisfied: We can try to reallocate one or more clause-resources to asatisfied.
If we do that, then we need to improve the utility of at least one clause agent.
As shown as a previous case in this list, improving the utility of this clause agent
implies that we need to move all of the clause resources to asatisfied. Another
possibility is to try to reallocate aenvy1 to asatisfied. But then we would need to
improve the utility of aunassigned. As shown, this implies that we would need to
move all of the clause resources to asatisfied.

For agent aenvyprotection
unassigned : Obviously we can not improve the utility for this agent, be-

cause in a it already has gotten allocated the single resource that he wants.

References

[1] Sylvain Bouveret, Hélène Fargier, Jérôme Lang, and Michel Lemâıtre. Allocation of indi-
visible goods: a general model and some complexity results. In F. Dignum, V. Dignum,
S. Koenig, S. Kraus, M. P. Singh, and M. Wooldridge, editors, Proceedings of AAMAS’05,
Utrecht, The Nederlands, July 2005. ACM Press.

[2] Sylvain Bouveret and Jérôme Lang. Efficiency and envy-freeness in fair division of in-
divisible goods: Logical representation and complexity. Journal of Artificial Intelligence
Research, 32:525–564, June 2008.

[3] Y. Chevaleyre, U. Endriss, S. Estivie, and N. Maudet. Multiagent resource allocation
with k-additive utility functions. In Proceeding of the DIMACS-LAMSADE Workshop on
Computer Science and Decision Theory (Annales du LAMSADE 3), pages 83–100, 2004.

24

[4] Yann Chevaleyre, Paul E. Dunne, Ulle Endriss, Jérôme Lang, Michel Lemâıtre, Nicolas
Maudet, Julian Padget, Steve Phelps, Juan A. Rodŕıguez Aguilar, and Paulo Sousa. Issues
in multiagent resource allocation. Informatica, 30:3–31, 2006. Survey paper.

[5] H. W. Kuhn. The Hungarian method for the assignment problem. Naval Research Logistic
Quarterly, 2:83–97, 1955.

[6] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization : Algo-
rithms and Complexity. Dover Publications, July 1998.

[7] M. Schaefer and C. Umans. Completeness in the polynomial-time hierarchy: a com-
pendium. SIGACT News, September 2002.

25

	Introduction
	Leximin-maximal allocations with max-utility and atomic demands
	Preliminaries
	A polynomial time algorithm for LMMUAB-ALLOCATION-OPT

	Complexity of deciding whether an allocation is pareto optimal for agents with additive utility
	Complexity of finding an efficient and envy-free allocation for agents with additive utility

