
A Survey on the Computation of
Power Indices

and Related Topics

Bart de Keijzer

A Survey on the Computation of
Power Indices

RESEARCH ASSIGNMENT

by

Bart de Keijzer
born in Amstelveen, the Netherlands

Algorithmics Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

c©2008 Bart de Keijzer. All rights reserved.

A Survey on the Computation of
Power Indices

Author: Bart de Keijzer
Student id: 1221779
Email: B.deKeijzer@student.tudelft.nl

Abstract

A ‘power index’ is a concept in cooperative game theory. Power indices are used as a measure for
the influence that a player has in a certain class of cooperative games called simple games. As the title
says, this is a survey on how to compute these power indices. Generally speaking, computing these
indices is a tedious task, even for relatively small cooperative games. It is certainly intractable to do
this by hand, and therefore as you might have guessed, we need computers to do this for us. In this
survey we give first a short introduction to cooperative game theory with a focus on simple games.
We discuss the power indices that have been proposed in the literature, and we present algorithms for
computing some of these indices. The majority of the algorithms for computing power indices that
have been proposed are suited for weighted voting games: an important subclass of simple games.
Therefore, the majority of the algorithms that we present here are only suited for weighted voting
games. Among the algorithms that we discuss are some of the best that are currently known. In the
last chapter, we give some interesting directions for future research. Throughout our survey we try
to pay special attention to the relation between computing power indices, computational complexity
(one chapter is dedicated to this) and approximability.

Thesis Committee:

Chair: Prof. Dr. C. Witteveen, Faculty EEMCS, TU Delft
University supervisor: Dr. Tomas Klos, Faculty EEMCS, TU Delft

Dr. Yingqian Zhang, Faculty EEMCS, TU Delft

Contents

Contents iii

1 Introduction 1
1.1 Topic of this Survey . 1
1.2 Applications . 2
1.3 Outline . 2

2 Cooperative Game Theory 3
2.1 Comparison to Classical Game Theory . 3
2.2 Coalitional Games . 4
2.3 Solution Concepts . 8

3 Power Indices 11
3.1 Motivation Behind Power Indices . 11
3.2 Well-known Power Indices . 12
3.3 Less Well-known Indices . 16

4 Complexity of Power Index Computation 21
4.1 Complexity Classes . 21
4.2 Computational Problems . 24

5 Exact Methods for Calculating Power Indices 29
5.1 The Direct Enumeration Algorithm . 30
5.2 Klinz & Woeginger’s Improvement . 30
5.3 The Generating Function Approach . 32
5.4 Generating Functions for WMMGs . 36
5.5 Another Improvement on the GF Algorithm 37

6 Approximating Power Indices 39
6.1 Hardness of Approximation . 39
6.2 Approximation Algorithms . 43

iii

CONTENTS

7 Future Work 49

Bibliography 51

A New Results 57

iv

Chapter 1

Introduction

In this document, we give an overview of the research that has been done in computer
science with regard to power indices.

1.1 Topic of this Survey

A power index is a notion in cooperative game theory that arose from the need to measure
someone’s a priori power in certain coalitional games. It turns out to be a challenge to
compute power indices, so a lot of research has been done in computer science on how to
do this efficiently. Also, it turns out that power indices have an interesting application to
computer science domains, namely network reliability, which is a second reason for why
power indices are an interesting topic for computer science research. In this survey, we
will look at power indices from a computer science perspective. This means that we will
talk about algorithms that compute power indices, and we will discuss issues regarding the
computational complexity of power index computation.

The reader might be a bit unfamiliar with some of the terminology we just used. This
is no problem: all will be explained throughout this text. However, what we do assume is
that the reader has a computer science background (e.g. has knowledge of algorithms and
complexity theory).

Let us first quickly return to the domain of network reliability. This is an important
example of a situation for which power indices can be applied. The use of power indices
for measuring network reliability is studied in [9] and [10]. We refer the interested reader
to those papers, because —although we ourselves think that this application is interesting—
we will not discuss it in this survey. For this survey, we will mostly focus on power index
computation for decision making settings. In practical instances of these settings, people
mostly work with so-called weighted voting games, to be defined formally in the next chap-
ter. In such games each participant is assigned a weight, representing the importance of his
vote.

1

1.2 Applications Introduction

1.2 Applications

Examples of real-life situations of such games include most political decision making bod-
ies. For example, look at the presidential elections of the United States of America, where
every state can be seen as a participant, and their weight equals the amount of electors of
that state.

Another example is in the European Union, where two decision making rules are used,
consisting of three weighted voting game each. The member-nations of the european union
are in this case the participants. In order to win, a coalition of nations must win all three
weighted voting games simultaneously. We will work out this example in more detail in
section 3.2.3.

As a final example, in companies with multiple owners, each holding a certain share
of stocks in the company, weighted voting games are often adopted as a decision-making
protocol.

1.3 Outline

The outline of this survey is as follows. Chapter 2 serves as an introduction to cooperative
game theory. In chapter 3 we explain what power indices are, and we give the definitions
of the different power indices that have been invented. In chapter 4 we will introduce some
relevant complexity classes (especially #P), and we discuss some computational problems
regarding power indices. A lot of the more interesting problems turn out to be complete for
the class #P. In chapter 5, we will discuss algorithms for exactly computing power indices,
whereas in chapter 6 we will look at approximation methods. Finally, in chapter 7, we will
discuss some future research and open problems in the field of power index computation.

Most research that has been done for computing power indices is on the so-called
weighted voting game. Therefore, the majority of the results that are given in chapters
4, 5 and 6 will be about weighted voting games.

2

Chapter 2

Cooperative Game Theory

In this chapter we give an introduction to cooperative game theory, or coalitional game
theory. We discuss the most important topics in this field, and especially the topics that are
relevant for the subfield of power indices.

2.1 Comparison to Classical Game Theory

Cooperative game theory is very different from it’s non-cooperative (classical) counterpart.
First we will talk informally about the non-cooperative part of game theory.

Classical game theory is centered around the mathematical analysis of behaviour of
rational entities in strategic situations. With “the behaviour of rational entities” we mean
most of the time just humans of whom the assumption is made that they’re completely
rational. A strategic situation is called a game in game theory, hence the name “Game
Theory”. The rational entities participating in a game are called the players. That should
sound pretty logical. Sometimes, but not often, the rationality assumption is dropped, and a
different model of behaviour is assumed for the players in a game.

One straightforward mathematical definition of a game for n players is defined to be a
set of n strategy spaces: one for each player. A strategy space is a set of strategies that a
player can adopt. As part of the definition of the game, a payoff scheme is provided that
specifies for each combination of strategies what the payoff to each player is. A prominent
question that is studied in game theory is which strategy a player should choose in order to
maximize his utility. The utility of a player is a real-valued function that depends on the
payoff.

In cooperative game theory, we don’t study the behaviour of individual players. Instead
we are interested in what happens if players work together, and we study how they should
work together. For this, we transform games into a more abstract form, called the coali-
tional form. In the coalitional form of a game, there is only a set of players and a function
that specifies the gain that can be obtained for each subset of players, if they work to-
gether. Hence, in cooperative game theory, we completely disregard strategy spaces, payoff
schemes and utility functions.

3

2.2 Coalitional Games Cooperative Game Theory

It is possible to transform games into a coalitional form, although in cooperative game
theory often it is the case that we just start analyzing a coalitional form game without con-
sidering the non-coalitional form. What we want to say with this is that coalitional form
games are regarded as an interesting object of study in itself, without it just being a “tool”
for analysis of the underlying non-cooperative game. This might already sound sensible
to the reader, but it should certainly become clear later on, where we start studying simple
games.

2.2 Coalitional Games

Now we will introduce some important concepts in cooperative game theory. All of this can
be looked up in any introductory text on cooperative game theory, for example [47].

2.2.1 General Games

Definition 1 (Coalitional game). A coalitional game is a pair (A,v), where A = {a1, . . . ,an}
is a set of players. And v : 2A → R is a function mapping coalitions of players to a real
number, describing how much collective payoff the coalition can gain. Also, v(∅) = 0.

Definition 2 (Grand coalition & characteristic function). For a coalitional game (A,v), A is
called the grand coalition. v is called the characteristic function or gain function.

Definition 3 (Subgame). Let (A,v) be a coalitional game. (S,v) is the subgame of (A,v)
induced on S if and only if S ⊆ A.

Often, a coalition game is denoted by just v if it’s clear what the number of players is.
For example if we denote by G(N) the class of coalitional games on N players then we
simply say v ∈ G(N).

There exist two important subclasses of games: monotone games and superadditive
games. These are games that satisfy respectively the following two constraints:

Definition 4 (Monotonicity). A game (A,v) is monotone if and only if ∀S,T ⊆ A : S⊂ T →
v(S)≤ v(T).

Definition 5 (Superadditivity). A game (A,v) is superadditive if and only if ∀S,T ⊆ A :
S∩T = ∅→ v(S∪T)≥ v(S)+ v(T).

Obviously if a game is superadditive it is also monotone, so the superadditive games
form a subclass of the monotone games.

2.2.2 Simple Games

Another important subclass of coalitional games, is the class of simple games. Informally
it consists of the games where a coalition is either winning or losing, and there’s nothing in
between. For the topic of power indices, we are only interested in this particular class of
games. More precisely, power indices are only defined on simple games.

4

Cooperative Game Theory 2.2 Coalitional Games

Definition 6 (Simple coalitional game). A simple coalitional game or simply simple game
is a coalitional game (A,v), where the target of v is restricted to {0,1}. Moreover, we
assume v(∅) = 0 and v(A) = 1. If for a subset S of A, v(S) = 1, then S is called a winning
coalition. If v(S) = 0 then S is called a losing coalition.

Just as with general coalitional games, we can define analogously the class of mono-
tone simple games and superadditive simple games. Note that in a lot of literature, the
monotonicity constraint is included in the definition of simple games and general games, so
simple games as well as general games are often assumed to be monotone in the first place,
and monotone games are not regarded as a special case.

There are some other relevant subclasses of simple games. Some of these can be syn-
tactically defined as we will see. We will first start by defining some useful properties of
simple games.

Definition 7 (Blocking coalition, proper game strong game & decisive game). In a simple
game (A,v), a coalition S ⊂ A is a blocking coalition iff v(A\S) = 0. In a proper simple
game, all winning coalitions are blocking coalitions. In a strong simple game, all blocking
coalitions are winning coalitions. A decisive simple game is a simple game that is both
strong and proper.

Decisive simple games are important for settings where it must be guaranteed that a
decision between two alternatives is made after voting.

Some of the definitions in the remainder of this section were taken or adapted from [4]
and [55]. Next, we turn to the syntactic definitions of certain classes of simple games. There
are four important ways to represent simple games.

Definition 8 (Representations of simple games). Consider the following four syntactic
classes of games:

Winning coalition form (N,W) is a winning coalition form of a simple game (N,v) iff W
is the set of all coalitions such that ∀S ⊆ N : v(S) = 1 ↔ S ∈W .

Minimal winning coalition form (N,Wmin) is a minimal winning coalition form of a sim-
ple game (N,v) iff Wmin is the set of minimal winning coalitions of the game (N,v),
this means that ∀S ⊆ N : v(S) = 1 ↔∃T ∈Wmin : S ⊇ T . This condition implies that
a simple game can be represented in minimal winning coalition form if and only if it
is mononic.

Weighted voting game (W,q),W = (w1, . . .w|N|),w1, . . .w|N|,q ∈ N is a weighted voting
game or weighted majority game form of a simple game (N = {1, . . . |N|},v) if ∀S ⊆
N : v(S) = 1↔∑i∈N wi ≥ q. q is called the quota and wi is called the weight of player
i. Obviously, any weighted voting game is monotone. However, not any monotone
game can be represented as a weighted voting game. Later, we will get to the question
of which games can be represented as a weighted voting game. Note that in the
literature, not everyone defines that the weights and quota of weighted voting games
must be integers.

5

2.2 Coalitional Games Cooperative Game Theory

Mutiple weighted voting game An m-multiple weighted voting game or weighted m-majority
game for a simple game (N,v) is a set

{(W1 = (w1
1, . . .w

1
|N|),q1), . . . ,(Wm = (wm

1 , . . .wm
|N|),qm)}

of m weighted voting games such that it holds that ∀S ⊆ N : v(S) = 1 ↔ ∀1 ≤ j ≤
n : ∑i∈N w j

i ≥ q j. In words, a coalition must win every weighted voting game that
constitutes the multiple weighted voting game.

Remark 9. We would like to point out that there is a very strong connection between the
theory of simple games and the theory of boolean functions, especially monotone boolean
functions and boolean threshold functions A monotone boolean function is the same as a
monotone simple game, except that the players who participate in the game are replaced
by variables that are set to 0 or 1. A boolean threshold function is a monotone boolean
function that can be represented by a weight function, in the same was as that a weighted
voting game is a monotone simple game that can be represented by a weight for each player.

Some notes on weighted voting games: a weighted voting game is a very important rep-
resentation, not only intuitively, but also because it’s a compact representation. Also they’re
important because they are often used in practice, in a lot of decision making protocols. For
example: political elections, political decision making bodies and decision making bodies
in stock-holder companies. Completely unrelated to this, note that a weighted voting game
(W,q) is proper if and only if q ≥ ∑w∈W w

2 .
There is an important theorem regarding m-multiple weighted voting games.

Theorem 10. Every monotonic simple game is representable as an m-multiple weighted
voting game.

The proof is given in the book of Taylor and Zwicker [55]. This proof is constructive,
but the problem is that in the construction m gets very large, while it often is possible to
represent the m-multiple weighted voting game with a much smaller value for m.

Definition 11 (Dimension of a monotone simple game). The dimension of a monotone
simple game G is the smallest m such that there exists an m-multiple weighted voting game
representation for G.

Now we will answer the question of which monotone games are representable as a
weighted voting game. For this we will have to introduce the following two notions.

Definition 12 (Trade robustness & swap robustness). A simple coalitional game (N,v) is
swap robust if for any two winning coalitions in that game, say S and T , if we swap one
player in S with one player in T , then the resulting two coalitions are not both losing.

A simple game (N,v) is trade robust if for any set S of winning coalitions in that game,
any redistribution of players among the coalitions in S does never result in all coalitions in
S becoming losing.

Clearly, trade robustness implies swap robustness. In [55], the following theorem is
proven.

6

Cooperative Game Theory 2.2 Coalitional Games

Theorem 13. A simple coalitional game can be represented as a weighted voting game if
and only if it is trade robust.

Another important concept, related to swap and trade robustness is the desirability rela-
tion (see [55] and [22]). We define the following desirability relation over the players in a
simple game.

Definition 14 (Desirability relation). In a simple game (N = {1, . . . , |N|},v), �D is the
desirability relation defined by:

• For any i, j ∈ N : if ∀S ⊆ N\{i, j} : v(S∪{i})≥ v(S∪{ j}), then i �D j. In this case
we say that i is more desirable than j.

• For any i, j ∈ N : if ∀S ⊆ N\{i, j} : v(S∪{i}) = v(S∪{ j}), then i ∼D j. In this case
we say that i and j are equally desirable.

• For any i, j ∈ N : if i �D j and not i ∼D j, then i � j. In this case we say that i is
strictly more desirable than j.

Moreover, if neither i �D j nor j �D i holds for some i, j ∈ N, then we say that i and j are
incomparable.

Now we can define linear games.

Definition 15 (Linear game). A simple game (N,v) is linear if and only if no pair of players
in N is incomparable. The latter is equivalent to saying that the desirability relation over
N is complete. This is also equivalent to saying that the desirability relation is acyclic (or:
transitive).

There exist other definitions of desirability relations for which different properties hols
[22]. A remarkable result is the following, proved by Taylor and Zwicker in [55]:

Theorem 16. A game is linear if and only if it is swap robust.

As a last topic before we finish this exposition of simple games, we want to introduce
several different player types that can be distinguished in a simple game.

Definition 17 (Player types in simple games). In a simple coalitional game (N = {1, . . . , |N|},v)
the following special types of players can be distinguished:

• A player i ∈ N is a dummy iff there exists no S ⊆ N\{i} such that v(S∪{i}) = 1 and
v(S) = 0.

• A player i ∈ N is a passer iff for all S ⊆ N : i ∈ S → v(S) = 1.

• A player i ∈ N is a vetoer iff for all S ⊆ N : i 6∈ S → v(S) = 0.

• A player is a dictator if he is both a passer and a vetoer.

7

2.3 Solution Concepts Cooperative Game Theory

2.3 Solution Concepts

Now we turn to the general class of coalitional games that are not necessarily simple.
Solution concepts are a central topic in coalitional game theory.

Definition 18 (Solution concepts in cooperative games). For a class of cooperative games
G(N) on players N = 1, . . . , |N|, a solution concept c : G(N)→ R|n| is a way to divide the
gain v(N) from the grand coalition N among the members of that coalition.

If the assumption is that eventually the grand coalition will form in a game, then we
need to split up the gains from the grand coalition among the set of all players. This is
a standard assumption in cooperative game theory: games are assumed to be monotone,
and thus the highest gain is obtained by the grand coalition i.e. the case that everyone
cooperates. Solution concepts are usually defined from this point of view.

This assumption is not that restrictive though: one can also see a solution concept as a
way to divide the gains of any coalition among its members. If we want a method to divide
the gain of a smaller coalition among its members, then we can just apply the solution
concept on the subgame induced on the players in the smaller coalition.

Below, we will describe the Shapley Value solution concept. We give special attention
to the Shapley value, since it is relevant for our discussion about power indices. However,
there are also other popular solution concepts, such as the core [28], the nucleolus [51], and
the kernel [17].

2.3.1 The Shapley Value

One of the most well-known solution concepts is the Shapley value. This solution concept
was introduced by Lloyd S. Shapley in [52].

Definition 19. Given a coalitional game (A = (a1, . . . ,an),v), the Shapley value ϕ for this
game is the payoff vector (ϕ1, . . . ,ϕn). For 1 ≤ i ≤ n,ϕi is defined as follows. Let Π be the
set of all permutations of A. Let Preci : Π → 2A be the function that, given a π ∈ Π, returns
the set of players occuring before ai in pi. Then

ϕi =
ϕ′i
n!

,

and

ϕ
′
i = ∑

π∈Π

v(Preci(π)∪{i})− v(Preci(π)).

Remark 20. Whenever we’re discussing solution concepts of two or more games simul-
taneously, we will distinguish them for these games by parametrizing it with the specific
game. e.g for two simple games G′ and G, we use the notation ϕi(G) and ϕi(G′) to denote
the shapley values for player i in game G and game G′ respectively. Also we sometimes
denote a game G = (N,v) simply game by its characteristic function v, so then we write
ϕi(v). Actually, ϕi(v) is the “correct” way to write it down, so in our definition we actually
abused notation and will continue to do so.

8

Cooperative Game Theory 2.3 Solution Concepts

In cooperative game-theory research, a common practice is to try to axiomatize a solu-
tion concept.

Definition 21 (Axiomatic characterization). An axiomatization or axiomatic characteriza-
tion of a solution concept c for a class of games G is a set of axioms defined using games
in G such that c is the unique solution concept that satisfies all the axioms.

Axiomatic characterizations are useful for assessing the reasonability of solution con-
cepts. For the Shapley value, a lot of axiomatic characterizations have been devised. We
now give a clean one in definition 22 and theorem 23, devised by Shapley himself, given
for example in [19]:

Definition 22 (Game permutation & game addition). Let v be a coalitional game on the
players N; let π : N → N be a permutation of N. Then the game (πv) is defined as

∀S ⊆ N : (πv)(S) = v({π(i) | i ∈ S}).

Let v1 and v2 be two games on the players N; then the game (v1 + v2) is defined as

∀S ⊆ N : (v1 + v2)(S) = v1(S)+ v2(S).

Theorem 23. Let G(N) be the class of general coalitional games on any set of players
N = (1, . . . , |N|). For any v,v1,v2 ∈ G(N), there is a solution concept c = (c1, . . . ,c|N|) that
is the unique solution concept satisfying

A1 (carrier): If any S ⊆ N satisfies ∀T ⊆ N : v(T) = v(T ∩S), then ∑i∈S ci(v) = v(S);

A2 (permutation): For any permutation π: ci(v) = cπ(i)(πv);

A3 (addition): ci(v1 + v2) = ci(v1)+ ci(v2).

Moreover, c is the Shapley value ϕ.

9

Chapter 3

Power Indices

We will discuss power indices in this chapter. Mostly, the chapter will be an enumeration
of some indices1 that have been invented over time. But we start with a discussion of why
we need power indices.

3.1 Motivation Behind Power Indices

Remark 24. First we would like to note the following, mostly because there’s no other
point more suitable to mention this: the website [3] by Antti Pajala, from the University of
Turku, Finland turned out to be very helpful. This website is dedicated to voting power and
power indices, and it proved to be a good resource for general information on power indices.
Most importantly, it turned out to be an excellent starting point for our literature research in
power indices, containing over 350 references to scientific articles on voting power.

Power Indices originally were introduced because it was observed that in weighted vot-
ing games, the weight of a player is not directly proportional to the influence he has in
the weighted voting game. This is actually quite easy to see through the following trivial
example weighted voting game: (

W,q = ∑
w∈W

w

)
Here, each agent is in only one winning coalition: the grand coalition. So no matter

what the weights of the agents are, they all have the same power.
Now that we know that the weight of a player is not a good measure for the player’s

power, the question will be: what is a good measure for the player’s power in a weighted
majority game?

Various answers have been given to this question, by various researchers in the area of
coalitional game theory. These answers are in the form of power indices, which are simply
mathematical formulations for values that try to describe the ‘true’ influence that a player
has in a weighted voting game.

1However, not all indices. We picked only the most important ones.

11

3.2 Well-known Power Indices Power Indices

Almost all power indices make no assumptions on the true preference of a player in a
voting game. So we say power indices measure a player’s a priori power in a weighted
voting game. That is, we attempt to objectively measure the influence that a player has
in the outcome of a weighted voting game, without having any statistical information on
which votes are likely to be casted by players, or groups of players. To do this, we can not
avoid making certain assumptions, but we let these assumptions be as neutral as possible.
For example, in the Banzhaf index that we describe below, it is assumed that each coalition
will form with equal probability.

While the need for power indices originally arose from weighted voting games, all of
the power indices that have been devised up till now are also suitable for any other kind of
simple coalitional game. So, for any simple coalitional game, we can use a power index as
a measure of a player’s a priori power in it.

In computer science, the focus of power index research naturally lies most of the times
in finding algoritms that efficiently compute a power index. However, of course power in-
dices have not only been investigated in computer science: even more research has been
done in the field of game theory (pretty obvious; power indices are a game-theoretic no-
tion). This purely game-theoretical research has mostly focused on mathematical analysis
of the indices: finding mathematical properties and finding axiomatic characterizations of
the power indices, just as has been done for the solution concepts of the previous chapter.
Analogous to axiomatic characterizations of solution concepts, an axiomatic characteriza-
tion of a power index p is a set of axioms such that the only formula satisfying all axioms
can only be p. Axiomatizations are helpful for discussions on topics like the reasonability
of a certain power index in a certain situation. And although axiomatizations do give us
some mathematical properties of the power indices, those properties are obvious and follow
most of the times immediately from the definition. It turns out that they do not really help us
for answering most of the computation-related questions that we are interested in, so here
we will not state explicitly any axiomatic characterizations for the power indices.

One quick last note before we move on to the actual power indices. Originally, a power
index p was defined to be a vector (p1, p2, . . . , pn) where pi,1 ≤ i ≤ n, is supposed to be
a measure of the power player i (at least, this is the way most of the classic game theory
papers define their power index). Later on, in more and more papers this definition was
altered a bit, and researchers began to speak of “the power index pi”, i.e. all of the pi’s
themselves were defined to be power indices of individual players. In this document, we
use the definitions in both ways, depending on which definition is convenient. We believe
no confusion wil arise from this.

3.2 Well-known Power Indices

In this section, we will discuss the two most used power indices: the Banzhaf index and the
Shapley-Shubik index. In the computer science literature about power indices, most of the
time only these two indices are discussed. After we discuss them, we will give an example.

12

Power Indices 3.2 Well-known Power Indices

3.2.1 The Shapley-Shubik index

The very first power index that has been proposed was the Shapley-Shubik index. This is
nothing more than the Shapley value of [52] that we introduced in the previous chapter, but
now restricted to simple coalitional games. So:

Definition 25 (Shapley-Shubik index & raw Shapley-Shubik index). For a simple coali-
tional game (A = {a1, . . . ,an},v), let Π be the set of all permutations of all players. For
all 1 ≤ i ≤ n, let Preci : Π → 2W be the function such that Preci(π ∈ Π) returns the set of
players that occur before player i ∈ π. Then, the Shapley-Shubik index is ϕ = (ϕ1, . . . ,ϕn),
where for 1 ≤ i ≤ n:

ϕi =
ϕ′i
n!

,

and

ϕ
′
i = ∑

π∈Π

v(Preci(π)∪{i})− v(Preci(π)).

ϕ′i is called the raw Shapley-Shubik index.

We can interpret the raw Shapley-Shubik index for i as the number of different orders of
arrivals in which the players can join the coalition, such that the arrival of player i changes
a losing coalition into a winning coalition.

Remark 26. For our notational conventions for power indices, our comments in remark 20
also hold.

Definition 27 (Pivot permutations & pivot players for permutations). Let π ∈ Π be a per-
mutation such that v(Preci(π)∪{i})− v(Preci(π)) = 1. We call π a pivot permutation for
player i. Also, we say that in that case, i is a pivot player for π.

The Shapley-Shubik index of player i is the raw Shapley-Shubik index of i divided by
n!. n! is the total number of possible permutations of all n players, and because in each
permutation, only one player is a pivot player, we have

n

∑
i=1

ϕi = 1

which is a nice property. As a corollary, the Shapley-Shubik index of a player is always
a number between 0 and 1. It is easy to see that the Shapley-Shubik index of a player i can
be interpreted as the probability that i will be the player that changes a losing coalition into
a winning coalition, if all players would join the coalition in a random order.

There is an alternative well-known definition of the raw Shapley-Shubik index (for a
player i) that is sometimes convenient to use:

ϕi = ∑
S⊆A\{i}

(|S|!(|A|− |S|−1)!(v(S∪{i})− v(S))) (3.1)

13

3.2 Well-known Power Indices Power Indices

It is not hard to see why this definition is correct: for any S ⊆ A for which it holds
that (v(S∪{i})− v(S)) = 1, there are |S|! ways to permute the players in S, and there are
(|A|− |S|−1)! ways to permute the |A|− |S|−1 players outside S.

The reader may wonder why this power index is called the Shapley-Shubik index if the
Shapley-Shubik index is nothing more than the Shapley value, restricted to simple coali-
tional games. The reason for this is that while Shapley invented the Shapley value, it was
the paper [53] written by Shapley and Shubik, where it was pointed out that the Shapley
value is an excellent way to measure someone’s voting power in a weighted voting game.
As we explained, originally the Shapley value was meant as a solution concept for general
coalitional games, i.e. to allocate fairly the gain of the grand coalition among the set of play-
ers. In this new setting, the Shapley value is used as a way to measure power, so that’s for a
different purpose as the original purpose of the Shapley value. Hence, the Shapley-Shubik
index was born.

The axiomatic characterization for the Shapley value (that we gave in the previous chap-
ter) holds if we restrict it to simple games, but not if we restrict it to simple superadditive
games or simple monotone games. In general it is not true that an axiomatic characterization
for a certain value on certain set G of games holds on a subset G′ ⊂ G: while it is always
true that in this case the value satisfies the axioms, it needs no longer be so that the value
is the unique value that satisfies the axioms. Shubik states in [19] an axiomatization for the
Shapley-Shubik value that holds in simple superadditive and simple monotone games.

3.2.2 The Banzhaf index

In 1965, two decades after the Shapley-Shubik index, [31] the normalized Banzhaf power
index was proposed, named after its inventor John F. Banzhaf III.

Definition 28 (normalized Banzhaf index & raw Banzhaf index). For a simple coalitional
game (A = (a1, . . . ,an),v), the normalized Banzhaf index is defined as β = (β1, . . . ,βn),
where for 1 ≤ i ≤ n:

βi =
β′i

∑
n
j=1 β′j

,

and

β
′
i = |{S ⊆ A\{i} | v(S) = 0∧ v(S∪{i}) = 1}|. (3.2)

Here, β′i is called the raw Banzhaf index for player i.

So the raw Banzhaf index is simply the number of coalitions where i is critical for the
coalition to win the game.

Definition 29 (Swing coalition & critical player). Let S⊆W be a coalition such that v(S) =
0∧v(S∪{i}) = 1. We will call S a swing coalition for i. In a swing coalition for i, i is called
a critical player or swing player (because he “swings” the outcome for the coalition from
losing to winning, if he joins).

14

Power Indices 3.2 Well-known Power Indices

Note that the definition we use here differs from the definition in some other litera-
ture. Originally, for a simple game (N,v) a swing is defined as a pair (S,S′),S,S′ ∈ N,S′ ⊂
S, |S′|= |S|−1. However, we think that for our discussion, definition 29 is more convenient.

From the definition we can see that the Banzhaf index for player i is simply the raw
Banzhaf index divided by the sum of all raw Banzhaf indices. This way, βi is always a
number between 0 and 1, and we have the elegant mathematical property that ∑

n
i=1 βi = 1.

Coleman reinvented the index in 1971 [14], only after which the index became popular.
For this reason, the normalized Banzhaf index form is also known as the Coleman index or
the Banzhaf-Coleman index. Coleman has some other power indices though, see the next
section for that. Moreover, the normalized Banzhaf index is also known under the name
standardized Banzhaf index.

Later, in 1979, the index was revised by Dubey and Shapley. It was noted that because
of the denominator (∑n

j=1 β′j), some useful information was lost. Therefore, Dubey and
Shapley proposed in [20] a modification of the banzhaf index where the denominator is
replaced by 2n−1.

Definition 30 (Absolute Banzhaf index). So this modified Banzhaf index β′′i looks like

β
′′
i =

β′i
2n−1 .

The authors called this index the absolute Banzhaf index.

β′′i is precisely the fraction of coalitions containing i, for which i is a critical player. So
if each coalition were to form with equal probability, then β′′i is the probability that i is a
critical player for the coalition, given that player i is in the coalition.

In [20], an axiomatic characterization of the raw Banzhaf index is given for the general
class of simple games.

Actually, as turned out, the absolute Banzhaf index was invented much earlier, even
before the normalized Banzhaf index was proposed. In 1946, the index was described by
Penrose in [48]. So in the literature, the absolute Banzhaf index is sometimes also referred
to as the Penrose index or the Banzhaf-Penrose index.

Compared to the absolute Banzhaf index, the normalized Banzhaf index not only has
undesirable mathematical properties: from a computational point of view, the normalized
Banzhaf index is also harder to compute, since (because of the denominator) we need to
first calculate the raw Banzhaf indices of all players, before we can calculate the normalized
Banzhaf index of one player. This is not the case for the absolute Banzhaf value, where the
denominator 2n−1 is easy to compute.

For these reasons, nowadays the normalized Banzhaf index has gotten out of fashion.

Definition 31 (Banzhaf index). In the literature, usually when one talks about the Banzhaf
index, one means the absolute Banzhaf index. We will also use that convention in this
survey: when we use the term Banzhaf index, we will mean the absolute Banzhaf index.
Moreover, in the remainder of this text, we will not use the symbol β′′i to denote the absolute
Banzhaf index of player i, but instead we use βi, and we will use β to denote the vector of
absolute Banzhaf indices of all players.

15

3.3 Less Well-known Indices Power Indices

Remark 32. If we compare the second definition of the raw Shapley-Shubik index, defi-
nition 3.1, with definition 3.2 of the raw Banzhaf index, we see a remarkable resemblance
between the two: in the raw Shapley-Shubik index, for each coalition S ∈ A\{i} for which
v(S) = 0∧v(S∪{i}, we add |S|!(|A|−|S|−1)! to the index, while in the raw Banzhaf index,
for the same coalitions we add simply 1 to the index. This is the only difference between
those two indices.

3.2.3 An Example: Voting Power in the European Union

To illustrate the two indices that we just gave, we will use them to analyze the voting power
in the European Union.

This example is taken from [2], where also an exact algorithm is explained for comput-
ing the Shapley-Shubik and Banzhaf indices in weighted multiple majority games. We will
get to this algorithm in the next chapter.

For the European Union, two decision making rules are prescribed in the treaty of Nice.
Both of these rules are weighted 3-majority games over four different weighted voting
games {G1,G2,G3,G4}. The first decision rule is the weighted majority game G1∧G2∧G3,
the second one is G1 ∧G4 ∧G3. All of these weighted voting games are over 27 players,
each player representing a country in the European Union. The four weighted voting games
are:

G1 = ((29,29,29,29,27,27,14,13,12,12,12,12,10,10,10,7,7,7,7,7,4,4,4,4,4,3),255),

G2 = ((1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1),14),

G3 = ((170,123,122,120,82,80,47,33,22,21,21,21,21,18,17,17,11,11,11,8,8,5,4,3,2,1,1),620),

G4 = ((1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1),18).

The countries corresponding to the players are respectively Germany, United Kingdom,
France, Italy, Spain, Poland, Romania, The Netherlands, Greece, Czech Republic, Belgium,
Hungary, Portugal, Sweden, Bulgaria, Austria, Slovak Republic, Denmark, Finland, Ireland,
Lithuania, Latvia, Slovenia, Estonia, Cyprus, Luxembourg and Malta.

In figure 3.1, for each country the Shapley-Shubik and Banzhaf power indices of coun-
tries are given for the first weighted multiple majority game (i.e. G1∧G2∧G3), along with
the population of each country.

3.3 Less Well-known Indices

There are a lot of power indices other than the Banzhaf and Shapley indices, although they
aren’t used as often. Nevertheless, they are considered important. We will explain in this
section some of these indices.

3.3.1 The Deegan-Packel Index

Perhaps the most popular index among these lesser known indices is the Deegan-Packel
index, proposed by Deegan and Packel (you guessed it) in [33]. In this index we consider

16

Power Indices 3.3 Less Well-known Indices

Countries Population (millions) Fraction of total population Banzhaf index Shapley-Shubik index
Germany 82.038 0.170 0.0778 0.0871
United Kingdom 59.247 0.123 0.0778 0.0870
France 58.966 0.123 0.0778 0.0870
Italy 57.612 0.120 0.0778 0.0870
Spain 39.394 0.082 0.0742 0.0799
Poland 38.667 0.080 0.0742 0.0799
Romania 22.489 0.047 0.0426 0.0399
The Netherlands 15.760 0.033 0.0397 0.0368
Greece 10.533 0.022 0.0368 0.0340
Czech Republic 10.290 0.021 0.0368 0.0340
Belgium 10.213 0.021 0.0368 0.0340
Hungary 10.092 0.021 0.0368 0.0340
Portugal 9.980 0.021 0.0368 0.0340
Sweden 8.854 0.018 0.0309 0.0281
Bulgaria 8.230 0.017 0.0309 0.0281
Austria 8.082 0.017 0.0309 0.0281
Slovak Republic 5.393 0.011 0.0218 0.0196
Denmark 5.313 0.011 0.0218 0.0196
Finland 5.160 0.011 0.0218 0.0196
Ireland 3.744 0.008 0.0218 0.0196
Lithuania 3.701 0.008 0.0218 0.0196
Latvia 2.439 0.005 0.0125 0.0110
Slovenia 1.978 0.004 0.0125 0.0110
Estonia 1.446 0.003 0.0125 0.0110
Cyprus 0.752 0.002 0.0125 0.0110
Luxembourg 0.429 0.001 0.0125 0.0110
Malta 0.379 0.001 0.0094 0.0082

Figure 3.1: Shapley-Shubik and Banzhaf indices for the first weighted 3-majority game
used in the European Union

the set of minimal winning coalitions Wmin of a simple game. Informally, for each minimal
winning coalition S ∈Wmin, the Deegan-Packel index is obtained by adding 1/|S| to each
member in S.

The Deegan-Packel index is defined for monotone simple coalitional games, but can also
be used for non-monotone simple coalitional games. However, clearly the Deegan-Packel
doesn’t make sense for coalitional games that are not monotone.

The Deegan Packel index is justified in situations where the size principle holds [50]:

“In social situations similar to n-person, zero sum games with side payments,
participants create coalitions just as large as they believe will ensure winning
and no larger.”

The formal definition of the Deegan-Packel index is:

Definition 33 (Deegan-Packel index). For a simple coalitional game (A = (a1, . . . ,an),v),
the Deegan-Packel index is defined as ρ = (ρ1, . . . ,ρn), where for 1 ≤ i ≤ n:

ρi =
1

|Wmin| ∑
S∈{S∈2A | ai∈S∧v(S)=1∧∀a∈S:v(S\{a})=0}

1
|S|

.

17

3.3 Less Well-known Indices Power Indices

So, if the assumption is made that players will only form minimal winning coalitions,
each minimal winning coalition has an equal probability of forming, and the players in a
coalition divide the gains equally, then the Deegan-Packel index of a player represents the
player’s expected gain.

3.3.2 The Holler Index

The Holler index or public good index was first proposed in [29]. For player i, it is defined
as the number of minimal winning coalitions that i appears in, divided by the sum of the
sizes of all minimal winning coalitions.

Definition 34 (Holler index). For a simple coalitional game (A = (a1, . . . ,an),v), the Holler
index is defined as h = (h1, . . . ,hn), where for 1 ≤ i ≤ n:

hi =
|{S ∈ 2A | ai ∈ S∧ v(S) = 1∧∀a ∈ S : v(S\{a}) = 0}|

∑S∈{S∈2A | v(S)=1∧∀a∈S:v(S\{a})=0} 1
.

3.3.3 The Coleman Indices

As we said, the Banzhaf index is sometimes also called the Coleman index because Coleman
was the first who came up with it. This is confusing, because Coleman also defined the
following three other indices in [15].

Definition 35 (Coleman initiative power). For a simple coalitional game (A =(a1, . . . ,an),v),
the Coleman initiative power index is defined as I = (I1, . . . , In), where for 1 ≤ i ≤ n:

Ii = ∑S∈2A v(S∪{ai})− v(S)
∑S∈2A 1− v(S)

So the Coleman initiative index for player i represents the fraction of losing coalitions
that player i can turn into a winning coalition.

Definition 36 (Coleman preventive power). For a simple coalitional game (A =(a1, . . . ,an),v),
the Coleman preventive power index is defined as P = (P1, . . . ,Pn), where for 1 ≤ i ≤ n:

Pi = ∑S∈2A v(S∪{ai})− v(S)
∑S∈2A v(S)

(3.3)

The Coleman preventive index for player i represents the fraction of winning coalitions
that player i can turn into a losing coalition.

The last of Coleman’s indices is not really an index: it is only defined on the grand
coalition, and not on its individual players. It is simply equal to the fraction of all coalitions
(including the empty one) that is a winning coalition.

Definition 37 (Power of a collectivity to act). For a simple coalitional game (A =(a1, . . . ,an),v),
the power of a collectivity to act is defined as:

A = ∑S∈2A v(S)
2n (3.4)

18

Power Indices 3.3 Less Well-known Indices

3.3.4 The Johnston Index

The Johnston index was defined in [32]. The idea is here to look for all winning coalitions
that a player occurs in, count per winning coalition the number of swings s in that coali-
tion, and add 1

s to the index. Finally, the result is divided by the total number of winning
coalitions that have swings, in order to normalize the index.

Definition 38 (Johnston index). For a simple coalitional game (A = (a1, . . . ,an),v), the
Johnston index is defined as J = (J1, . . . ,Jn), where for 1 ≤ i ≤ n:

Ji =
J′i

∑
n
j=1 J′j

,

J′i = ∑
S∈{S∈2A | ai∈S∧v(S)=1∧v(S\{ai})=0}

1
|S|

.

3.3.5 The Chow Parameters

Chow parameters stem from the research done in boolean threshold functions by Chow [13].
A good discussion on Chow parameters from the viewpoint of simple coalitional games can
be found in [55]. We are not sure though when Chow parameters was first incorporated into
the theory of simple coalitional games.

It seems that the Chow parameters of a coalitional game are not considered as a real
power index. Nevertheless, we mention Chow parameters here because obviously they do
give us some useful information about the power of a player in a simple coalitional game,
and certainly they are closely related to some power indices, such as the Banzhaf index.

Definition 39 (Chow parameters). Given a simple coalitional game (A = {a1, . . . ,an},v),
the elements of the vector (W1, . . . ,Wn,W) are the Chow parameters of (A,v) iff W is the
total number of winning coalitions of (A,v), and for all 1 ≤ i ≤ n, Wi is the number of
winning coalitions that player ai occurs in.

The following theorem makes is what makes Chow parameters so interesting

Theorem 40 (Chow’s theorem). The Chow parameters of a boolean threshold function (i.e.
weighted voting game) uniquely determine that threshold function.

Such results are not known for other power indices.

19

Chapter 4

Complexity of Power Index
Computation

In this chapter we give complexity results for various problems regarding the computation
of power indices. We first describe in section 4.1 some important complexity classes and we
will introduce some of the relevant complexity theory related to these classes. Subsequently
we describe some interesting problems in section 4.2, and we give the complexity-theoretic
results for these problems. These will mostly be completeness results. Most of the time, we
will refrain from giving proofs, but we refer to the literature instead. However, we might
give a proof if the proof is short enough. Also, we might give an intuition instead of a proof.

4.1 Complexity Classes

A lot of the computational problems we will encounter are in the complexity class #P.

Definition 41 (#P). Let Σ = {0,1}. A function f : Σ∗→N is in #P iff there is a polynomial-
time Turing machine M such that

f (x) = {y ∈ Σ
∗ | M(x,y) accepts}.

Moreover, we require that the size of y is polynomial in x. Any f ∈ #P can be seen
as the problem of counting the number of accepting paths in the computation graph of a
non-deterministic polynomial time turing machine.

With an instance of f ∈ #P we mean an input ∈ Σ∗ for f .

Most “counting versions” of NP-complete problems are in #P. Consider for example
the satisfiability problem (SAT). SAT is the set of propositional formulas that are satisfiable,
that is, the set of propositional formulas ϕ for which there exists some truth assignment to
the variables occuring in ϕ that makes ϕ true. In the decision version of this problem we are
asked whether there is such an assignment, given a propositional formula. In the counting
version of this problem, called #SAT we are asked how many satisfying truth-assignments
exist. The function that counts this is in #P. This is not hard to see: A non-deterministic
polynomial time Turing machine M for the decision problem could non-deterministically

21

4.1 Complexity Classes Complexity of Power Index Computation

choose a truth-assignment, and accept if the truth-assignment satisfies the formula. In this
case, every distinct computation path corresponds to a different truth-assignment, hence
counting the number of computation paths of M is the same as counting the number of
different truth-assignments that satisfy the formula. It follows that #SAT ∈ #P.

Remark 42. Note that not all counting versions of NP-complete problems are in #P.
Consider the problem #CIRCUMSCRIPTION: Given a propositional formula ϕ over the
boolean variables (x1, . . . ,xn), determine the number of minimal models for ϕ. A minimal
model is a truth-assignment to (x1, . . . ,xn) that satisfies ϕ and that has as few as possi-
ble variables set to true, i.e. there exists no other satisfying truth-assignment that has less
variables set to true. The decision version of this problem is clearly NP-complete: if ϕ is
satisfiable, only then it has a minimal model. However, the number of accepting paths on
this Turing machine of the decision problem is unequal to the number of minimal models.
Instead, it is equal to the number of satisfying assignments. In fact, it turns out that there is
no non-deterministic polynomial time Turing machine for which we can count the number
of accepting paths in order to obtain the number of minimal models. The problem #CIR-
CUMSCRIPTION turns out to not be #P-complete. Instead it is complete for the harder
class #NP. For a definition and a proof, see [21].

There exist complete problems for #P, however, in the literature there are different
notions of completeness for this class. We will see that, according to a reasonable definition
of completeness #P, #SAT is #P-complete.

The class #P was originally defined by Valiant in [57], where he proved that the com-
plexity of computing the permanent is #P-complete under Cook reductions (i.e. polynomial-
time Turing reductions):

Definition 43 (Cook reduction). Given two problems Π1 and Π2, a Cook reduction from
Π1 to Π2 is a Turing machine which solves instances of Π1 in polynomial time and makes
use of an oracle for Π2.

Computing the permanent of a matrix is equivalent to the problem of finding the number
of matchings in a bipartite graph. The decision variant of this problem lies in P. It turns
out that there are a lot of problems in P for which the counting version is P-complete.
So, interestingly, there are NP-complete problems for which the counting version is P-
complete, as well as problems in P for which the counting version is P-complete.

Cook reductions seem like a reasonable notion for completeness of #P-problems: If
we have a Cook reduction from f1 ∈ #P to f2 ∈ #P, then we are be able to compute f1 in
polynomial time if there is an algorithm that computes f2 in polynomial time. Nevertheless,
stronger notions of completeness have been defined for #P. This is partly due to the fact that
a #P-problem f that is complete under Cook-reductions, is not necessarily “rich” enough to
“represent” all other problems in #P. By this we mean that it is not necessarily possible to
encode the instances of any #P-problem g into one single instance x of f . Also it’s partly
due to the fact that stronger notions of completeness have some interesting properties (e.g.
closure-properties for certain sets, or interesting relations to other classes), but we will not
go into these details here. We will now define formally some of the stronger notions of
#P-completeness.

22

Complexity of Power Index Computation 4.1 Complexity Classes

Definition 44 (Reductions for #P problems).

• A metric reduction from f ∈ #P to f ′ ∈ #P is a pair of polynomial-time computable
functions (ϕ,ψ) such that for any x ∈ Σ∗, f (x) = ψ(x, f ′(φ(x))). Defined by Krentel
in [35].

• A many-one reduction from f ∈ #P to f ′ ∈ #P is a pair of polynomial-time com-
putable functions (ϕ,ψ) such that for any x ∈ Σ∗, f (x) = ψ(f ′(φ(x))). Defined by
Zankó in [59].

• A parsimonious reduction from f ∈ #P to f ′ ∈ #P is a polynomial-time computable
function ψ such that for any x ∈ Σ∗, f (x) = ψ(x). Defined by Simon in [54].

Please note that a parsimonious reduction is simply a special case of a many-one reduc-
tion, and a many-one reduction is simply a special case of a metric reduction. Intuitively,
we can interpret these three types of reductions as follows: a parsimonious reduction is a
polynomial-time algorithm that converts one problem instance to another problem instance,
while preserving the number of reductions. A many-one reduction is a pair of polynomial-
time algorithms, one of which converts a problem instance A to another problem instance
B; and one of which computes the number of solutions for A, given the number of solutions
for B. Finally, a metric reduction is the same as a many-one reduction, except for that we
now require information from the original instance A in order to compute the number of
solutions for A, given the number of solutions for B.

Given these types of reductions, we can define the following four notions of #P-completeness.

Definition 45 (#P-completeness). A function f ∈ #P is #P-Cook-complete if there is a Cook
reduction from any f ′ ∈ #P to f . #P-metric-completeness, #P-many-one-completeness and
#P-parsimonious-completeness are defined analogously.

Clearly, if a #P-problem is parsimonious-complete then it is also many-one-complete,
and if a #P-problem is many-one-complete, then it is also metric-complete.

The class of decision problems that is most closely related to #P is the class PP.

Definition 46. PP is the class that contains all languages L for which there is a probabilistic
polynomial-time turing machine M such that

x ∈ L ⇒ Pr(M(x) accepts) > 1/2,

x 6∈ L ⇒ Pr(M(x) accepts) < 1/2.

The abbreviation PP stands for Probabilistic Polynomial time. PP is also frequently pro-
nounced as majority-P. This is because PP is exactly the class that contains all languages L
that have a non-deterministic polynomial-time Turing machine where more than half of the
computation paths are accepting iff x ∈ L.

23

4.2 Computational Problems Complexity of Power Index Computation

4.2 Computational Problems

In the literature, there are various complexity results related to the power indices. We will
give them here. Most of these results are concerned with weighted majority games.

There are some natural decision problems that arise immediately from the definition of
weighted majority games and power indices. In [41] and [49], NP-completeness is estab-
lished for a variety of these decision problems.

Definition 47 (PIVOT). The language PIVOT is defined as

{〈W = (w1, . . . ,wn),q, i〉 | β
′
i > 0 in the weighted majority game (W,q)}.

where β′i is the number of swings (called ‘pivots’ in [49]), or equivalently, the raw Banzhaf
index for player i.

Theorem 48. PIVOT is NP-complete.

Proof. The first proof was by Prasad and Kelly in 1990, in [49]. We refer to this paper for
a formal proof. Intuitively, NP-completeness of this problem gets obvious if you realize the
following: for any 〈W = (w1, . . . ,wn),q, i〉 ∈ PIVOT, there must be a S ⊆W\wi such that

q−w ≤

(
∑
w∈S

w

)
< q.

Deciding whether there exists such an S is equivalent to deciding a generalized version of
the SUBSET-SUM problem.

Matsui and Matsui proved in [41] something slightly stronger:

Theorem 49. PIVOT remains NP-complete if i is fixed at n, and ∀i, j : i > j ⇒ wi > w j.
In other words, PIVOT remains NP-complete if i is restricted to be the player with lightest
weight.

Also, in the same paper it is showed that theorem 49 holds if we replace β′i is replaced
by ϕ′i: the raw Shapley-Shubik index.

It is easy to generalize the results of theorems 48 and 49 into the following two theorems
(these are not taken from any existing literature). The first of the two shows that PIVOT is
fixed-parameter tractable if the agents are ordered ascendingly on their weights, and if the
fixed parameter is the agent number. The second of the two shows that PIVOT is NP-
complete if the agents are ordered descendingly, and if the agent number is fixed.

Theorem 50. The languages PIVOT-iTH-HEAVIEST are in P for all i∈N. They are defined
as:

{〈W =(w1, . . . ,wn),q〉 | β
′
i > 0 in the weighted voting game (W,q)∧∀i, j : i < j→wi ≥w j}.

Here, β′i is the number of coalitions that i is critical in a.k.a. the raw Banzhaf index for
player i.

24

Complexity of Power Index Computation 4.2 Computational Problems

Proof. Let’s first consider the language PIVOT-1TH-HEAVIEST. Clearly, in a weighted
voting game (W = (w1, . . . ,wn),q) where w1 ≥ w2 ≥ ·· · ≥ wn, clearly w1 there is always a
coalition in which w1 is critical as long as 0 < q ≤ ∑w∈W w. So there is an O(n)-time algo-
rithm for PIVOT-1TH-HEAVIEST. Actually, it is even possible to find a coalition for which
player i is critical: consider the grand coalition and keep removing the lowest-weighted
players until the sum of the weights of the players in the coalition drops below q. If that
happens, add the last player w j that was removed. The resulting coalition is a swing coali-
tion for player 1, because w1 ≥ w j.

For the problems PIVOT-iTH-HEAVIEST, with i > 1 we can generalize the idea: In a
weighted voting game (W = (w1, . . . ,wn),q) where w1 ≥ w2 ≥ ·· · ≥ wn, player i has a pivot
coalition if and only if at least one of the following coalitions is a swing coalition for i :

C = {s<i∪ s≥i | s<i ∈ S<i∧ s≥i ∈ S≥i},

where S<i is the collection of subsets s ⊆W that contain only weights heavier than wi,
and S≥i consists of the subsets s of W that contain wi, and if w j ∈ s for any j > i, then
w j−1 ∈ S≤i.

This is true because we can transform any arbitrary swing coalition for i into a swing
coalition for i in C: Consider a swing coalition D for i that is not in C. Remove all the
weights lower than wi from D to obtain D′. If the resulting coalition is a swing coalition, then
we’re done. Otherwise, we have ∑d∈D′ d < q−wi, so we iteratively add the highest weight
lower than wi that’s not in D′. Clearly at some iteration we will have q−wi ≤ ∑d∈D′ < q.
At that point, D′ is in C.

We can enumerate all of the coalitions in C, and check whether each coalition is a swing
coalition for i. The cardinality of C is 2i−1(n− i), so we can decide PIVOT-iTH-HEAVIEST
in linear time.

Theorem 51. The languages PIVOT-iTH-LIGHTEST are NP-complete for all i ∈ N. They
are defined as:

{〈W =(w1, . . . ,wn),q〉 | β
′
i > 0 in the weighted voting game (W,q)∧∀i, j : i < j→wi ≤w j}.

Here, β′i is the number of swings a.k.a. the raw Banzhaf index for player i.

Proof. For i = 1, it has already been proved in [41], by a polynomial-time reduction (a.k.a.
Karp reduction) from PARTITION. It is very easy to extend it to reductions for the cases that
i > 1. We give a family of Karp reductions from PIVOT-1TH-LIGHTEST to PIVOT-iTH-
LIGHTEST for any i. Given an instance 〈W,q〉 of PIVOT-1TH-LIGHTEST, append i− 1
weights with value 1

i−2 to the beginning of W to get W ′. Because (W,q) is a weighted voting
game, q and all weights in W are integer. The newly added weights are not integer, but if we
would allow the weights in weighted voting games to be rational numbers, then obviously
the new players in (W ′,q) would all be dummy players. We eliminate the rationals from
(W ′,q) by multiplying all weights by i−2 and multiplying q by i−2. In the resulting game
we still have that the first i−1 players are dummy players. So if β′1 > 0 in the PIVOT-1TH-
LIGHTEST-instance, then β′i > 0 in the PIVOT-iTH-LIGHTEST-instance, and vice versa.
Therefore, all of the problems PIVOT-iTH-LIGHTEST are NP-complete.

25

4.2 Computational Problems Complexity of Power Index Computation

The following modifications of PIVOT are also NP-complete.

Theorem 52. If, in the definition of PIVOT, we replace β′i by βi (the Banzhaf index of player
i), βn

i (the normalized Banzhaf index of player i) or ϕi (the Shapley-Shubik index of player
i), then the problem remains NP-complete.

Proof. Given in [49]. It follows immediately from the fact that β′i, βi and ϕi are greater than
0 iff β′i > 0.

[49] gives another NP-completeness result:

Theorem 53. If, in the definition of PIVOT, we replace β′i > 0 by β′i > r for any fixed r
between 0 and ∑w∈W w, then the resulting problem remains NP-complete.

As a final NP-completeness result, we want to mention that in [41] it is proved that:

Theorem 54. It is NP-complete to decide for any two players i and j with wi > w j whether
f ′i > f ′j when we choose β (the Banzhaf index) or ϕ (the Shapley-Shubik index) for f 1. This
holds even if we require that i and j are the two heaviest-weighted players.

Remark 55. Of course, for restrictions of the problem in theorem 54, NP-completeness
need not hold. In [40] it is pointed out that there is a linear-time algorithm for deciding the
problem in the case that i and j are the heaviest-weighted and the lightest-weighted player
respectively. More precisely two players in a weighted voting game are symmetric iff

∀S ⊆W\{wi,w j} : q−wi ≤

(
∑
w∈S

w

)
< q

↔ q−w j ≤

(
∑
w∈S

w

)
< q.

The authors show NP-completeness for deciding symmetricity between two players, but
give a polynomial time algorithm for the special case that i is the player with the heaviest
weight and j is the player with the lightest weight.

Let’s now consider some function problems, instead of decision problems. Of course, in
the case of a weighted majority game, the most interesting question that concerns us for each
power index is: what is the complexity of computing the power index in a weighted majority
game? Again, in the literature, this question is exclusively covered for the Shapley-Shubik
and Banzhaf indices.

Let us look again at the complexity of the decision problems we just described. We
see that it is already NP-complete to decide whether the (raw) Banzhaf and (raw) Shapley-
Shubik indices equal zero. Loosely stated, this means that it will be at least NP-hard to
decide what the precise value of the power index is.

The first result for this question is for the raw Banzhaf index, given implicitly in [49]:

1Abusing notation a little bit.

26

Complexity of Power Index Computation 4.2 Computational Problems

Theorem 56. Let (W = (w1, . . . ,wn),q) be any weighted voting game. Let #PIVOT-WVG
: Σ∗ → N be the function that returns the raw Banzhaf index β′i for game (W,q) when it is
given input 〈W,q, i〉. #PIVOT-WVG is #P-parsimonious-complete.

Proof. The proof is roughly as follows. The authors point out that the reduction for theorem
48 is a reduction from KNAPSACK that preserves the number of solutions. The counting
version of this problem, #KNAPSACK, is #P-parsimonious-complete. Hence, #PIVOT is
also #P-parsimonious-complete.

Aziz gives in [4] a theorem that is in a sense stronger:

Theorem 57. Let (A,Wmin) be a monotone simple game in minimal winning coalition form.
Let #PIVOT-MWC : Σ∗→ N be the function that returns the raw Banzhaf index β′i for game
(A,Wmin) when it is given input 〈A,Wmin, i〉. #PIVOT-MWC is #P-metric-complete.

This is proven by a reduction from the following problem, which is also #P-metric-
complete by a fairly straightforward reduction from vertex cover.

Definition 58 (NUMWINNING-MWC). Let (A,Wmin) be a monotone simple game in min-
imal winning coalition form. #NUMWINNING-MWC : Σ∗→N is the function that returns
the number of winning coalitions for game (A,Wmin) when it is given input 〈A,Wmin, i〉.
#PIVOT-MWC is #P-metric-complete.

Because NUMWINNING-MWC is #P-complete, we get the following corollaries:

Corollary 59. Computing the Coleman collectivity index of a weighted voting game in
minimal winning coalition representation is #P-complete.

Corollary 60. Determining the Chow parameters of a weighted voting game in minimal
winning coalition representation is #P-complete.

The author strengthens this last corollary and proves that it also holds for weighted
voting games.

In a theorem in [49] that is subsequent to theorem 56, the authors point out that the
function that returns the (non-raw) Banzhaf index instead of the raw Banzhaf index, is also
#P-complete. Indeed, the Banzhaf index is equal to the raw Banzhaf index divided by 2n−1,
where n is the number of players in the weighted majority game. This means that we could
compute the raw Banzhaf index in polynomial time if we are given an oracle that returns the
Banzhaf index. However, the problem with the claim is that the Banzhaf index is a rational
number, and a function in #P must have N as a target. So, strictly speaking, the function
that returns the Banzhaf index for a certain player in a weighted majority game is not in #P.

In [18], such an issue again arises. In the same way, the authors again slightly abuse the
definition of #P, and prove that computing the Shapley-Shubik index in weighted majority
games is #P-complete. The Shapley-Shubik index is a rational, so it can’t be the case. If we
look at it strictly, they show the following implicitly:

Theorem 61. Let (W = (w1, . . . ,wn),q) be any weighted voting game. Let #RAWSHAPLEY
: Σ∗→N be the function that returns the raw Shapley-Shubik index β′i for game (W,q) when
it is given input 〈W,q, i〉. #RAWSHAPLEY is #P-metric-complete.

27

4.2 Computational Problems Complexity of Power Index Computation

Faliszewski and (L.) Hemaspaandra sharpen this result. They show in [23] that:

Theorem 62. #RAWSHAPLEY is #P-many-one-complete.

Theorem 63. #RAWSHAPLEY is not #P-parsimonious-complete.

The proofs of these two theorems are interesting but complicated. In the same paper,
the complexity of comparing the power-indices of a player in two different weighted major-
ity games is investigated. Through the #P-parsimonious-completeness, with relative ease
the authors are able to show that this problem is PP-complete. For the Shapley-Shubik in-
dex they also manage to prove PP-completeness, although with a more complicated proof
because it is not #P-parsimonious-complete.

Theorem 64. The languages SHAPLEYCOMPARE and BANZHAFCOMPARE are:

SHAPLEYCOMPARE = {〈W1,q1,W2,q2, i〉 | |W1|= |W2|∧ϕi((W1,q1)) > ϕi((W2,q2))},
BANZHAFCOMPARE = {〈W1,q1,W2,q2, i〉 | |W1|= |W2|∧βi((W1,q1)) > βi((W2,q2))}.

SHAPLEYCOMPARE and BANZHAFCOMPARE are both PP-complete.

These problems are interesting for the scenario of weighted voting games in open anony-
mous environments, where the players can choose to cooperate by merging their weight into
a single false-name identity, in order to increase their power. As we mentioned in chapter
1, Bachrach and Elkind investigate this problem in [7].

There are of course domains other than weighted voting games for which we can cal-
culate power indices. Unfortunately, for those domains the computational complexity has
not been studied very deeply. There is one exception to this rule: power indices in games
related to network reliability. Bachrach et al study this kind of games in [9] and [10].

As a last result we want to give, in [4], the complexity for two less standard indexes, the
Holler and Deegan-Packell indices, is determined for games in minimal winning coalition
form.

Theorem 65. Computing the Holler index for a game G can be done in linear time if G is
represented in minimal winning coalition form. Computing the Deegan-Packel index for a
game G can be done in linear time if G is represented in minimal winning coalition form.

28

Chapter 5

Exact Methods for Calculating
Power Indices

Looking at the complexities of the problems in the previous chapter, we see that the prob-
lems of computing the raw Shapley-Shubik index and raw Banzhaf index are both #P-
complete. Therefore, we can not expect to find an algorithm that computes these indices
within polynomial time. Most of the algorithms that have up till now been proposed are
meant for computing the Banzhaf or Shapley-Shubik indices in weighted voting games.
However, some algorithms for more general and more specific cases exist as well.

In this chapter, we discuss only exact algorithms for weighted voting games. Other
types of games for which algorithms have been proposed include:

• The network reliability games that we mentioned in the first chapter. A method for
computing the Banzhaf index in various kinds of network games is given in [9] and
[10].

• Decomposed characteristic function games. In [16], Conitzer and Sandholm propose
a (fairly basic) method for computing the Shapley value for games in which the char-
acteristic function is decomposed into several “subfunctions”.

• Games represented as marginal contribution nets. There is a polynomial time algo-
rithm for computing the Shapley value of such games, and every coalitional game
can be represented as such a net. However, it takes exponential time to convert a
coalitional game into a marginal contribution net. See [30].

For this chapter, we will start with discussing the naive enumeration algorithm, and then
move on to discuss more sophisticated algorithms: the improvement of Klinz and Woegin-
ger, the generating function method, and an extention and improvement on the method. This
list of power index algorithms for weighted voting games is not exhaustive: we have omited
the enumeration algorithms of Matsui & Matsui [40] for the Banzhaf, Shapley-Shubik, and
Deegan-Packel indices.

29

5.1 The Direct Enumeration Algorithm Exact Methods for Calculating Power Indices

5.1 The Direct Enumeration Algorithm

In this section and the following, we will make use the O∗-notation to disregard sub-
exponential factors. For example O(n2 log(n)2n) = O∗(2n).

Let’s say that we want to compute the raw Banzhaf index of the players in a weighted
voting game. An exact algorithm that directly comes to mind when thinking about the
problem, is the following.

1. We are given the weighted voting game (W,q) on n players (|W |= n).

2. Initialize for 1 ≤ i ≤ n the raw Banzhaf index β′i of player i to 0.

3. Enumerate all subsets C of the set of players {1, . . .n}.

4. If w(C) is greater than or equal to q, then check for each player i in C whether
w(C\{i}) is smaller than q.

5. If so, add 1 to β′i.

This algorithm runs in time O(n22n). In the O∗-notation this comes down to O∗(2n). It
is easily seen that for all the other power indices, a similar method of O∗(2n) time exists.

5.2 Klinz & Woeginger’s Improvement

Klinz and Woeginger improve in [34] the algorithm of the previous section. They consider
algorithms for computing the normalized Banzhaf index of a single player and the Shapley-
Shubik index of a single player. Clearly, if we use the trivial method then this will cost
us O(n22n) time for the normalized Banzhaf index (because we need to compute the raw
Banzhaf index of all players in order to find out what the denominator of the normalized
Banzhaf index should be), and O(n2n) time for the Shapley-Shubik index (directly implied
by the alternative definition of the Shapley-Shubik index: equation 3.1).

By using a partitioning trick, Klinz and Woeginger manage to reduce these O∗(2n)-time
algoritms into O∗((

√
2)n)-time algorithms (on the tradeoff of space).

First, they consider the following problem. We are given three integers p,L,U , L ≤U ,
and a cost function C : {1, . . . ,2p} → N. We are also given four sequences of non-negative
integers:

• x1, . . .xM,

• y1, . . .yN ,

• α1, . . . ,αM,

• γ1, . . . ,γN ,

30

Exact Methods for Calculating Power Indices 5.2 Klinz & Woeginger’s Improvement

with the restriction that all integers in the last two sequences are not larger than p. Now
define the characteristic function χ : N→{0,1} as follows.

χ(k) =

{
1 if L ≤ k ≤U,

0 otherwise

The problem now, is to compute

∑
1≤i≤M,1≤ j≤N

χ(xi + y j)C(αi + γ j).

There exists an algorithm for this problem that runs in time O(M logM + N logN +
nM). Although this algorithm is not that complicated, we will not give it here; we refer the
interested reader to [34] instead.

Using this algorithm, which we will call the auxiliary algorithm, we can compute the
Shapley-Shubik index for a player i as follows (the algorithm for the Normalized Banzhaf
index is very similar).

1. Partition the set of players {1, . . . , i− 1, i + 1, . . . ,n} into disjoint sets A and B with
|A|= b(n−1)/2c and |B|= d(n−1)/2e.

2. A swing coalition S for i contributes |S|!(n−|S|−1) to the raw Shapley-Shubik index
of player i. Lets consider an arbitrary coalition S⊆A∪B and let SA and SB be the parts
of S that are in A and B respectively. Now we have that S∪{i} is a swing coalition
for i if and only if w(SA)+w(SB)≥ q−wi and w(SA)+w(SB)≤ q−1.

3. So what we do next is: we convert the entire situation into a large instance of the
auxiliary problem and solve it. We set L to q−wi and we set U to q− 1. For all
subsets Si of A, set xi to w(Si) and set αi to |Si|. In the same way, for all subsets Si of
B, set yi to w(Bi) and set γi to |Si|. Finally, we define the cost function as follows:

C(n) =

{
k!(n− k−1)! if 0 ≤ k ≤ n−1,

0 otherwise.

4. If we solve this instance of the auxiliary problem, we obtain the raw Shapley-Shubik
index of player i. Hence, the last thing we need to do is to divide by n!.

Solving an instance of the auxiliary problem can be done in polynomial time. How-
ever, the instance size of the auxiliary problem that we generate is exponential in the size
of the weighted voting game. The size of M is 2|A| = 2b(n−1)/2c: we generate an x and
an α for each subset of A. Similarly, the size of N is 2|B| = 2d(n−1)/2e. Substituting
these values in the description of the time-complexity of the auxiliary problem, we get
a time-complexity of O(2b(n−1)/2c log2b(n−1)/2c + 2d(n−1)/2e log2d(n−1)/2e + n2b(n−1)/2c) =
O(n(

√
2)n) = O∗((

√
2)n).

31

5.3 The Generating Function Approach Exact Methods for Calculating Power Indices

5.3 The Generating Function Approach

In [39], Mann and Shapley use a different algorithm for computing Shapley-Shubik indices.
This algorithm based on a generating function by Cantor, given in [37]. Mann and Shapley
use this method to evaluate the power indices of the US electoral college exactly (previously,
they had to use a Monte Carlo approximation methods; see the next chapter).

Later, Brams and Affuso find the generating function for the Banzhaf index [12], yield-
ing a similar method for computing the Banzhaf index in weighted voting games.

In [11], these methods are used to compute the Banzhaf and Shapley-Shubik indices
for the Council of Ministers of The European Union. Moreover, in that paper an algorithm
is proposed to compute the power indices in weighted 2-majority games, also based on
generating functions. In [2], this idea is extended to work for any weighted n-majority
game, see section 5.4.

The actual algorithm that resulted from obtaining these generating functions is a dy-
namic programming algorithm that can easily be explained without even mentioning gen-
erating functions. This is done in [40], where a slightly adapted version of the algorithm is
presented and also the algorithm is adapted to compute the Deegan-Packel index.

For this survey, we do give the algorithms for the Shapley-Shubik and Banzhaf indices
from the viewpoint of generating functions. After that we will give the related algorithm for
the Deegan-Packel index.

Definition 66 (Generating function). The (ordinary) generating function of a function f (k) :
N→ R is the formal power series

∞

∑
k=0

f (k)xk.

For such a power series we are not interested in questions related to convergence, and
we are also not interested in the evaluation of the series for a particular x, that’s why the
power series is called formal. We actually only care about the coefficients of the powers
series.

5.3.1 A Generating Hunction for the Shapley-Shubik Index

To obtain a generating function that’s suitable for computing the Shapley-Shubik index ϕi of
player i in some simple weighted voting game v on n players, we must realize the following
(follows from equation 3.1):

Proposition 67. Let Ai(k, j) be the number of coalitions of j players that do not contain
player i and have a total weight equal to k. Then the Shapley-Shubik index is given by:

ϕi =
n−1

∑
j=0

j!(n− j−1)!
n!

(
q−1

∑
k=q−wi

Ai(k, j)

)
.

There is a generating function for Ai(k, j).

Theorem 68. Let (W,q) be a weighted voting game. The generating function of Ai(k, j) for
this game is GAi(z,x) = ∏ j 6=i(1+ zxw j).

32

Exact Methods for Calculating Power Indices 5.3 The Generating Function Approach

Proof. Consider the function:

∏
j≥1

(1+ zxw j) = ∑
T⊆W

z|T |x∑w∈T w = ∑
k≥0, j≥0

A(k, j)xkz j.

A(k, j) is here the number of coalitions of size j with weight k. If we drop the factor
(1+ zxw

i), then we get the coefficients Ai(k, j) instead.

Now that we have a generating function for Ai, how do we use it to obtain an algorithm
for computing the Shapley-Shubik index? Clearly, what we have to do is obtain the coeffi-
cients of the generating function. We use dynamic programming for this. First, we observe
that

∏
j≥1

(1+ zxw j) = (1+ zxw1)∏
j≥2

(1+ zxw j)

= (1+ zxw1 + zxw2 + z2xw1+w2)∏
j≥3

(1+ zxw j)

= · · ·
= ∑

k≥0, j≥0
A(k, j)xkz j.

We can see the “building up” of this polynomial form as an iterative algorithmic process.
We start in iteration 0 with the polynomial form “1”, and in each iteration j we multiply
the polynomial from iteration j−1 with the factor (1+ zxw j) and convert it into polynomial
form again. Per iteration, we only need to keep track of the two dimensional array of
coefficients of the polynomial. We use the array from iteration j− 1 to build up the array
of coefficients for iteration j. After iteration n, the array will contain the coefficients Ai,
and by a single scan through the array we can then compute the Shapley-Shubik index for
player i. For iteration 0, this array is initialized to all zero’s, except for element (0,0) which
is initialized to 1.

As for the complexity of this algorithm: firstly, we use the assumption that basic arith-
metic takes unit time. In iteration 0 we initialize the array. The size of this array is n×q. In
each subsequent iteration, we execute at most n×q steps that take a constant amount of time.
There are n iterations. After the last iteration, we scan the array of the nth iteration again,
which takes nq steps again (but this can also be done simultaneously with the last iteration).
Altogether, the time complexity is O(n2q) (please note that this is pseudopolynomial). For
the space complexity: we can use two n× q arrays that we overwrite each two iterations.
Therefore, the space complexity is O(n2q).

5.3.2 A Generating Function for the Banzhaf Index

For the Banzhaf index, we use a similar approach, but a different generating function.

Proposition 69. Let bi(k) be the number of coalitions that do not contain player i and have
a total weight equal to k. Then the Banzhaf index is given by:

βi =
1

2n−1

q−1

∑
k=q−wi

bi(k).

33

5.3 The Generating Function Approach Exact Methods for Calculating Power Indices

There is a generating function for bi(k).

Theorem 70. Let (W,q) be a weighted voting game. The generating function of bi(k) for
this game is Gbi(x) = ∏ j 6=i(1+ xw j).

Proof. Consider the function:

∏
j≥1

(1+ xw j) = ∑
T⊆W

∏
w∈T

xw = ∑
T⊆W

x∑w∈T w = ∑
k≥0

b(k)xk.

b(k) is here the number of coalitionswith weight k. If we drop the factor (1+ xw
i), then

we get the coefficients bi(k) instead.

With this generating function in mind, we can use the same dynamic programming
approach as we did for the Shapley-Shubik index. The only difference is that we can use
a one-dimensional array instead of a two-dimensional one, because this is a generating
function of only one parameter. The size of this array is q. So our time complexity for this
algorithm is O(nq) and our space complexity is O(n+q).

5.3.3 Computing the Deegan-Packel Index

For the deegan packel index, a generating function is not (yet) known, but a related dynamic
programming algorithm has been discovered in [40].

Given a weighted voting game (W,q), |W |= n, we partition the agents in weight-equality
classes N1, . . . ,Nm. Such that if the weight of any two players is equal, they’re placed in the
same class, and if the weight of any two players is unequal, then the player with the higher
weight is in a class with a lower index.

Now we define the numbers ci(w, t,x) as

#{S ⊆W\{i} | ∑
w j∈S

w j = w∧|S|= t ∧Nx∩S 6= ∅∧∀z > x : Nz∩S = ∅}.

Let’s say that player i is in the weight-equality class Ny. Then, the Deegan-Packel index
ρi of player i is equal to

((
y

∑
x=1

q−1

∑
w=q−wi

n−1

∑
t=1

ci(w, t,x)
t +1

)
+

(
m

∑
x=y+1

q−1−wi+wx

∑
w=q−wi

n−1

∑
t=1

ci(w, t,x)
t +1

))
1

|Wmin|
. (5.1)

The first part of the expression between the brackets counts the number of coalitions for
which i is a swing player and for which all the other players have a higher weight than i. If
that’s the case then we automatically know that all players in the coalition are swings, hence
the coalition is a minimal winning coalition. The second part of the expression between the
brackets counts all coalitions for which i is a swing player and for which the total weight of
the coalition is no larger than q−1 plus the lightest weighted player in the coalition. If that
is the case, then clearly we’re sure that the coalition is a minimal winning coalition. The

34

Exact Methods for Calculating Power Indices 5.3 The Generating Function Approach

factor outside of the brackets divides everything by the total number of winning coalitions,
in order to normalize the index.

We can compute the expression inside the brackets by adapting our existing algorithm
for the Shapley-Shubik index. The key is to realize that

ci(w, t,m) = Aw,t . (5.2)

Remember for equation 5.2 that we defined m to be the number of weight-equality
classes, so m ≤ n. Unfortunately, having the values for all A(w, t) is not enough for com-
puting the Deegan-Packel index. We need to know all values of all the individual ci(w, t,x).
Naively, one would say that we need a dynamic programming method that generates an
n× n× q array in each iteration, yielding an algorithm that runs in time O(n3q) and space
O(n2q). This is not the case. We simply use our original method to compute A(w, t), but
prior to that we do the following.

Let’s say we are given a weighted voting game (W,q), |W |= n. We first sort the weights
(and implicitly: the players) descendingly to obtain the game (W ↓ = {w1, . . . ,wn},q). As-
sume for ease of explanation that no two players have the same weight, so that there are
exactly n weight-equality classes, and each weight-equality class Ni contains the single
agent with weight wi.

Now consider the dynamic programming algorithm on (W ↓,q) to compute the Ai(w, t).
If we run this algorithm on (W ↓,q), then in each iteration i of the dynamic programming
process, we actually generate the numbers ci(w, t, i). To see this, realize that under our
assumption that our weights are all unequal and are sorted descendingly :

1. The number ci(w, t, i) is nothing more than the computation of the numbers A(w, t) on
the subgame induced on the first i agents of (W ↓,q).

2. The dynamic programming algorithm computes Ai(w, t) for game (W ↓,q), by starting
with computing the A(w, t) values for the subgame of (W ↓,q) induced on the empty
set of agents (all 0, except Ai(0,0). Subsequently the algorithm computes in iteration
j≥ 1 the values of Ai(w, t) for the subgame of (W ↓,q) induced on the highest i agents,
given the values of Ai(w, t) for the subgame of (W ↓,q) induced on the highest i− 1
agents.

Hence, throughout the dynamic programming process we actually encounter all of the
ci(w, t, i), and once we encounter such a value that is used in equation 5.1, we can make
computations accordingly.

If we drop our assumption that all weights must be unique, things get a little bit more
complicated, but not that much. We will not go into these details here.

So, using this method, we can compute the expression within the brackets in time
O(n2q) and in space O(nq). The only problem that’s left for the computation of the Deegan-
Packel index is dividing by |Wmin|.

Again, we can use a straightforward dynamic programming approach. Consider again
a weighted voting game (W,q), |W | = n and its weight-equality classes N1, . . . ,Nm. Let

35

5.4 Generating Functions for WMMGs Exact Methods for Calculating Power Indices

w,x ∈ N and let c(w,x) denote

#{S ⊆W | ∑
w j∈S

w j = w∧Nx∩S 6= ∅∧∀z > x : Nz∩S = ∅}.

Let wNx denote the weight of a player in weight-equality class Nx. Now |Wmin| equals

m

∑
x=1

q+wNx−1

∑
w=q

c(w,x).

We will not go into detail on this any further, the approach is similar to what we have
discussed already. We refer to [40] for details.

5.4 Generating Functions for Weighted Multiple Majority
Games

Algaba et al. extend the method of generating functions for use in weighted m-multiple
majority games [2]. They propose generating functions for computing the Banzhaf index
and the Shapley-Shubik index. They use their resulting algorithms for computation of these
power indices in the European Union (see the example in section 3.2.3).

The generating functions resemble a lot the generating functions for Ai(k, j) and bi(k)
that we have seen in the previous sections.

Proposition 71. Let {(W1 = (w1
1, . . .w

1
|N|),q1), . . . ,(Wm = (wm

1 , . . .wm
|N|),qm)} be a weighted

m-majority game on the set of players N = {1, . . .n}. Let bi(k1, . . . ,km) be the number of
coalitions S ⊆ N\{i} such that ∑ j∈S wk

i = qk for all 1 ≤ k ≤ m.
The banzhaf index βi of player i is equal to

q1−1

∑
k1=q1−w1

i

q2−1

∑
k2=q2−w2

i

· · ·
qm−1

∑
km=qm−wm

i

bi(k1, . . . ,km).

The generating function for the numbers bi(k1, . . . ,km) is

Gbi,m(x1, . . . ,xm) = ∏
j 6=i

1+ x
w1

j
1 · · ·xwm

j
m

We will not proof this here. See [2] instead, but at least please compare this generating
function with the generating function for bi and notice how the functions seems like a natural
extension. For the Shapley-Shubik index, a very similar extension can be made.

A dynamic programming algorithm can again be used to compute the coefficients of the
generating functions. This works completely analogous to the dynamic programming algo-
rithms that we already discussed. In the end, we end up with an algorithm of time complex-
ity O(nq1 . . .qm) for the Banzhaf index, and an algorithm of time complexity O(n2q1 · · ·qm)
for the Shapley-Shubik index. Likewise, the space complexities will be O(nq1 . . .qm) and
O(n2q1 · · ·qm) respectively. Note that both the time and space complexities of these algo-
rithms are exponential in m.

36

Exact Methods for Calculating Power Indices 5.5 Another Improvement on the GF Algorithm

5.5 Another Improvement on the Generating Function
Algorithm

Let us consider again the generating function algorithms for weighted voting games. If
we use these algorithms to compute the Banzhaf index, Shapley-Shubik index and Deegan-
Packel index for a single agent, then this costs us respectively O(nq), O(n2q) and O(n2q)
time. If we want to compute these indices for all players, then we can do this by simply
running these algorithm n times. This results in runtimes of O(n2q), O(n3q) and O(n3q).
Takeaki Uno presents in [56] a more efficient way to do this. He shows that it is possible to
compute the indices of all players without exceeding the time complexity of the algorithms
for single players.

We will explain this method for the Banzhaf index for a weighted voting game (W =
(w1, . . .wn),q). The methods for the Shapley-Shubik and Deegan-Packel indices are more
complex, we refer to [56] for those.

The first thing that we have to do in order to design this algorithm is to look at the gen-
erating function algorithm (the basic one, for a single player) in a different way. Let’s look
at the way that the values bn(k) (i.e. for the last player) from section 5.3.2 are computed.
bn(k) equals f (n,k) where

f (i,y) = |{S | S ⊆W≤i,w(S) = y)}|.

In this equation W≤i is the set of weights {w1, . . . ,wi}.
The dynamic programming that actually takes place during the computation of the val-

ues f (n,k) is directly implied by the function

f (i,y) =

{
f (i−1,y)+ f (i−1,y−wi) if y ≥ wi

f (i−1,y) if y < wi

If we compute the Banzhaf index for a player j other than the n’th player, then we
basically do the same, except that we switch the weights of the j’th and the n’th player.
This method is essentially the same as the generating function algorithm.

Next, we make the observation that if we compare the computations of the f (n,k) for
different players, then a lot of computations are the same. This means that there is room for
improvement.

We can improve the algorithm by using dynamic programming “in both directions”. The
values f (n,k) are computed by using the values of f (n− 1, ·). Consider now the function
b(n,k) that does exactly the opposite:

b(i,y) = |{S | S ⊆W≥i,w(S) = y)}|.

b(i,y) =

{
b(i+1,y)+b(i+1,y−wi) if y ≥ wi

f (i+1,y) if y < wi
.

We can compute in O(nq) time the two-dimensional array that contains all the values
f (i,y) for 0≤ i≤ n−1,0≤ y≤ q. We can also compute in O(nq) time the two-dimensional
array that contains all the values f (i,y) for 0 ≤ i ≤ n−1,0 ≤ y ≤ q.

37

5.5 Another Improvement on the GF Algorithm Exact Methods for Calculating Power Indices

The Banzhaf index βi of the i’th player is now equal to

βi = {(S1,S2) | S1 ⊆W≤i−1∧S2 ⊆W≥i+1∧q−wi ≤ w(S1)+w(S2)≤ q−1}

=
q−1

∑
y=0

f (i−1,y)

(
q−1−y

∑
z=max{0,q−wi−y}

b(i+1,z)

)

Computing this sum can be done in O(q) time, given that we already calculated all the
values f (·, ·) and b(·, ·). Hence, computing all banzhaf indices takes O(nq) time and O(nq)
space.

In [56], in addition several optimizations are given, one of which even reduces the space
complexity to O(n+q).

38

Chapter 6

Approximating Power Indices

Here we will discuss approximation algoritms for power indices, again mostly for the do-
main of weighted voting games. We start in section 6.1 by establishing facts about the
hardness of approximating power indices in various settings. To do this, we also introduce
some necessary theory of approximation algorithms. After that, in section 6.2 we describe
the approximation algorithms that have been proposed in the literature.

6.1 Hardness of Approximation

According to the strict definition, approximation algorithms are algorithms for which it
is guaranteed that the outcome is within a certain error bound from the optimal solution.
Moreover, there must provably be a certain asymptotic bound on the runtime. For a good
read on approximation algorithms, see [58]. The theory introduced in this section can also
be found there.

Sometimes, researchers who say to have devised an approximation algorithm do not use
this strict definition, and they simply propose an algorithm without giving any guarantee
on the solution quality, or runtime. Strictly, such an algorithm should not be called an
approximation algorithm; the term ’heuristic’ is sometimes used instead. The algorithms
we give in the next section are not all approximation algorithms in the very strict sense,
although in all cases there are actually interesting properties that can be stated about the
runtime and solution quality.

For this section however, we will make use of the strictest definition of approximation
algorithms, and we analyze the approximability of computing the two most popular indices:
the Banzhaf index and the Shapley-Shubik index. In the literature, we have not found any
explicitly stated results on approximability for these problems.

Most approximation algorithms for counting problems are in the form of fully polyno-
mial time (randomized) approximation schemes (FPTAS & FPRAS).

Definition 72 (FPTAS for counting). Let f : Σ∗ → N be a counting function. Algorithm A
is an FPTAS for f iff for all 0 < ε ≤ 1

∀x ∈ Σ
∗ : |A(x)− f (x)| ≤ ε f (x),

39

6.1 Hardness of Approximation Approximating Power Indices

and A runs in time polynomial in both |x| and 1
ε
.

Definition 73 (FPRAS for counting). Let f : Σ∗ → N be a counting function. Algorithm A
is an FPRAS for f iff for all 0 < ε ≤ 1

∀x ∈ Σ
∗ : Pr[|A(x)− f (x)| ≤ ε f (x)]≥ p,

where p ∈Q, 1
2 < p ≤ 1, and A runs in time polynomial in both |x| and 1

ε
.

If we don’t restrict the algorithms to run in time polynomial in 1
ε
, then the algorithms are

called PTAS and PRAS respectively. The majority of approximation algorithms that have
been found for counting problems are FPRAS’s, although some FPTAS’s are also known
for some #P problems. An interesting fact about these approximation algorithms for #P
problems, is that no FPRAS exists for counting problems that correspond to an NP-complete
problem. We will now make this fact explicit (and even stronger) for the approximation of
the Banzhaf and Shapley-Shubik indices.

From the above two definitions, we can extract a less strict notion for approximation
algorithms for counting problems:

Definition 74 (Approximation algorithm for counting). Let f : Σ∗→N be a counting func-
tion. An algorithm A is an ε-approximation algorithm for f iff 0 < ε ≤ 1 and

∀x ∈ Σ
∗ : |A(x)− f (x)| ≤ ε f (x)

Notice that it makes no sense to allow values greater than 1 for ε, since this would allow
for a very simple approximation algorithm for any counting problem: always output the
number 0. Of course, in the above definition we are also allowed to choose for ε any function
f that maps the input size to the range (0,1]. Using this definition, the following theorems
show that the raw Banzhaf and raw Shapley-Shubik indices are strictly not approximable
at all: not within any constant, any polynomial factor, any exponential factor, and even not
within any other type of factor.

Theorem 75. For any choice of f such that

f : Z+ → (0,1],

there exists no deterministic polynomial-time algorithm that f -approximates the raw Banzhaf
index or the raw Shapley-Shubik index for weighted voting games under the extension that
P 6= NP.

Proof. We proof this for the case of the raw Banzhaf index. The proof for the raw Shapley-
Shubik index is analogous.

For the sake of contradiction, suppose that there exists a polynomial-time deterministic
algorithm A that f -approximates the raw Banzhaf index for weighted voting games, where
f is of course any function with domain Z+ and target (0,1]. We can now decide the
NP-complete problem PIVOT (see chapter 4) in polynomial time. Suppose we’re given a
PIVOT-instance 〈W,q, i〉, we simply run A on it. By definition, if the number of pivots is

40

Approximating Power Indices 6.1 Hardness of Approximation

zero, then 〈W,q, i〉 is a YES-instance, and the raw banzhaf index is 0. By the definition of an
approximation algorithm for a counting problem, A will output the number 0. If the number
of pivots is greater than 0, then 〈W,q, i〉 is a NO-instance, and the raw Banzhaf index is
greater than 0. By the definition of an approximation algorithm for a counting problem, A
will never output the number 0.

Corollary 76. Under P 6= NP, there exists no (F)PTAS for computing the raw Banzhaf
index or the raw Shapley-Shubik index in weighted voting games.

Our next theorem requires the definition of the two randomized complexity classes RP
and BPP.

Definition 77 (BPP). BPP is the class that contains all languages L for which there is a
probabilistic polynomial-time Turing machine M such that

x ∈ L ⇒ Pr(M(x) accepts)≥ p,

x 6∈ L ⇒ Pr(M(x) accepts)≤ p,

where p ∈ Q and 1
2 < p ≤ 1. The abbreviation BPP stands for Bounded Probabilistic

Polynomial time.

Definition 78 (RP). RP is the class that contains all languages L for which there is a prob-
abilistic polynomial-time turing machine M such that

x ∈ L ⇒ Pr(M(x) accepts)≥ p,

x 6∈ L ⇒ Pr(M(x) accepts)≤ 0,

where p ∈Q and 1
2 ≤ p≤ 1. The abbreviation RP stands for Randomized Polynomial time.

Under the assumption that NP 6= RP, we can extend our last two theorems to random-
ized algorithms. This assumption is weaker than the assumption that NP 6= P, but neverthe-
less it is widely believed to be true.

Theorem 79. For any choice of f such that

f : Z+ → (0,1],

there exists no randomized polynomial algorithm that f -approximates the raw Banzhaf in-
dex for weighted voting games with a probability p ∈Q greater than 1

2 , under the extension
that NP 6= RP. The same holds for the raw Shapley-Shubik index.

Proof. Let βi be the raw Banzhaf index of a player i in a weighted voting game. Let A be the
randomized algorithm that outputs β′i such that Pr[|βi−β′i| ≤ fk(n)βi]≥ p, p∈Q, 1

2 < p≤ 1.
As in the previous two proofs, we obtain an algorithm A′ that decides PIVOT. The

difference is that this algorithm A′ is not deterministic, but randomized, and it has an
error-probability. A′ decides PIVOT correctly with probability greater than p. The error-
probability of this algorithm is two-sided. This means that for NO-instances, the probability
that A′ outputs NO is greater than p, and for YES-instances, the probability that A′ outputs
YES is greater than p. In other words, A′ is a BPP-algorithm for PIVOT, hence we have
established that NP ⊆ BPP. From exercise 11.5.18 of [46] it follows that if NP ⊆ BPP,
then NP = RP.

41

6.1 Hardness of Approximation Approximating Power Indices

Corollary 80. Under NP 6= RP, there exists no (F)PRAS for computing the raw Banzhaf
index or the raw Shapley-Shubik index.

Luckily, these results only hold for the raw versions of the indices and only for the spe-
cific type of approximation algorithm that we defined above in definition 74. It is possible
to define an alternative kind of approximation algorithm that seems quite natural.

Definition 81 (Additive error approximation algorithm for counting problems). Let f :
Σ∗ → N be a counting function. An algorithm A is an α-additive error approximation
algorithm for f iff α : Z+ → R+ and

∀x ∈ Σ
∗ : f (x)−α(|x|)≤ A(x)≤ f (x)+α(|x|)

Note that the name we use for this type of algorithm is not standard, but we will use it
throughout this chapter.

We will see in the next section a randomized algorithm that computes the (non-raw)
Banzhaf and (non-raw) Shapley-Shubik indices within any fixed additive error ε with high
probability. Moreover, this algorithm runs in a time that’s both polynomial in the input size
and in 1

ε
. As a consequence, this means that for the raw Banzhaf index and raw Shapley-

Shubik index there does exist for any ε > 0 respectively an (ε2n−1)-additive error ran-
domized approximation algorithm and an (εn!)-additive error randomized approximation
algorithm that runs in time polynomial in the input size and in 1

ε
.

This poses the question for which functions f , the raw Banzhaf and raw Shapley-Shubik
indices are f -additive error inapproximable. The answer is given in the following theorem.

Theorem 82. If P 6= NP, then for any polynomial function f : N → N of, there is no f -
additive error approximation algorithm for the raw Banzhaf index and the raw Shapley-
Shubik index.

Proof. Here is the proof for the case of the raw Banzhaf index. The problem of computing
the raw Banzhaf index is #P-parsimonious-complete, so automatically the same holds for
the raw Shapley-Shubik index.

We will show how to decide PIVOT in polynomial time, if there would be such an
f -additive error approximation algorithm.

Assume w.l.o.g. that there is an a such that ∀n≥ a : f (n) < nc for some c≥ 1. Suppose
algorithm A is such an approximation algorithm and suppose we have the instance 〈W,q, i〉
of PIVOT. Assume w.l.o.g. that |W | is greater than a and is also great enough such that
2|W |c > 4|W |2c. We now add |W |c dummy players to W , so that we obtain the game (W ′,q).
We run algorithm A on 〈W ′,q, i〉.

If 〈W,q, i〉 ∈ PIVOT, then the number of swing coalitions for player i in (W,q) is 0, so
the number of swing coalitions for player i in (W ′,q) is 0 · 2|W |c = 0. Algorithm A will in
this case output a number between 0 and (|W |+ |W |c)c ≤ 2|W |2c. If 〈W,q, i〉 6∈ PIVOT, then
the number of swing coalitions for player i in (W,q) is at least 1, so the number of swing
coalitions for player i in (W ′,q) is at least 1 · 2|W |c = 2|W |c . Algorithm A will in this case
output a number that is at least 2|W |c − (|W |+ |W |c)c ≥ 2|W |c −2|W |2c > 4|W |2c−2|W |2c =
2|W |2c.

42

Approximating Power Indices 6.2 Approximation Algorithms

So if 〈W,q, i〉 ∈ PIVOT, then A will output a number lower than or equal to 2|W |2c. And
if 〈W,q, i〉 6∈ PIVOT, then A will output a number greater than 2|W |2c.

Theorem 83. If RP 6= NP, then for any polynomial function f : N → N of, there is no
randomized algorithm that f -additive error approximates the raw Banzhaf index and the
raw Shapley-Shubik index of a weighted voting game with probability p ∈Q, p > 1

2 .

Proof. By the same arguments as in the proof for theorem 79.

In section 6.2.3, we give two more inapproximability results (as presented in [8]) about
the amount of information that needs to be extracted from the characteristic function of a
game, in order to reach a specific desired approximation guarantee.

6.2 Approximation Algorithms

In this section, we will cover three algorithms that approximate the Shapley-Shubik index
and/or Banzhaf index. These algorithms have in common that they all use statistical theory.
Just as in the last chapter, these three algorithms do not form an exhaustive list. We picked
the algorithms based on the algorithmic ideas used, and on the domain of weighted voting
games on which they are applicable. The algorithms we omit are the following.

• In [40], a Monte-Carlo algorithm is given for the Shapley-Shubik and Banzhaf indices
in weighted voting games where the players are ordered descendingly according to
their weights. The maximum-likelihood estimator is deduced, and no confidence
interval is given (as a function of the number of samples).

• In [38], another Monte-Carlo approach is suggested. The algorithm we discuss in
6.2.3 is similar, and has been analyzed more rigorously.

• The apprimation algorithm for weighted voting games due to Dennis Leech, proposed
in [1] and [36]. This algorithm is a combination of the multi-linear extension method
that we explain in section 6.2.1, and the direct enumeration method of section 5.1.
Basically, on the agents with heavier weights, the direct enumeration method is used,
and on the agents with lighter weights, the multi-linear extension method is used.

We start with discussing a classic algorithm due to Owen ([45] [43], [44]), based on the
multilinear extension of a game. After that, we move on to a more advanced algorithm by
Fatima et al. ([24], [26]) that’s suited for weighted m-multiple majority games. Finally, we
will give an approximation algorithm by Bachrach et al. ([8]) that can be used for all voting
games, even non-monotone ones.

6.2.1 Multi-linear extensions

Owen’s method of multi-linear extensions [43], [44] is based on two concepts. The first one
is the use of the central limit theorem, which states that the averaged sum of a large number
of identically distributed variables will approximately be a normal distribution. The second
one is writing the Shapley-Shubik function as an Euler Beta function.

43

6.2 Approximation Algorithms Approximating Power Indices

The Euler Beta function B can be written as

B(x,y) =
Z 1

0
tx−1(1− t)y−1 dt,

but also as

B(x,y) =
Γ(x)Γ(y)
Γ(x+ y)

,

where Γ is the Gamma function (the extension of the factorial function to reals, Γ(n) =
(n−1)!).

Hence, if we let (W,q) be a simple game and if we let Si ∈ 2W be the set of swing
coalitions for player i in that game, then the Shapley value ϕi of player i is given by

ϕi = ∑
S∈Si

|S|!(|W |− |S|−1)
|W |!

= ∑
S∈Si

B(|S|+1, |W |− |S|) = ∑
S∈Si

Z 1

0
x|S|(1− x)|W |−|S|−1 dx.

If we now look at the integrand alone in the above equality, then if we fix x between
0 and 1, we can regard this integrand as the probability that coalition S will form, if every
player joins S with probability x.

So if we fix x and we simply sum the integrand over all coalitions of Si, then we obtain
the probability swingi(x) of a swing for i. So

swingi(x) = ∑
S∈Si

x|S|(1− x)|W |−|S|−1.

This expression is called the multilinear extension of (W,q) The Banzhaf index is then
equal to swingi(

1
2). Moreover, the Shapley-Shubik index can be written asZ 1

0
swingi(x).

We can approximate swingi(x) as follows. Suppose player j votes with probability x in
the same way that i does, we can define the stochastic variables v j,x for each i 6= j as

Pr[v j,x = w j] = x,Pr[v j,x 6= w j] = 1− x

Then the total weight that is on the same side as the weight of player i is vi,x = ∑ j 6=i v j,x.
Now we have

swingi(x) = Pr[vi,x < q].

µi,x = x∑w∈W\{i}w is the mean of vi,x and σ2
i,x = x(1− x)∑w∈W\{i}w2 the variance of

vi,x. By the central limit theorem, we can approximate swingi(x) as follows

costi(x) = Pr[vi < q] = φ(
q−µi,x

σi,x
)−φ(

q−wi−µi,x

σi,x
),

44

Approximating Power Indices 6.2 Approximation Algorithms

where φ denotes the standard cumulative normal distribution function. Altogether, this
approximation method runs in linear time, but in general this method only works well on
voting games with a large number of small weighted agents. If the majority of the weights
is only in the hands of a few, the central limit theorem fails [36].

6.2.2 Approximating the Shapley-Shubik index

Fatima et al. present in [24] a method to approximate the Shapley-Shubik index of a
weighted voting game. This method runs in time linear in the number of agents. Later,
they extend this method to also work for weighted m-multiple majority games [26]. This
method runs in time O(m2n), with n being the number of agents. We will explain the method
for weighted voting games only. This is for the reason that the theory of statistics involved
for the extension to m-multiple majority games, is too complex to discuss here.

The method is based on the following theorem, cited from [26]:

Theorem 84. If w1, . . .wX is a sample of size X drawn from ‘any distribution’ with mean µ
and variance σ2, then the sample mean (i.e. 1

X ∑
X
i=1 wi) has an approximate normal distri-

bution, N , with mean µ and variance σ2

X .

Proof. See [27].

We use this distribution from theorem 84 to compute a player i’s expected contribution
in a coalition of size X + 1. Let the weighted voting game be (W = (w1, . . . ,wn),q). Let µ
be the mean of the weights and let σ2 be the variance of the weights. The weight of a player
in a coalition of size X that doesn’t contain player i has the approximate normal distribution
N (µ, σ2

X). This means that the size of the area under the curve N (µ, σ2

X) between q−wi
X and

q
X is the approximate probability that the total weight of a coalition of size X lies between
q−wi and q. Hence, the approximate probability E∆X

i that player i can turn a coalition of
size X into a winning coalition is the size of the aforementioned area and is given by

E∆
X
i =

1√
(2πσ2/X)

Z q

q−wi

e−X (x−µ)2
2v . (6.1)

Now, by taking the average over all coalition sizes smaller than n, we get the approxi-
mate Shapley-Shubik index ϕ̄i of player i:

ϕ̄i =
1
n

n−1

∑
X=0

E∆
X
i .

In [26], the approximation error of this method is analysed. The analysis is too extensive
to give here, but it turns out that this method yields a O(1√

n)-additive error approximation

algorithm. The extension of this method to weighted m-majority games yields a O(k2
√

n)-
additive error approximation algorithm.

45

6.2 Approximation Algorithms Approximating Power Indices

6.2.3 A general approximation method for simple games

Bachrach et al. give in [8] an approximation algorithm for the Shapley-Shubik and Banzhaf
indices that works for any type of simple coalitional game; even the general, non-monotonic
class of simple coalitional games.

Besides the fact that this algorithm works on any simple game, another difference from
the two algorithms we discussed above is that this algorithm is randomized. It works by
randomly sampling coalitions.

Suppose the input of the algorithm is a game (A,v) and a number i,1 ≤ i ≤ |A|. The
algorithm computes the Banzhaf index for player i. First we sample uniformly at random a
set of k coalitions C1, . . . ,Ck containing player i such that every player j 6= i has a probability
of 1

2 of occuring in a coalition.
Next, compute the number c of these coalitions in which i is a swing player. The unbi-

ased maximum likelihood estimator for the Banzhaf index βi for player i is

β̄i =
c
k
.

This does not give us any confidence interval, but fortunately we can establish one
through Hoeffding’s inequality (cited from [8]):

Theorem 85. Let X1, . . . ,Xn be independent random variables, where all Xi are bounded so
that Xi ∈ [ai,bi], and let X = ∑

n
i=1 Xi. Then the following inequality holds.

Pr[|X −E[X]| ≥ nε]≤ 2exp
(
− 2n2ε2

∑
n
i=1(bi−ai)2

)
c can be regarded as the sum of k independent Bernouilli variables, so all of these

variables are bounded between 0 and 1. Moreover, the expected value of c is equal to kβi.
Therefore we have

Pr[|c− kβi| ≥ kε]≤ 2e−2kε2
,

and it follows that
Pr[|β̄i−βi| ≥ ε]≤ 2e−2kε2

.

Using this equation, it is fairly straightforward to deduce the number of samples k that
we have to make in order to compute β̄i with a given accuracy ε and a given confidence

level 1−δ. Such a convidence interval is guaranteed when k = ln 2
δ

2ε2 .
So computing in this way the Banzhaf index that is probably approximately correct in

the interval [β̄i − ε, β̄i + ε] with probability 1− δ, requires us to take O(ln 1
δ
· 1

ε2) samples,
and taking a sample requires O(|A|) time, therefore the total runtime is O(ln 1

δ
· |A| · 1

ε2). So
as you can see, the runtime and approximation guarantee of this algorithm is indipendent
from the length of the encoding of the characteristic function v.

This algorithm is easily adapted to work for the Shapley-Shubik index instead of the
Banzhaf index. The only adaptation that needs to be made is in the random sampling of
coalitions: instead of sampling coalitions, now we should sample permutations.

Lastly, in [8], some interesting approximability results are given. They are remarkable
because they do not rely on any complexity-theoretic assumtions such as P 6= NP. Their

46

Approximating Power Indices 6.2 Approximation Algorithms

proofs are not that short, so we won’t give the proofs here. However, we will give the actual
results:

Theorem 86. Given a player and a simple coalitional game v:

• A deterministic algorithm that has query access to v and gets as input the number
of players and i, that computes the Banzhaf index for player i with accuracy O(1√

n)

must query v Ω(2n
√

n) times.

• There exists no randomized algorithm with query access to v that constructs a confi-
dence interval for the Banzhaf index (given a player and a simple coalitional game
v) with a confidence level of 1− δ,δ < 1

2 and an accuracy of o(1
2n), querying v only

polynomially many times.

47

Chapter 7

Future Work

Concerning the research of power indices in computer science, there are several interesting
directions for future work.

Other Power Indices A lot of research has been put into algorithms for computing the
Banzhaf and Shapley-Shubik indices in weighted voting games, but as you might have
guessed, other power indices such as the Deegan-Packel index and even more so the Holler
index and the Johnston index received little attention. Efficient exact algorithms1 and ap-
proximation algorithms for computing these power indices still need to be designed.

Other Types of Games Secondly, there is the problem of computing the power indices in
simple games other than weighted voting games. Of course, the algorithm of section 6.2.3
is suitable for all types of coalitional games, but specialized algorithms for these games
might run faster or approximate better. For example, algorithms for computing power in-
dices in coalitional games that are represented by their minimal winning coalitions remain
unknown. It could be that for this representation faster algorithms exist than for the case
of games in weighted voting game representation, because a minimal winning coalition
representation of a weighted voting game can be exponentially much larger than the corre-
sponding weighted voting game representation (although theorem 57 is some evidence that
such algorithms might not be that much faster).

As we briefly mentioned in the introduction, Bachrach and Rosenschein already investi-
gated the problem for a specific different type of coalitional game. In [9] and [10], they give
some algorithms for computing the Banzhaf index in specific coalitional classes of games
on graphs. This naturally gives rise to the idea of using power indices as a network reliabil-
ity metric. Therefore it would be interesting to investigate the problem of computing power
indices in coalitional graph games some more.

Manipulation Recently, in [7] Bachrach and Elkind started studying the effect on a player’s
power index in a weighted voting game when the player splits his total weight into two

1An exception is probably the Deegan-Packel index, see [40] and [56] and chapter 5 of this survey. How-
ever, no good approximation algorithms for this power index are known to us.

49

Future Work

weights (adding an extra, false-name player to the game). The power index of the player
can than be regarded as the sum of the power indices of the ‘splitted’ new two players. In in
[7], this situation is analyzed for the Shapley-Shubik index. The authors show that by these
manipulations, in the worst case it is possible for a player to double his Shapley-Shubik
index.

In [5], among other topics the same question is analyzed for the case of the Banzhaf
index.

A related topic is discussed in [60]. In that paper, the main question is how the central
authority can change the quota in order to manipulate a player’s power index.

Finally, a paper that is of importance when it comes to manipulation of weighted voting
games is [23], where the computational complexity of power index comparison is studied.

As of writing this, the study on the computational aspects of manipulation of weighted
voting games is fairly new. In the papers we just mentioned, many interesting open problems
are presented.

The Inverse Problem Lastly, there is a problem that is known as “the inverse problem”.
For this problem, we are interested in constructing a weighted voting game, given the power
indices for the players. Not that much is known about this problem. We know of three
notable papers where algorithms are presented for this problem; all of them are very recent:

• A notable result in the field of threshold logic is a PRAS2 for the problem of comput-
ing a boolean threshold function that is close to given target Chow parameters [42].
For this problem, some more heuristics have been proposed in the past. We refer the
interested reader to [42] for references and a discussion on this.

• Concerning the inverse problem for the Shapley-Shubik index, Fatima et al. present
an anytime approximation algorithm [25]. They show that in each iteration, the ap-
proxmation error decreases. Also they prove that the runtime of a single iteration is
O(n2), and they present an experimental analysis of the algorithm.

• In [6], Aziz et al. present a method for the inverse problem for the case of the Banzhaf
index.

All are approximation algorithms. Complexity theoretical questions regarding this prob-
lem remain completely open, and with exception of the Chow parameters algorithm, there
exists no algorithm for the inverse problem for which a worst case analysis or an approxi-
mation guarantee is given.

2Note that this is not a PRAS in the sense of definition 73, but a PRAS in the ‘additive error’ sense of
definition 81.

50

Bibliography

[1] Computing power indices for large voting games. Management Science, 49(6):831–
838, June 2003.

[2] E. Algaba, J. M. Bilbao, J. R. Fernández Garcı́a, and J. J. López. Computing power
indices in weighted multiple majority games. Mathematical Social Sciences, 46:63–
80, 2003.

[3] Pajala Antti. Voting power and power index website: a voting power WWW-resource
including powerslave voting body analyser. WWW, april 2002. University of Turku.
Turku. URL: http://powerslave.val.utu.fi/.

[4] Haris Aziz. Complexity of comparison of influence of players in simple games.
In Proceedings of the 2nd International Workshop on Computational Social Choice
(COMSOC-2008), pages 61–72, 2008.

[5] Haris Aziz and Mike Paterson. Complexity of some aspects of control and manipula-
tion in weighted voting games. Annales du Lamsade, 9, 2008.

[6] Haris Aziz, Mike Paterson, and Dennis Leech. Efficient algorithm for designing
weighted voting games. In Proceedings of the IEEE Computer Society, 11th IEEE
International Multitopic Conference, 2007.

[7] Yoram Bachrach and Edith Elkind. Divide and conquer: false-name manipulations
in weighted voting games. In AAMAS ’08: Proceedings of the 7th international joint
conference on Autonomous agents and multiagent systems, pages 975–982, Richland,
SC, 2008. International Foundation for Autonomous Agents and Multiagent Systems.

[8] Yoram Bachrach, Vangelis Markakis, Ariel D. Procaccia, Jeffrey S. Rosenschein, and
Amin Saberi. Approximating power indices. In Proceedings of the The Seventh In-
ternational Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS
2008), pages 943–950, Estoril, Portual, May 2008.

[9] Yoram Bachrach and Jeffrey S. Rosenschein. Computing the Banzhaf power index
in network flow games. In AAMAS ’07: Proceedings of the 6th international joint

51

BIBLIOGRAPHY

conference on Autonomous agents and multiagent systems, pages 1–7, New York, NY,
USA, 2007. ACM.

[10] Yoram Bachrach and Jeffrey S. Rosenschein. Power and stability in connectivity
games. In The Seventh International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2008), Estoril, Portual, May 2008.

[11] J. Bilbao, J. Fernández, A. Losada, and J. López. Generating functions for computing
power indices efficiently. TOP: An Official Journal of the Spanish Society of Statistics
and Operations Research, 8(2):191–213, December 2000.

[12] S.F. Brams and P.J. Affuso. Power and size: a new paradox. Theory and Decision,
7:29–56, 1976.

[13] C.K. Chow. On the characterization of threshold functions. In Proceedings of the
Symposium on Switching Circuit Theory and Logical Design (FOCS), pages 34–38,
1961.

[14] James S. Coleman. Control of collectives and the power of a collectivity to act. Lieber-
man, Bernhardt, Social Choice, pages 192–225, 1971.

[15] James S. Coleman. Control of collectivities and the power of a collectivity to act.
Social Choice, pages 113–123, 1971.

[16] Vincent Conitzer and Tuomas Sandholm. Computing Shapley values, manipulating
value division schemes, and checking core membership in multi-issue domains. In
Proceedings of the National Conference on Artificial Intelligence, pages 219–225, San
Jose, California, 2004. American Association for Artificial Intelligence.

[17] M. Davis and M. Maschler. The kernel of a cooperative game. Naval Research Logis-
tics Quarterly, 12:223–259, 1965.

[18] Xiaotie Deng and Christos H. Papadimitriou. On the complexity of cooperative solu-
tion concepts. Math. Oper. Res., 19(2):257–266, 1994.

[19] Pradeep Dubey. On the uniqueness of the Shapley value. International Journal of
Game Theory, 4(3):131–139, September 1975.

[20] Pradeep Dubey and Lloyd S. Shapley. Mathematical properties of the Banzhaf power
index. Mathematics of Operations Research, 4(2):99–131, 1979.

[21] Arnaud Durand, Miki Hermann, and Phokion G. Kolaitis. Subtractive reductions and
complete problems for counting complexity classes. Theoretical Computer Science,
340(3):496–513, 2005.

[22] E. Einy. The desirability relation of simple games. Mathematical Social Sciences.

52

BIBLIOGRAPHY

[23] P. Faliszewski and L. Hemaspaandra. The complexity of power-index comparison. In
In Proceedings of the 4th International Conference on Algorithmic Aspects in Infor-
mation and Management, pages 177–187. Springer-Verlag Lecture Notes in Computer
Science, june 2008.

[24] Shaheen S. Fatima, Michael Wooldridge, and Nicholas R. Jennings. A randomized
method for the Shapley value for the voting game. In Proceedings of the Sixth Inter-
national Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS
2007), pages 955–962, Honolulu, Hawaii, May 2007.

[25] Shaheen S. Fatima, Michael Wooldridge, and Nicholas R. Jennings. An anytime ap-
proximation method for the inverse Shapley value problem. In Proceedings of the
Seventh International Joint Conference on Autonomous Agents and Multi-Agent Sys-
tems (AAMAS 2008), pages 935–942, Estoril, Portugal, May 2008.

[26] Shaheen S. Fatima, Michael Wooldridge, and Nicholas R. Jennings. A linear approx-
imation method for the Shapley value. Artificial Intelligence, 172(14):1673–1699,
2008.

[27] A. Francis. Advanced Level Statistics, page 425. 1979, Stanley Thornes Publishers.

[28] D.B. Gillies. Solutions to general non-zero-sum games. In A. W. Tucker and R. D.
Luce, editors, Contributions to the Theory of Games IV, pages 47–85. Princeton Uni-
versity Press, 1959. Annals of Mathematics Studies 40.

[29] M.J. Holler. Forming coalitions and measuring voting power. Political studies,
30:262–271, 1982.

[30] Samuel Ieong and Yoav Shoham. Marginal contribution nets: a compact representa-
tion scheme for coalitional games. In EC ’05: Proceedings of the 6th ACM conference
on Electronic commerce, pages 193–202, New York, NY, USA, 2005. ACM.

[31] John F. Banzhaf III. Weighted voting doesn’t work: A mathematical analysis. Rutgers
Law Review, 19(2):317–343, winter 1965.

[32] R. J. Johnston. On the measurement of power: Some reactions to laver. Environment
and Planning, 10:907–914, 1978.

[33] John Deegan Jr. and Edward W. Packel. A new index of power for simple n-person
games. International Journal of Game Theory.

[34] Bettina Klinz and Gerhard J. Woeginger. Faster algorithms for computing power in-
dices in weighted voting games. Mathematical Social Sciences, 49:111–116, 2005.

[35] M. W. Krentel. The complexity of optimization problems. In STOC ’86: Proceedings
of the eighteenth annual ACM symposium on Theory of computing, pages 69–76, New
York, NY, USA, 1986. ACM.

53

BIBLIOGRAPHY

[36] Dennis Leech. Computation of power indices. Technical Report 664, Warwick Eco-
nomic Research Papers, July 2002.

[37] W. F. Lucas. Measuring Power in Weighted Voting Systems, pages 183–238. Springer-
Verlag, New York, 1975.

[38] I. Mann and Lloyd S. Shapley. Values of large games, IV: Evaluating the electoral col-
lege by monte carlo techniques. Technical Report RM-2651, The RAND Corporation,
Santa Monica, CA, 1960.

[39] I. Mann and Lloyd S. Shapley. Values of large games, VI: Evaluating the electoral
college exactly. Technical Report RM-3158-PR, The RAND Corporation, 1962.

[40] Yasuko Matsui and Tomomi Matsui. A survey of algorithms for calculating power
indices of weighted majority games. J. Oper. Res. Soc. Japan, 43:71–86, 2000.

[41] Yasuko Matsui and Tomomi Matsui. NP-completeness for calculating power indices
of weighted majority games. Theoretical Computer Science, 263(1–2):305–310, 2001.

[42] Ryan O’Donnell and Rocco A. Servedio. The chow parameters problem. In STOC
’08: Proceedings of the 40th annual ACM symposium on Theory of computing, pages
517–526, New York, NY, USA, 2008. ACM.

[43] Guillermo Owen. Multilinear extensions of games. Management Science, 18:64–79,
1972.

[44] Guillermo Owen. Multilinear extensions and the Banzhaf value. Naval Research
Logistic Quarterly, 22:741–750, 1975.

[45] Guillermo Owen. Game Theory. Academic Press, 1995.

[46] Christos H. Papadimitriou. Computational Complexity. Addison Wesley Longman,
1994.

[47] Bezalel Peleg and Peter Sudhlter. Introduction to the Theory of Cooperative Games.
Springer, 2003.

[48] L. S. Penrose. The elementary statistics of majority voting. Journal of the Royal
Statistical Society, 109:53–57, 1946.

[49] K. Prasad and J.S. Kelly. NP-completeness of some problems concerning voting
games. International Journal of Game Theory, 19(1):1–9, 1990.

[50] William H. Riker. The Theory of Political Coalitions. Greenwood Press, 1962.

[51] D. Schmeidler. The nucleolus of a characteristic function game. SIAM Journal of
Applied Mathematics.

[52] Lloyd S. Shapley. A value for n-person games. Annals of Mathematics Study, 28:307–
317, 1953.

54

BIBLIOGRAPHY

[53] Lloyd S. Shapley and Martin Shubik. A method of evaluating the the distribution of
power in a committee system. American Political Science Review, 48(3):787–792,
1954.

[54] Janos Simon. On some central problems in computational complexity. Technical
report, Ithaca, NY, USA, 1975.

[55] Alan D. Taylor and William S. Zwicker. Simple Games: Desirability Relations, Trad-
ing, Pseudoweightings. Princeton University Press, 1999.

[56] Takeaki Uno. Efficient computation of power indices for weighted majority games.
Technical Report NII-2003-006E, National Institute of Informatics, 2003.

[57] Leslie Valiant. The complexity of computing the permanent. Theoretical Computer
Science, 8(2):189–201, 1979.

[58] Vijay V. Vazirani. Approximation Algorithms. Springer, 2003.

[59] V. Zankó. #P-completeness via many-one reductions. International Journal of Foun-
dations of Computer Science, 2(1):76–82, 1991.

[60] Michael Zuckerman, Piotr Faliszewski, Yoram Bachrach, and Edith Elkind. Manipu-
lating the quota in weighted voting games. In The Twenty-Third National Conference
on Artificial Intelligence, Chicago, Illinois, July 2008.

55

Appendix A

New Results

In this appendix, I give some theorems that I didn’t find in the literature. For now, consider
this as nothing more than a scrapbook. In the final version, this appendix will be removed.
The first two theorems of this appendix have been included in chapter 4.

Theorem 87. The languages PIVOT-iTH-HEAVIEST are in P for all i∈N. They are defined
as:

{〈W =(w1, . . . ,wn),q〉 | β
′
i > 0 in the weighted voting game (W,q)∧∀i, j : i < j→wi ≥w j}.

Here, β′i is the number of coalitions that i is critical in a.k.a. the raw Banzhaf index for
player i.

Proof. Let’s first consider the language PIVOT-1TH-HEAVIEST. Clearly, in a weighted
voting game (W = (w1, . . . ,wn),q) where w1 ≥ w2 ≥ ·· · ≥ wn, clearly w1 there is always a
coalition in which w1 is critical as long as 0 < q ≤ ∑w∈W w. So there is an O(n)-time algo-
rithm for PIVOT-1TH-HEAVIEST. Actually, it is even possible to find a coalition for which
player i is critical: consider the grand coalition and keep removing the lowest-weighted
players until the sum of the weights of the players in the coalition drops below q. If that
happens, add the last player w j that was removed. The resulting coalition is a swing coali-
tion for player 1, because w1 ≥ w j.

For the problems PIVOT-iTH-HEAVIEST, with i > 1 we can generalize the idea: In a
weighted voting game (W = (w1, . . . ,wn),q) where w1 ≥ w2 ≥ ·· · ≥ wn, player i has a pivot
coalition if and only if at least one of the following coalitions is a swing coalition for i :

C = {s<i∪ s≥i | s<i ∈ S<i∧ s≥i ∈ S≥i},

where S<i is the collection of subsets s ⊆W that contain only weights heavier than wi,
and S≥i consists of the subsets s of W that contain wi, and if w j ∈ s for any j > i, then
w j−1 ∈ S≤i.

This is true because we can transform any arbitrary swing coalition for i into a swing
coalition for i in C: Consider a swing coalition D for i that is not in C. Remove all the
weights lower than wi from D to obtain D′. If the resulting coalition is a swing coalition, then
we’re done. Otherwise, we have ∑d∈D′ d < q−wi, so we iteratively add the highest weight

57

New Results

lower than wi that’s not in D′. Clearly at some iteration we will have q−wi ≤ ∑d∈D′ < q.
At that point, D′ is in C.

We can enumerate all of the coalitions in C, and check whether each coalition is a swing
coalition for i. The cardinality of C is 2i−1(n− i), so we can decide PIVOT-iTH-HEAVIEST
in linear time.

Theorem 88. The languages PIVOT-iTH-LIGHTEST are NP-complete for all i ∈ N. They
are defined as:

{〈W =(w1, . . . ,wn),q〉 | β
′
i > 0 in the weighted voting game (W,q)∧∀i, j : i < j→wi ≤w j}.

Here, β′i is the number of swings a.k.a. the raw Banzhaf index for player i.

Proof. For i = 1, it has already been proved in [41], by a polynomial-time reduction (a.k.a.
Karp reduction) from PARTITION. It is very easy to extend it to reductions for the cases that
i > 1. We give a family of Karp reductions from PIVOT-1TH-LIGHTEST to PIVOT-iTH-
LIGHTEST for any i. Given an instance 〈W,q〉 of PIVOT-1TH-LIGHTEST, append i− 1
weights with value 1

i−2 to the beginning of W to get W ′. Because (W,q) is a weighted voting
game, q and all weights in W are integer. The newly added weights are not integer, but if we
would allow the weights in weighted voting games to be rational numbers, then obviously
the new players in (W ′,q) would all be dummy players. We eliminate the rationals from
(W ′,q) by multiplying all weights by i−2 and multiplying q by i−2. In the resulting game
we still have that the first i−1 players are dummy players. So if β′1 > 0 in the PIVOT-1TH-
LIGHTEST-instance, then β′i > 0 in the PIVOT-iTH-LIGHTEST-instance, and vice versa.
Therefore, all of the problems PIVOT-iTH-LIGHTEST are NP-complete.

Theorem 89. Two players in a weighted majority game are symmetric iff their (raw) Banzhaf
indices are equal and their (raw) Shapley-Shubik indices are equal. Recall: two players i
and j are considered symmetric iff

∀S ⊆W\{wi,w j} : q−wi ≤

(
∑
w∈S

w

)
< q

↔ q−w j ≤

(
∑
w∈S

w

)
< q,

Proof. First of all, it’s obvious that equalness of the Banzhaf indices is equivalent to equal-
ness of the Shapley-Shubik indices.

The forward proof for this theorem is trivial.
As for the backward case, let (W = (w1, . . . ,wn),q) be an arbitrary weighted voting

game. Assume without loss of generality that ∀i, j : i < j → wi ≥ w j. Suppose that for
two different players i and j, i < j, the Banzhaf indices are equal. Firstly, there cannot
exist a coalition S ⊆W\{wi,w j} such that w j ∪ S is a pivot coalition for j, and wi ∪ S is
not a pivot coalition for i. This is because wi ≥ w j. Secondly, suppose there is a coalition
S ⊆W\{wi,w j} such that wi∪S is a pivot coalition for i, and w j ∪S is not a pivot coalition
for j. If this is so, then by equalness of the Banzhaf indices of both players, there must also

58

New Results

be a coalition S′ ⊆W\{wi,w j} such that w j ∪S′ is a pivot coalition for j, and wi∪S′ is not
a pivot coalition for i. So we fall back to the first case, which is impossible as we showed.

Actually, by now I have read a bit more literature and I realize that there are much easier
ways to prove this.

Theorem 90. Let SWINGTOTAL-WVG-EXISTENCE be the following language:

{〈β,n〉 | ∃G = (W = (w1, . . . ,wn),q) :

β is the total number of swings in weighted voting game G}.

SWINGTOTAL-WVG-EXISTENCE is in EXPSPACE.

Proof. We use a result in [4] that states that it can be decided in polynomial time whether
a game in minimal winning coalition form can be represented as a weighted voting game.
We can enumerate all games in minimal winning coalition form on n players, compute in
exponential time the swing total of this game, and decide in polynomial time whether this
game can be represented as a weighted voting game.

The number of games that we have to enumerate is absolutely huge. For a game of
n players, this number is equal to the number of antichains on a set that has cardinality
n. Equivalently, this number is equal to the number of monotone boolean functions (is
obvious). No explicit mathematical expression has been found for these numbers yet; ac-
tually this is quite a big open problem in the thoery of set systems and monotone boolean
function. The problem is known as Dedekind’s problem, and the numbers are known as
Dedekind numbers.

However, when we incorporate the following theorem, known as Sperner’s theorem, it
is easy to determine a crude upper bound on the amount of antichains.

Theorem 91 (Sperner’s theorem). The maximum size of an antichain on a set of cardinality
n is

(n
bn/2c

)
.

Clearly an upperbound on the number of antichains of size k on a set of cardinality n is
2nk

So an upperbound on the total number of antichains is

(n
bn/2c)
∑
k=0

2nk ≤ 2n(n
bn/2c)

2n.

I guess much better upper bounds are known (I didn’t study any literature on this) but
Dedekind numbers are huge either way.

An algorithm that decides this problem could work as follows: first it enumerates the
antichains of size 1, then the antichains of size 2, and so on until we reach size

(n
bn/2c

)
. Each

antichain represents a simple monotone game. For this game we count the total number of
swings in exponential time, and if it has the correct number of swings, then we decide in
polynomial time if it is representable as a weighted voting game.

Of course, this is just a quick result and possibly it can be sharpened.

59

New Results

Theorem 92. Let INVERSE-RAWBANZHAF-WVG-EXISTENCE be the following language:

{〈β1, . . . ,βn〉 | ∃G = (W = (w1, . . . ,wn),q) :

β
′
i is the raw Banzhaf index of player i in weighted voting game G}.

INVERSE-RAWBANZHAF-WVG-EXISTENCE is in EXPSPACE.

Proof. Naively we can try to enumerate all vectors of n+1 integers, and check if the simple
game denoted by that vector has the required power index. The problem with this is that we
don’t know when to stop. If the game exists however, then eventually we will find one. So
from this we conclude that the problem is at least recursively enumberable.

To see that it’s decidable we can use the same method as in the previous theorem.
From my inuition, by now it’s starting to look like the inverse power index problem

really is insanely hard :)

Theorem 93. There are minimally |N| swings in a weighted majority game. This bound is
tight. (Also, the upper bound is dn

2e
(n
d n

2 e
)
. See [20] for that.)

Proof. Any weighted majority game has a minimal winning coalition. Suppose a coalition
S ⊆ N is a minimal winning coalition. For this coalition there are |S| ≥ 1 swings. Partition
the players not in S into L, H, and B. L are the players lighter than the lightest player in S.
H are the players heavier than the heaviest player in S, and B are the players in between the
lightest and heaviest player in S.

If we add a player in L to S and call the resulting set S′, then S′ is a winning coalition
and not a minimal winning coalition. If we remove the smallest player in S from S′ then
we either end up with a losing coalition, or another minimal winning coalition. The former
case implies that we have identified a new swing, and the latter case implies that we have
identified |S| ≥ 1 new swings. So for each player in L we can identify at least 1 swing.

If we add a player x in H to S and call the resulting set S′, then S′ is a winning coalition
and not a minimal winning coalition. If we remove the heaviest player in S from S′ then we
end up with a new winning coalition for which it holds that it turns into a losing coalition if
we remove x. So for each player in H we can identify at least 1 swing.

If we add a player x in B to S and call the resulting set S′, then S′ is a winning coalition
that is not minimal. If we remove the heaviest player in S from S′ that is lower than x, we
end up with a winning coalition for which it holds that if we remove x, it turns into a losing
coalition. So for each player in H, we have identified a swing.

So in total we have identified |L|+ |H|+ |B| = |N| − |S| swings additional to the |S|
swings in the minimal winning coalition S. So in a weighted majority game there are at
least |S|+ |N|− |S|= |N| swings.

To see that this lower bound is tight consider the weighted majority game in which only
the grand coalition is winning.

Theorem 94. For any i, ji 6= j,1 ≤ i, j ≤ n: In a weighted voting game, if C1 is a swing
coalition for player i and does not contain player j, and if C2 is a swing coalition for player
j and does not contain player i, then C1∪C2 is not a swing coalition for player i or j.

60

New Results

Proof. Suppose w.l.o.g. wi ≥w j. We have q−wi ≤w(C1 {i})< q and q−w j ≤w(C2 { j})<
q. Let C3 = C1 {i}∪C2 { j}. w(C3) >= q−wi. Now we divide the proof in two cases:
if w(C1) ≤ w(C2) then we have w(C1 {i}) ≤ w(C2 { j}) and hence w(C3) ≥ w(C2 { j}) ≥
q−w j. C1∪C2 =C3∪{i}∪{ j} and w(C3∪{i}∪{ j})≥ q−w j +wi +w j = q+wi. Because
wi > w j, C1∪C2 is neither a swing coalition for i nor j.

In the case that w(C1) > w(C2) it must be that either w(C1 {i}) = w(C2 { j}) and w j > wi

or w(C1 {i}) > w(C2 { j}) and w j = wi. In the first case C3 ≥ q−w j, hence w(C3∪{i, j}) =
q + wi and C1 ∪C2 is not a swing coalition. In the second case, C3 ⊇ C2 {i}, so w(C3) >
q−w j, w(C3∪{i, j}) = q+wi and C1∪C2 is not a swing coalition.

By adding wi and w j to C3 we get w(C3 ∪ {i, j}) ≥ q + w j. There are now 4 cases:
The first three are that C3 contains i, j or both: Then C3 ⊇ C2 ∪ i. Because v(C2) = 1,
v(C2∪ i) = 1 and it follows that i is not a swing in C3. Also, because wi ≥ w j, w j also can
not be a swing player in C2∪{i} and it follows that i is not a swing in C3.

Theorem 95. In a weighted voting game, for two players i and j, there is no pair of coali-
tions C1 and C2 such that i is a swing coalition for player i and not for player j, and C2 is a
swing coalition for player j and not for player i.

Proof. Obvious, but anyway: Assume w.l.o.g. that wi ≥ w j. If wi = w j then C1 and C2 are
swing coalitions for both players. If wi > w j, then C1 may be a swing coalition for player i
and not for player j, but then if C2 is a swing coalition for player j, it is also for i because
wi > w j.

Theorem 96. For any i, j, i 6= j,1 ≤ i, j ≤ n,wi > w j: In a weighted voting game, if C1 is a
swing coalition for player i and not for player j, and if C2 is a swing coalition for player j,
then C1∪C2 is not a swing coalition for player j.

Proof. Clearly C1\{ j} is a swing coalition for player i. q−wi ≤ w(C1\{i, j}) < q. Now
either C2 contains i or not. If C2 does not contain i, then by theorem 94, C1\{ j}∪C2 is not
a swing coalition for player i or j, and hence C1∪C2 also isn’t.

If C2 does contain i, C2 is a swing coalition for i because wi ≥ w j. w(C1 ∪C2) =
w(C1\{i, j}∪C2\{i, j}) + wi + w j. Because w(C1\{i, j}∪C2\{i, j}) ≥ q−wi, it follows
that w(C1\{i, j}∪C2\{i, j})≥ q−wi, so w(C1∪C2)≥ q+w j, so the theorem follows.

61

