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Chapter 1

Introduction

This thesis covers some of the research in algorithmic game theory that I have carried
out during the four years that I was a Ph.D. student. Algorithmic game theory is an
area of research that lies in the intersection of economics, mathematics and computer
science. The field essentially came into existence in the 1990’s, as a result of the Inter-
net developing into the most important medium for communication and information.
An Internet application typically features many users that are, to some extent, self-
interested. We can therefore expect such users to strategize over the input that they
communicate to such applications. Often, the goal or task that the application needs
to carry out, is not perfectly (or even not at all) aligned with the goals of the users
application, and therefore such strategic behavior may be harmful to the performance
of the application. Hence, certain questions become relevant in this setting, and deal
for example with:

• the harm that the strategic behavior does to the performance of the application;

• the best way for a user to choose his or her strategy;

• how to design the application such that the users can not abuse it;

• whether there is any structure in the way the application and users will behave;

• which useful or desirable properties the application may or may not possess;

• how the users will cooperate, or what the best way of cooperation would be.

To answer such questions, it is natural to make use of the tools that have been developed
in the field of game theory.

1



2 CHAPTER 1. INTRODUCTION AND PRELIMINARIES

Game theory encompasses the mathematical study of strategic decision making,
and models of conflict. The central objects of study in game theory are games, which
model abstract settings in which multiple participating entities, called players, must
choose among a set of strategies so as to maximize their own utility function. A player’s
utility function in turn depends on the strategies adopted by all players in the game.

One of the first basic insights that game theory has contributed is that selfish indi-
vidual behavior may be bad for the set of players as a whole. This is demonstrated by
the famous Prisoner’s Dilemma: a canonical example of a game in game theory.

Example 1 (The Prisoner’s Dilemma). The Prisoner’s Dilemma is formulated as fol-
lows. Two men are suspected of a crime and get arrested. They get separated and get
offered a deal:

• If both stay silent, then both spend 1 year in prison.

• If both betray each other, then both spend 2 years in prison.

• If one betrays and the other stays silent, then the betrayee gets 3 years in prison
and the betrayer 0 years.

The Prisoner’s Dilemma is an example of a two-player game where both players
must choose among two strategies (betrayal or staying silent). A choice of strategies
where no player has a reason to change strategies is called an equilibrium. When we
analyze the Prisoner’s Dilemma, we see that the only equilibrium is when both players
choose to betray. We also see that this particular choice of strategies results in the
largest possible total amount of time spent in prison. The choice of strategies that
results in the least total amount of time spent in prison, is when both players choose to
remain silent. Despite that the latter choice of strategies is optimal for the two players
together, it is unlikely that this choice of strategies will form, due to it not being an
equilibrium. The Prisoner’s Dilemma demonstrates that in a game, the worst possible
choice of strategies may be the only choice of strategies that is “stable” with respect
to the selfish behavior of the players. In the sections below, we provide a introduction
and formal exposition of basic game theory (including formal definitions of games and
equilibria) and algorithmic game theory.

The Internet application setting sketched above (i.e., an application with
self-interested users) can be modeled as a game if we let the players be the users and
if we let the strategies be the set of inputs that a user can communicate to the applica-
tion. Game theory may subsequently provide us with insights into the type of questions
stated above.

As soon as game theory became relevant to computer science, computer scientists
started posing computationally-themed questions about the various notions and results
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of game theory. The addition of this computational component to game theory resulted
in the field of algorithmic game theory, and has yielded various interesting results and
lines of research. We will encounter many of these in this thesis and contribute new
results and insights to this field as well.

1.1 This Thesis
The algorithmic game theory research discussed in the thesis is diverse, but nonethe-
less, the thesis has a central theme, and many parts of the thesis relate to each other in
one or more ways. The central theme of the thesis is that of externalities in games, and
the related notion of cooperation among the players.

By externalities, we mean that the players in the game take into account, in one
way or the other, the well-being of the other players. This other-regarding behavior may
manifest itself in a positive way, but also in a negative way: classically, (strategic) game
theory assumes that players are completely selfish, and that players maximize their own
utility at all costs. In this thesis, we will often be interested in the consequences of
changing this assumption in various ways.

We also consider the ability to interact with other players to be a type of externality.
This gives rise to the related notion of cooperation among the players. The theme of
cooperation will be present in several chapters of the thesis. Indeed, the final chapters
will purely deal with algorithmic cooperative game theory.

Although externalities and cooperation will frequently make an appearance, not all
of this thesis will have to do with these topics. A notable example of this is the second
chapter, which is about the inefficiency of multi-unit auctions and in which neither
externalities nor cooperation play a role. The thesis has been organized such that each
chapter shares one or more topics with its preceding chapter. The chapters of this
thesis can therefore be classified into overlapping blocks that each share a particular
sub-theme. In the final section of this introductory chapter, we elaborate on this, and
provide a short abstract of each of the chapters.

Each chapter only assumes the preliminary knowledge covered in this introduction
chapter, as well as a basic knowledge of combinatorial optimization, algorithms, and
computational complexity. Apart from these preliminaries, each chapter is essentially
self-contained. All these chapters are based on one or more (published or unpublished)
papers that I co-authored. The respective paper on which a chapter is based is indicated
in a footnote on the first page of that chapter.
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1.2 Preliminary Remarks on Notation and Terminology
Before proceeding, it is necessary to establish some prelimininary notation.

We use the symbols ⊆ and ⊇ for set inclusion, and we use ⊂ and ⊃ for strict set
inclusion. As usual, ∅ denotes the empty set.

The symbols N,Q,R denote the sets of natural numbers, rational numbers, and real
numbers, respectively. The set of natural numbers is assumed to contain 0.

When A is a set of numbers, we may subscript it with “> 0” and “≥ 0” to denote
respectively the positive and non-negative subset of A, i.e., A>0 = {a ∈ A | a > 0}
and A≥0 = {a ∈ A | a ≥ 0}. In particular we use this notation in combination with
N,Q,R. E.g., N>0 denotes the set of natural numbers excluding zero, and N≥0 = N.
For a ∈ N>0, we write [a] to denote the set {b ∈ N>0 | b ≤ a}.

For a real number a ∈ R≥0, we define dae = min{b ∈ Z | b ≥ a} and bac =
max{b ∈ Z | b ≤ a}.

When A is a set of numbers, we write 2A to denote its power set: 2A = {A′ | A′ ⊆
A}. We use × for the Cartesian product operation: A×B = {(a, b) | a ∈ A, b ∈ B}.

Let n ∈ N, let i ∈ [n], and let s = (s1, . . . , sn) be an n-dimensional vector,
we write (s′i, s−i) to denote the vector (s1, . . . , si−1, s

′
i, si+1, . . . sn) obtained from s

by changing its ith coordinate to s′i. We note that the notation (s′i, s−i) is formally
ambiguous and overloads standard notation, since the index i is crucial in determining
the vector that (s′i, s−i) denotes. However, i will always be clear from context, as it is
always included in the subscripts used, and confusion will not arise.

Some basic probability theory will be used throughout this thesis. Pr will be used
to refer to a probability measure, and E will be used for the expectation operator.
Therefore, when we use the term probability distribution, we mean formally a proba-
bility mass function in case the distribution is discrete and a probability density function
in case of a continuous distribution. When a random variable s has probability distri-
bution σ, we write this as s ∼ σ. We will oftentimes use this notation as a subscript in
the symbols Pr and E in order to provide clarity about the probability space we work
with.

Let σ be a probability distribution on A1 × · · · × An (for n ∈ N>0 an arbi-
trary number, and A1, . . . , An arbitrary sets). σ is said to be the product distribution
of (σ1, . . . , σn), where σi is a probability distribution on Ai, i ∈ [n], iff1 σ(s) =∏n
i=1 σ(si) for all s = (s1, . . . , sn) ∈ A1,× · · · × An. When there exist distributions

σi such that σ is the product distribution of (σ1, . . . , σn), we say that σ is a product
distribution. Moreover, for i ∈ [n] we write σ−i to denote the projection of σ on

1Throughout this thesis we use the word “iff ” to signify a definition, as opposed to “if ” or “if and only
if ” which will be used in the context of non-definitional statements (i.e., those that may turn out to be true or
false).
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A−i = A1× · · · ×Ai−1×Ai+1× · · · ×An, i.e., σ−i is the probability distribution on
A−i so that σ−i(s−i) =

∑
si∈Ai σ(s1, . . . , sn) for all s−i ∈ A−i.

1.3 Introduction to Game Theory
The field of game theory is essentially subdivided into two subfields: non-cooperative
game theory and cooperative game theory. These two disciplines are disjoint to a
significant extent. In this thesis, we nonetheless study topics from both non-cooperative
and cooperative game theory, and therefore provide the reader with an introduction
to both disciplines (although for cooperative game theory we will be less elaborate).
Unless explicit references are given, the material introduced here can be found in any
introductory book on game theory. We start with non-cooperative game theory.

1.3.1 Non-Cooperative Games
The central object of study in strategic game theory is the following:

Definition 2 (Game). A (finite) (strategic or non-cooperative) (full information) game
is a triple Γ = (n,Σ, u) where n ∈ N>0 and the set [n] is referred to as the set of
players of the game. The set Σ is a Cartesian product of n finite sets Σ1, . . . ,Σn. For
i ∈ [n], the set Σi is referred to as the set of strategies of player i. The elements in
Σ are called the strategy profiles of Γ. u is a vector of n utility functions. The ith
component of u, for i ∈ [n], is the function ui : ×iΣi → R which we call the utility
function of player i.

Example 3. The prisoner’s dilemma mentioned at the start of this chapter is the game
(2,Σ, u), Σ = Σ1×Σ2, u = (u1, u2), Σ1 = Σ2 = {b, c}, where b is the strategy where
the player betrays the other player, and c is the strategy where the player remains silent.
The utility functions are valued as the negation of how many years the player would
have to serve in prison, and are thus defined by u1(b, c) = u2(c, b) = 0, u1(c, b) =
u2(b, c) = 3, u1(b, b) = u2(b, b) = 2, u1(c, c) = u2(c, c) = 1.

Games are studied in the following context: Players in a game are interpreted as
rational autonomous entities that each want to optimize their utility function. They
each pick a strategy from their strategy set, so that a strategy profile arises. A player
wants to maximize the value that its utility function maps this strategy profile to, i.e., it
wants to maximize its utility.
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1.3.1.1 Equilibria

This interpretation of a game gives rise to various notions of “stable” strategy profiles,
also called equilibria. The most straightforward such notion is that of a strategy profile
for which it would not be benificial for any player to unilaterally change its strategy.

Definition 4 (Pure equilibrium). A pure (Nash) equilibrium of a game is a strategy
profile s ∈ Σ such that for all i ∈ [n], and s′i ∈ Σi,

ui(s
′
i, s−i) ≤ ui(s). (1.1)

The set of pure equilibria of Γ is denoted by PEΓ.

Notions of stable strategy profiles in games, such as the notion of a pure equilib-
rium, are often referred to as solution concepts. This is because such a notion can be
regarded as a rule for predicting which strategy profiles in a game will naturally arise
(in a very broad sense) or “end up in”. Besides this descriptive interpretation of solu-
tion concepts, sometimes a solution concept may be interpreted in a prescriptive way
as well: one could in some cases argue that the players in a game should play some
strategy profile that conforms to a particular solution concept, as this results in a stable
situation where no player wants to change its strategy profile.

Solution concepts take a central role in the study of game theory. There are various
other popular solution concepts. We explain some basic game-theoretical concepts
first, and use them to define the other solution concepts that we encounter in this thesis.
We explain the motivation behind their definition subsequently.

Definition 5 (Mixed strategy, best response). A mixed strategy of player i ∈ [n] is
a probability distribution on Σi. A best response of player i ∈ [n] to a probability
distribution σ on Σ is a strategy s′i ∈ Σi that maximizes Es−i∼σ−i [ui(s

′
i, s−i)].

Definition 6 (Nash equilibrium, correlated equilibrium, coarse equilibrium).

• A coarse (correlated) equilibrium of a game is a probability distribution σ on Σ
with the following property: For each player i ∈ [n], and all s′i ∈ Σi:

Es∼σ[ui(s)] ≥ Es−i∼σ−i [ui(s
′
i, s−i)]. (1.2)

• A (mixed) Nash equilibrium of a game is a coarse equilibrium σ that is a product
distribution of (σ1, . . . , σn) for some probability distributions σi on Σi, i ∈ [n].
We will sometimes abuse this definition and refer to the vector (σ1, . . . , σn) as a
mixed Nash equilibrium.
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• A correlated equilibrium is a probability distribution σ on Σ with the following
property: For each player i ∈ [n] and strategies s∗i , s

′
i ∈ Σi with Prs∼σ[si =

s∗i ] > 0:

Es∼σ[ui(s) | si = s∗i ] ≥ Es∼σ[ui(s
′
i, s−i) | si = s∗i ]. (1.3)

For a game Γ, we refer to its sets of coarse, mixed Nash, and correlated equilibria as
respectively CsEΓ, NEΓ, and ClEΓ.

When we view the pure equilibria as probability distributions with singleton sup-
port, it holds that:

CsEΓ ⊇ ClEΓ ⊇ NEΓ ⊇ PEΓ.

The first of these containments holds because (1.3) is a more restrictive condition than
(1.2). The last of these three containments holds because a pure equilibrium (viewed
as a distribution with singleton support) is a product distribution. For the middle con-
tainment we have to give a proof. We do this along with another basic fact:

Proposition 7. The mixed strategy profile σ = (σ1, . . . , σn) is a Nash equilibrium if
and only if for all i ∈ [n], the support of σi is a subset of the strategies in Σi that are
best responses to σ. Moreover, ClEΓ ⊇ NEΓ.

Proof. Let us write down the expected utility of player i.

Es∼σ[ui(s)] =
∑
s∈Σ

ui(s)
∏
i∈[n]

σi(si)

=
∑
si∈Σi

σi(si)Es−i∼σ−i [ui(si, s−i)].

This shows that the expected utility player i receives for playing σi against the opposing
mixed strategies σ−i is a convex combination of the terms Es−i∼σ−i [ui(si, s−i)], si ∈
Σi. If i plays with non-zero probability a strategy s′i that is not a best response to σ−i,
then it can improve its expected utility by playing a best response with probability 1.
This proves the first claim.

The second claim follows because the expectation on the left hand side of (1.2)
is equal to Es∼σ[ui(s)] | si = s∗i ] for all s∗i ∈ Σi such that Prs∼σ[si = s∗i ] > 0
when σ is a Nash equilibrium, from what we just established. The expression on the
right hand side of (1.2) is equal to Es∼σ[ui(s

′
i, s−i)] = Es∼σ[ui(s

′
i, s−i)|si = s∗i ] for

s∗i ∈ Σi,Prs∼σ[si = s∗i ] > 0 when σ is a Nash equilibrium. I.e., (1.2) and (1.3) are
equivalent in case σ is a Nash equilibrium.
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1.3.1.2 Nash Equilibria

The motivation behind Nash equilibria is apparent when one allows the players in a
game Γ to play a strategy according to an arbitrary probability distribution. One can
view this setting as a new “game” Γ′ = (n,Σ′, u′), where Σ′ = Σ1×· · ·×Σn, and Σi is
the set of mixed strategies of player i.2 u′i is then defined as u′i(σ) = Es∼σ[ui(s)], and
the pure equilibria of Γ′ are the Nash equilibria of Γ. As we conclude from the above
proposition, in a mixed equilibrium every player only has best responses in its support,
so the pure equilibrium condition (1.1) for Γ′ is equivalent to the Nash equilibrium
condition (1.2) for Γ. The Nash equilibria are thus the stable strategies when we allow
the players to choose their strategies at random.

A fundamental result on Nash equilibria is that they are guaranteed to exist (if the
strategy sets are finite and the player set is finite as well, but this is inherent in the
definition of a game that we have given here).

Theorem 8 (Existence of Nash equilibria [Nash, 1950]). For all games Γ, NEΓ 6= ∅.

As a consequence of 1.3.1.1, ClEΓ and CsEΓ are also guaranteed to be non-empty.

1.3.1.3 Correlated Equilibria

Correlated equilibria can be interpreted as there being an “advisor”, telling the players
what would be the best thing to do. In real life, there are settings where the presence
of such an advisor is natural. Think for example of a road junction with traffic lights.
The traffic lights here tell the drivers what to do. The drivers (approximately) adhere
to the advice of the traffic lights, so one could argue that the strategy distribution of the
drivers that the traffic lights induce, is a correlated equilibrium (in a loose sense).

Correlated equilibria are interesting because they tell us which stable strategy pro-
files might form when we have the ability to advise the players. These equilibria may
be much nicer than regular Nash equilibria, as the following example shows.

Example 9 (Game of Chicken). The game of chicken is a game with 2 players. Both
players have strategy set [2]. If both players play strategy 1, the utility of both is 0.
If one player plays strategy 1 and the other plays strategy 2, then the player that plays
strategy 2 gets utility 2, and the other gets utility 7. If both players play 2, then they
both get utility 6.

2We write “game” between quotation marks because we define here a game with strategy sets of infinite
cardinality, which fall outside Definition 2. We do however occasionally study games with infinite strategy
sets; as we discuss later on in this chapter.
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There are two pure equilibria: (1, 2) and (2, 1). There is one mixed equilibrium,
where both players play strategy 1 with probability 1/3. However, it is straightforward
to verify that the distribution σ, defined by

σ(1, 2) = 1/3, σ(2, 1) = 1/3, σ(2, 2) = 1/3, σ(1, 1) = 0,

is a correlated equilibrium. This correlated equilibrium gives the players a higher av-
erage expected utility than any of the three Nash equilibria.

1.3.1.4 Coarse Equilibria

The coarse equilibrium is a solution concept that can be motivated in the context of
no-regret sequences.

Definition 10 (Regret, no-regret sequence). Suppose players have to play a single util-
ity maximization game Γ repeatedly a number of times, say T times. Let the strategy
profiles of these T plays be s1, . . . sT . The regret rΓ(i, (s1, . . . , sT )) of a player i ∈ [n]
for the sequence (s1, . . . , sT ) is the maximum amount of additional utility that i could
have received if it would have played a fixed strategy each of the T plays:

rΓ(i, (s1, . . . , sT )) = max

0,
∑
t∈[T ]

(ui(s
′
i, s

t
−i)− ui(st))

∣∣∣∣∣∣ s′i ∈ Σi

 .

If Γ is instead a game where each player i ∈ [n] wants to minimize a cost function ci,
rather than to maximize a utility function,3 then the regret of (s1, . . . sT ) is defined as
follows.

rΓ(i, (s1, . . . , sT )) = max

0,
∑
t∈[T ]

(ci(s
t)− ci(s′i, st−i))

∣∣∣∣∣∣ s′i ∈ Σi

 .

The sequence (s1, . . . sT ) is no-regret for a player i ∈ [n] if rΓ(i, (s1, . . . , sT )) = 0.
This means that in hindsight, player i would not have wanted to play any fixed strategy
in Σi all T times.

Given s1, . . . , sT , let σ be a distribution on Σ such that σ(s) = |{i | si = s}|/T .
Then we see that s1, . . . , sT is no-regret for each player if and only if σ is a coarse
equilibrium.

3Such games are called cost minimization games; see Section 1.3.1.7 below.
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Definition 11 (Vanishing regret). Let (s1, s2, . . .) be an infinite sequence of strategy
profiles in Σ. This sequence has vanishing regret iff for all i ∈ [n],

lim
T→∞

rΓ(i, (s1, . . . , sT )) = 0.

Coarse equilibria and some theorems about vanishing regret sequences appear in
Chapters 4 and 5.

1.3.1.5 Games with Infinite Strategy Sets

Sometimes in this thesis, we study games with infinite strategy sets. Formally, Defini-
tion 2 is merely generalized by removing the requirement that Σi, i ∈ [n] is finite. One
should note that for these games, Theorem 8 is false. Games with infinite strategy sets
will be studied in Chapters 2, 5, and 6.

1.3.1.6 Incomplete Information Games

In many economic situations, players have no common and full knowledge of the game
that is being played. A player might for example have no complete knowledge of the
preferences and knowledge of the other players of the game. These situations can not
satisfactorily be modeled by means of a game as defined above. Instead, we model
these as incomplete information games. Incomplete information games are relevant to
Chapter 2.

Definition 12 (Incomplete information game). An incomplete information game, al-
ternatively called a Bayesian game, is a quintuple Γ = (n,Σ, u, V, π) where n and Σ
are defined in the same way as for a full information game. The set V is the Cartesian
product of the sets V1, . . . , Vn. The set Vi is called the set of types of player i ∈ [n], and
is assumed to be finite. The set V is called the set of type profiles. Vector u is the vector
of utility functions (u1, . . . , un) of the players. The utility functions are defined in the
same way as for full information games, but the domain of ui is now Σ×Vi. The object
π is called the type distribution and is a probability distribution on V . We assume that
π is a product distribution, and therefore (using mild notational abuse) we sometimes
identify π with the vector (π1, . . . , πn) of which π is the product distribution.

Extensions of this definition are encountered in the literature: Sometimes, the do-
main of ui is Σ× V . For this reason the type of incomplete information game we just
defined, is actually usually called a private value complete information game. We will
not encounter non-private value incomplete information games in this thesis. A second
generalization (that will also not be dealt with in this thesis) is when π may be arbitrary
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(i.e., is not required to be a product distribution). We speak in that case of correlated
types.

The interpretation of an incomplete information game is that the players do not
have complete knowledge over the types of the other players: player i only knows the
distribution π and the valuation vi that is drawn for it from πi. They will therefore want
to optimize their expected utility, based on only this knowledge: Each player i ∈ [n]
wants to choose for each type vi ∈ Vi that it may get assigned, a strategy s(vi) ∈ Σi.
Strategy s can thus be regarded as a function from Vi to Σi. We call such a function a
Bayesian strategy.

Definition 13 (Pure and mixed Bayesian strategies). A (pure) Bayesian strategy is a
function from Vi to Σi. We denote by ΣVii the set of (pure) Bayesian strategies of
player i ∈ [n]. A mixed Bayesian strategy is a function from Vi to the set ∆(Σi)
of probability distributions on Σi. We denote by ∆(Σi)

Vi the set of mixed Bayesian
strategies of player i ∈ [n].

The vectors in the set ΣV , which we define as×i∈[n]Σ
Vi
i , are called (pure) Bayesian

strategy profiles. The vectors in the set ∆(Σ)V , which we define as ×i∈[n]∆(Σi)
Vi ,

are called mixed Bayesian strategy profiles.
When v ∈ V and s ∈ ΣV we use the notation s(v) for (s1(v1), . . . , sn(vn)). More-

over, when s′i ∈ ΣVii , we write (s′i(vi), s−i(v−i)) for (s1(v), . . . , si−1(vi−1) , s′i(vi),
si+1(vi+1), . . . , sn(vn)).

Each player choosing a Bayesian strategy gives rise to a Bayesian strategy profile
s ∈ ΣV . A player i ∈ [n] thus wants to choose in this profile s its own Bayesian
strategy si such that for all vi ∈ Vi

Ev−i∼π−i [ui(s(v), vi)]

is optimized.
A natural solution concept for an incomplete information game is therefore the

following.

Definition 14 (pure and mixed Bayes-Nash equilibrium). A pure Bayes-Nash equilib-
rium is a Bayesian strategy profile s ∈ ΣV such that for every player i ∈ [n], every
Bayesian strategy s′i ∈ ΣVii , and every type vi ∈ Vi it holds that

Ev−i∼π−i [ui(s(v), vi)] ≥ Ev−i∼π−i [ui((s
′
i(vi), s−i(v−i)), vi)].

A mixed Bayes-Nash equilibrium is a mixed Bayesian strategy profile σ in ∆(Σ)V such
that for every player i ∈ [n], every Bayesian strategy s′i ∈ ΣVii , and every type vi ∈ Vi
it holds that

Ev−i∼π−i
s∼σ

[ui(s(v), vi)] ≥ Ev−i∼π−i
s∼σ

[ui((s
′
i(vi), s−i(v−i)), vi)].
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PBNEΓ and MBNEΓ refer respectively to the set of all pure Bayes-Nash equilibria
and all mixed Bayes-Nash equilibria of an incomplete information game Γ.

Pure and mixed Bayes-Nash equilibria for incomplete information games are the
natural analogues of the pure and mixed Nash equilibria that we defined for full infor-
mation games.

Just like for full information games, the existence of a mixed Bayes-Nash equilib-
rium is guaranteed when the strategy sets are finite.

Theorem 15. Let Γ be an incomplete information game where |Σ| is finite. Then
MBNEΓ 6= ∅.

The above theorem is a corollary of e.g. the main result of Milgrom and Weber
[1985].

1.3.1.7 Cost Minimization Games

We discuss in Chapters 3 to 5 games where players are assumed to want to minimize
their function u instead of maximizing it. We refer to such games as cost minimization
games, as opposed to utility maximization games. In this case, the functions u are
referred to as cost functions instead of utility functions. Moreover, in the setting of
cost minimization games, our convention will be to rename the functions u to c =
(c1, . . . , cn). When discussing a cost minimization game Γ = (n,Σ, c), the pure,
Nash, correlated, and coarse equilibria of Γ are defined as the pure, Nash, correlated,
and coarse equilibria of the utility maximization game (n,Σ, u), where u = −c. We
will only study cost minimization games in the context of full information, and not in
the context of incomplete information.

1.3.1.8 The Price of Anarchy and Price of Stability

It is well known that equilibria are often suboptimal for the set of players as a whole.
The need to gain an accurate understanding of the extent of suboptimality caused by
selfish behavior has led to the study of the inefficiency of equilibria in algorithmic game
theory. In this context, a common inefficiency measure is the price of anarchy, which
relates the worst equilibrium of a game to the optimal strategy profile.

In order to make this formal, we need to study a game Γ = (n,Σ, u) in combination
with a social welfare function UΓ : Σ→ R of which the role is to quantify the quality
of the strategy profiles in Σ.

Definition 16 (Social welfare function). A social welfare function for a full informa-
tion utility maximization game Γ = (n,Σ, u) is a function UΓ : Σ→ R. When Γ is an
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incomplete information utility maximization game, a social welfare function for Γ is a
function UΓ : Σ× V → R.

In case of cost minimization games, by convention we rename U to C, and C is
referred to as a social cost function rather than a social welfare function.

The subscript Γ in UΓ and CΓ will henceforth be omitted, since it will always be
clear from the context.

The choice of U is usually a quite straightforward and sensible one, such as:

U(s) =
∑
i∈[n]

ui(s), (1.4)

for full information games, or

U(s, v) =
∑
i∈[n]

ui(s, vi),

for incomplete information games. Likewise, for full information cost minimization
games, the above becomes

C(s) =
∑
i∈[n]

ci(s).

Another popular one (for full information games) is

U(s) = min{ui(s) | i ∈ [n]},

which measures the utility of the player that is least well off, under a given strategy
profile. In the context of cost minimization games, the latter social welfare function
becomes:

C(s) = max{ci(s) | i ∈ [n]}. (1.5)

In Chapters 2 to 6, we will be concerned with the quality of equilibria with respect
to the optimal value of a social welfare function. The following notions are therefore
central to those chapters.

Definition 17 (price of anarchy and price of stability for full information games).

• The price of anarchy of a full information utility maximization game Γ for a set
S of distributions on the set Σ of strategy profiles of Γ, with respect to social
welfare function U , is defined by

PoA(Γ, S) = max

{
U(s∗)

Es∼σ[U(s)]

∣∣∣∣ σ ∈ S, s∗ ∈ Σ

}
.
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• The price of anarchy of a full information cost minimization game Γ for a set S
of distributions on the set Σ of strategy profiles of Γ, with respect to social cost
function C, is defined by

PoA(Γ, S) = max

{
Es∼σ[C(s)]

C(s∗)

∣∣∣∣ σ ∈ S, s∗ ∈ Σ

}
.

• The price of stability of a full information utility maximization game Γ for a set
S of distributions on the set Σ of strategy profiles of Γ, with respect to social
welfare function U , is defined by

PoS(Γ, S) = min

{
max{U(s∗) | s∗ ∈ Σ}

Es∼σ[U(s)]

∣∣∣∣ σ ∈ S} .
• The price of stability of a full information cost minimization game Γ for a set S

of distributions on the set Σ of strategy profiles of Γ, with respect to social cost
function C, is defined by

PoS(Γ, S) = min

{
Es∼σ[C(s)]

min{C(s∗) | s∗ ∈ Σ}

∣∣∣∣ σ ∈ S} .
We obtain the definitions of coarse price of anarchy/stability, correlated price of anar-
chy/stability, mixed price of anarchy/stability, and pure price of anarchy/stability (all
with respect to U ) when in the above definitions we take for S respectively the sets
CsEΓ, ClEΓ, NEΓ, and PEΓ (when we regard the pure equilibria in PEΓ as proba-
bility distributions with singleton support).

We define the coarse, correlated, mixed, and pure price of anarchy and stability for
a class of games G as, respectively, the supremum of the coarse, correlated, mixed, and
pure price of anarchy and stability of the games in G.

The price of anarchy was defined first in Koutsoupias and Papadimitriou [1999,
2009], and the price of stability was first defined in Anshelevich et al. [2004].

The price of anarchy notion has spawned a large amount of research in algorithmic
game theory. Some of the price of anarchy literature will be discussed in Chapters 2 to
6.

For incomplete information games, we need to define the price of anarchy slightly
differently.

Definition 18 (Price of anarchy for incomplete information games). The mixed Bayes-
Nash price of anarchy of an incomplete information game Γ, with respect to social
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welfare function U is given by:

PoA(Γ,MBNEΓ) = max

{
Ev∼π[U(sv, v)]

Ev∼π
s∼σ

[U(σ, v)]

∣∣∣∣∣ σ ∈ MBNEΓ

}
,

where sv ∈ Σ maximizes U(·, v), for v ∈ V .
The definition of the pure Bayes-Nash price of anarchy is obtained from the above

definition by replacing MBNEΓ by PBNEΓ (when again regarding the elements of
PBNEΓ as functions in ∆(Σ)V that map to distributions with singleton support).

We do not define the price of stability for incomplete information games, as we do
not study the price of stability in an incomplete information setting in this thesis.

1.3.1.9 Smoothness

Smoothness is a technique introduced by Roughgarden [2009] in order to prove upper
bounds on the price of anarchy of classes of games. It plays an important role in
Chapters 2, 4 and 5.

Definition 19 ((λ, µ)-smooth game). Let Γ be a (full information) utility maximization
game and let U be a social welfare function for Γ. Game Γ is said to be (λ, µ)-smooth
with respect to U iff for every pair s∗, s ∈ Σ:∑

i∈[n]

ui(s
∗
i , s−i) ≥ λU(s∗)− µU(s). (1.6)

If Γ is instead a (full information) cost minimization game and if C is a social cost
function for Γ, then Γ is said to be (λ, µ)-smooth with respect to C iff for every pair
s∗, s ∈ Σ: ∑

i∈[n]

ci(s
∗
i , s−i) ≤ λC(s∗) + µC(s). (1.7)

A class of games is said to be (λ, µ)-smooth iff every game in that class is (λ, µ)-
smooth.

The concept of (λ, µ)-smoothness derives its importance from the following fact.
When a game or class of games is shown to be (λ, µ)-smooth (and µ satisfies a technical
condition), then under a mild assumption on the social welfare or social cost function,
a bound on the coarse price of anarchy is immediate.
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Definition 20 (Sum-bounded social welfare/cost function). A social welfare function
U is sum-bounded with respect to a game Γ = (n,Σ, u) iff U(s) ≥

∑
i∈[n] ui(s) for all

s ∈ Σ. A social cost function C is sum-bounded with respect to a game Γ = (n,Σ, c)
iff C(s) ≤

∑
i∈[n] ci(s) for all s ∈ Σ.

Theorem 21. Let λ, µ ∈ R. If a utility maximization game is (λ, µ)-smooth with
respect to a non-negative sum-bounded social welfare function U and µ > −1, then
the coarse price of anarchy of that game is at most (1 + µ)/λ. If a cost minimization
game Γ with non-negative sum-bounded social cost function C is (λ, µ)-smooth and
µ < 1, then the coarse price of anarchy of that game is at most λ/(1− µ).

Proof. Let Γ be a (λ, µ)-smooth utility maximization game, let U be a sum-bounded
social welfare function for Γ, let σ ∈ CsEΓ and let s∗ ∈ Σ be strategy profile that
maximizes U . The inequalities in the following derivation follow from respectively
sum-boundedness of U , the coarse equilibrium condition (1.2), the smoothness condi-
tion (1.6), and linearity of expectation.

Es∼σ[U(s)] ≥ Es∼σ

∑
i∈[n]

ui(s)


≥ Es∼σ

∑
i∈[n]

ui(s
∗
i , s−i)


≥ Es∼σ[λU(s∗)− µU(s)]

≥ λU(s∗)− µEs∼σ[U(s)].

Rearranging terms, we see that this is equivalent to (1 + µ)Es∼σ[U(s)]/U(s∗) ≥ λ.
When we divide by (1 + µ) and assume that µ > −1 (so that (1 + µ) is positive),
we see that the latter is in turn equivalent to U(s∗)/Es∼σ[U(s)] ≤ (1 + µ)/λ. This
establishes that the coarse price of anarchy is at most (1 + µ)/λ.

For cost minimization games, the proof is entirely analogous.

We note that the sum-boundedness condition is actually not required: the above
is merely the theorem and proof as given by Roughgarden [2009]. In Chapter 5, we
show how to get rid of the sum-boundedness requirement, even under a strictly less
restrictive and more general smoothness condition.

Roughgarden [2009] defined smoothness as a consequence of the observation that
many proofs of upper bounds on the price of anarchy for various classes of games that
were given by that time, follow the same pattern: in essence, they come down to prov-
ing that a game is (λ, µ)-smooth for some particular (λ, µ) ∈ R2. In many of those
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cases, the upper bound was proved only for the pure or mixed price of anarchy. The
smoothness notion made it clear that such existing upper bounds generalize automati-
cally to upper bounds on the coarse price of anarchy.

After its introduction, the smoothness concept has been extended and adapted in
various ways. For example, in Lucier and Paes-Leme [2011], the notion of semi-
smoothness is used, and Roughgarden and Schoppmann [2011] define a smoothness
variation called local smoothness. Both these notions are used on certain classes of
games to establish bounds on the price of anarchy that cannot be proved through regu-
lar smoothness. Nadav and Roughgarden [2010] showed that smoothness bounds apply
all the way to solution concepts called “average coarse correlated equilibrium,” but not
beyond.

The basic idea behind the smoothness technique is to bound the sum of cost in-
creases of individual players switching strategies by a combination of the costs of two
states. Because these types of bounds capture local improvement dynamics, they bound
the price of anarchy not only for Nash equilibria, but also more general solution con-
cepts, including coarse correlated equilibria. Informally, the local smoothness notion
of Roughgarden and Schoppmann [2011] require the types of bounds described above
only for nearby states, thus obtaining tighter bounds on the price of anarchy, albeit
only for more restrictive solution concepts and convex strategy sets. Using the local
smoothness framework, Roughgarden and Schoppmann [2011] obtain optimal upper
bounds for atomic splittable congestion games (i.e., a variation on congestion games
where the players have to split their impact among multiple sets of facilities).

Smoothness has also been extended for use with incomplete information games
by Syrgkanis [2012], and independently by Roughgarden [2012]. Furthermore, by
Syrgkanis and Tardos [2013] a variation of smoothness is proposed that is specifically
tailored to auction settings with incomplete information. This variation of smoothness
will be introduced, used and further discussed in Chapter 2.

In Chapters 4 and 5, we will propose two generalizations of smoothness as well.
These generalizations are suited for analyzing games with altruistic players, and play-
ers for which their behavior is influenced by an underlying social context. These con-
cepts will be defined and further explained in the respective chapters.

1.3.1.10 Congestion Games

Congestion games form an important class of games that occur in multiple chapters of
the thesis: They are studied in Chapters 4 and 5, and variations of congestion games
are studied in Chapters 3 and 7. The definition of a congestion game is as follows:

Definition 22 (Congestion Game). A congestion game is a cost minimization game
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(n,Σ, c) for which there exists an m ∈ N>0 such that Σi ⊆ 2[m]. Moreover, for each
j ∈ [m] there exists a function dj : [n] → R≥0, and for each player i ∈ [n], its
cost function ci is given by ci(s) =

∑
j∈si dj(|{i

′ ∈ [n] | j ∈ si′}|) for s ∈ Σ. In
the context of a congestion game, the elements of [m] are called facilities, and dj is
referred to as the delay function of facility j ∈ [m].

A congestion game may thus be represented as a triple (n,m,Σ, d) where d =
(d1, . . . , dm) is the vector of delay functions.

There are some important special subclasses of congestion games:

Definition 23 (Linear, symmetric, and singleton congestion games, fair cost sharing
games).

• A congestion game is said to be linear iff for each facility j ∈ [m] there are
numbers aj , bj ∈ Q≥0 such that the delay function dj of facility j satisfies
dj(x) = ajx+ bj for all x ∈ [n].

• A congestion game is said to be symmetric iff Σi = Σj for all i, j ∈ [n].

• A congestion game is said to be singleton iff for all i ∈ [n], Σi only contains sets
of cardinality 1.

• A congestion game is said to be a fair cost sharing game if for each facility j ∈
[n] there is a cost aj ∈ R≥0 and its delay function dj is given by dj(x) = aj/x
for all x ∈ [n].

Congestion games were given their name through the following observation: If the
function d is increasing (unlike the special case of fair cost sharing games), then the
delay of a facility increases as more player include the facility in their strategy. The
facility hence gets congested, and the players choosing this facility will experience an
increase in their cost.

Congestion games can be used to model a variety of situations, of which the most
natural ones are that of traffic congestion or network congestion: Consider a traffic
network in which multiple players must choose a route between two points in the net-
work. Model the edges of this network as the facilities of a congestion game, and let
the set of strategies of a player be the set of all routes from its source to its destination.
Finally, model the delay functions such that a facility gets more congested as more
players choose it. Using this, one may study the phenomenon of traffic congestion as a
result of selfish behavior of the drivers, by means of a congestion game. More general
network congestion phenomena may be studied in a similar fashion.
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Another scenario is one where the players have an interest in building infrastruc-
ture, which can be modeled as a cost sharing game. In a fair cost sharing game, indi-
vidual players have an interest in building infrastructure (i.e., the facilities), and share
the cost of building a facility equally among the players that choose to build it.

Congestion games were introduced in Rosenthal [1973]. Moreover, in the same
paper, congestion games were shown to always possess pure equilibria.

Theorem 24 (Rosenthal [1973]). Every congestion game has a pure equilibrium.

Monderer and Shapley [1996] prove that congestion games coincide with the class
of exact potential games.

Definition 25. Potential games are cost minimization games Γ = (n,Σ, c) for which
there exists a function Φ : Σ → R such that Φ(s′i, s−i) ≤ Φ(s) if ci(s′i, s−i) ≤ ci(s)
for all s, s′ ∈ Σ, i ∈ [n]. Γ is an exact potential game iff there exists a function
Φ : Σ→ R such that Φ(s)−Φ(s′i, s−i) = ui(s)−ui(s′i, s−i) for all s, s′ ∈ Σ, i ∈ [n].

Since Φ cannot decrease indefinitely, every potential game trivially has a pure equi-
librium. Of course, for utility maximization games, one can come up with an analogous
definition of potential games, but we will not encounter such games in this thesis.

Congestion games have received a great deal of attention. They were generalized by
Milchtaich [1996] to congestion games with player-specific delay functions, of which
the equilibria were further studied by Ackermann et al. [2006]. In the area of algorith-
mic game theory, the price of anarchy of congestion games was studied in Awerbuch
et al. [2005], Christodoulou and Koutsoupias [2005a,b], Aland et al. [2006], Fotakis
[2007], Bilò et al. [2011b], Fotakis et al. [2009]. For two related classes of games,
called splittable congestion games and non-atomic (Wardrop) congestion games, the
price of anarchy was studied by Roughgarden and Schoppmann [2011] and Roughgar-
den and Tardos [2002], respectively. The problems of finding social-welfare optimizing
and fair allocations were studied in Chakrabarty et al. [2005], Blumrosen and Dobzin-
ski [2006], Meyers and Schulz [2012].

For the special case of fair cost sharing games, the price of stability was studied in
Anshelevich et al. [2004, 2008].

With respect to cooperation and externalities, congestion games and related classes
of games have been a popular target of study as well, see e.g., Hayrapetyan et al. [2006],
Babaioff et al. [2007, 2009], Roth [2008], Bilò et al. [2011a,b], Babaioff et al. [2007],
Hoefer and Skopalik [2009b], Caragiannis et al. [2010], Chen and Kempe [2008].

The literature just mentioned will be discussed in more detail in the chapters of this
thesis that deal with congestion games. We note that the complete body of literature
that deals with congestion games is too vast to discuss exhaustively, and the papers
mentioned above form only a tiny fraction it.
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1.3.1.11 Mechanism Design

Mechanism design is a subfield of game theory that is concerned with designing games
such that a set of desirable criteria are met. Some mechanism design problems will be
studied in Chapters 6, 7, and 8. This section deliberately describes mechanism design
from a high level. Formal details can be found in the three chapters just mentioned.

In a mechanism design problem in its broadest sense, there is a set of outcomes,
and a game needs to be specified for any set of players, where the players express
preferences over these outcomes. Thus, this game is not a regular game in the sense of
Definition 2. Instead, the game is a mapping from the set of strategy profiles (which
is part of what needs to be designed) to the set of outcomes, and the players in turn
receive a utility based on the outcome.

In classical mechanism design problems, we usually assume that the preferences
of the players are private information. I.e., we need to design the game (including the
strategy sets of the players) in such a way that the outcome does not depend on the
preferences of the players, but only on the given strategy profile. Such a mechanism
design problem will be considered in Chapter 7.

Chapters 6 and 8, however, discuss problems that can be considered to fall within
mechanism design in the broader sense. In Chapter 6, we study mechanism design in
a restricted domain, which means that we are not completely free in the design of our
game, and instead need to pick a game from a given class of games. Moreover, we do
not adopt a model of private preferences. In Chapter 8, we study mechanism design
in the context of housing markets. The study of the latter such markets borders on
the areas of social choice theory and borrows some concepts from cooperative game
theory (see the section below). As a consequence, in mechanism design problems
for this setting we consider a different set of objectives than usual: first, it does not
involve money (i.e., charging payments to the players), and secondly we want our
mechanism to satisfy different properties, such as the core selection property, which
essentially means that our mechanism should be resistant to sets of players cooperating
and reallocating their houses among each other.

1.3.2 Cooperative Games
This section is relevant to the final two chapters of the thesis, which are about cooper-
ative games. There is a weak relation of this section to Chapter 8 as well.

A cooperative game is an abstract object that one defines in order to study in isola-
tion the cooperative aspects of any setting in which multiple parties, players, or entities
participate. Cooperative games are fundamentally different from the strategic games
that we discuss in the sections above. The type of questions one is interested in, when
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dealing with cooperative games, are usually about how to divide among the players of
a coalition P the utility that P can collectively generate.

Definition 26 (Cooperative game, characteristic function). A cooperative game is a
pair Γ = (n, v) where n ∈ N≥1, and v : 2[n] → R. The players of Γ are the elements
in [n]. The function v is referred to as the characteristic function, and v(P ), P ⊆ [n]
is referred to as the value of P : it reflects the value (e.g. the amount of money) that
coalition P can generate when the players in P cooperate with each other. A subset
of [n] is referred to as a coalition in the context of cooperative games. When the
number of players n is clear from context or arbitrary, we will sometimes refer to v as
a cooperative game, instead of (n, v).

Two important properties that a cooperative game may possess are non-negativity,
monotonicity and superadditivity.

Definition 27 (Cooperative game, characteristic function). A cooperative game (n, v)
is

• non-negative iff v(S) ≥ 0 for all P ⊆ [n].

• monotone iff v(P1) ≤ v(P2) for all P1 ⊆ P2 ⊆ [n].

• superadditive iff v(P2∪P2) ≥ v(P1)+v(P2) for all P1, P2 ⊆ [n], P1∩P2 = ∅.

Most important classes of cooperative games are monotone and non-negative, and
indeed the games studied in the final two chapters of this thesis are all non-negative
and monotone.

A central question in cooperative game theory is how to divide among the players
of a given cooperative game (n, v) the maximum value that the players can generate.
In case v is superadditive, this maximum value is v([n]); attained when the players all
cooperate. In case v is not superadditive, this maximum value is reached by having the
players cooperate according to a partition P of [n] that maximizes

∑
P∈P v(P ). In the

context of cooperative games, P is referred to as a coalition structure.

Definition 28 (Coalition structure). Let Γ = (n, v) be a cooperative game. A partition
of [n] is a coalition structure of Γ.

Suppose that (n, v) is a superadditive game. Let x ∈ Rn≥0 be a way of dividing
v([n]) among the players: For i ∈ [n], the value xi is player i’s share, and

∑
i∈[n] xi =

v([n]). A first condition that any reasonable x needs to satisfy is that a player does not
generate more value than xi on its own, because otherwise player i is not incentivized
to work together with the other players. This motivates the notion of an imputation.
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Definition 29 (Imputation). An imputation of a cooperative game (n, v) is a vector
x ∈ Rn≥0 such that

∑
i∈[n] xi = v([n]) and xi ≥ v({i}) for all i ∈ [n].

Within the context of cooperative game theory, a set of vectors x ∈ Rn≥0 that specify
for each player how much it receives, is referred to as a solution concept. Imputations
form a very weak solution concept, as it imposes only very minimal requirements on
what a good way of allocating value to the players should look like: we do not want to
allocate more than what the players can collectively generate (i.e., v[n]), and we do not
want individual players to refrain from cooperating. There have been proposed many
solution concepts for cooperative games, and indeed, most of them form a subset of the
set of imputations.

By far the most popular solution concept is the core. This solution concept is more
restrictive than the set of all imputations, since it requires that coalitions of players must
be incentivized to work together with the other players, in addition to just individual
players.

Definition 30 (Core). The core of a cooperative game Γ = (n, v) is the set of imputa-
tions x ∈ Rn≥0 of Γ for which it holds that

∑
i∈P xi ≥ v(P ) for all P ⊆ [n].

A necessary condition for the core of a cooperative game Γ to be non-empty, is
that Γ is superadditive. However, as mentioned above, if Γ is not superadditive, then
it is not a reasonable assumption that players will cooperate as the single coalition [n],
so v([n]) is not a reasonable value to divide among the players. Instead, there is a
coalition structure that the players will form, which generates more total value, and we
should instead focus on dividing the values of these coalitions among the players in the
coalition. The problem of finding the optimal coalition structure is the central topic of
Chapter 9.

A final solution concept that we mention is the Shapley value. Again, this is a
solution concept suitable for superadditive games, since it divides v([n]) among the
players. Unlike the core and the broad set of imputations, the Shapley value is only a
single vector, instead of a set.

Definition 31 (Shapley value). Let (n, v) be a cooperative game. The Shapley value
of (n, v) is an n-dimensional vector ϕ(n, v) = (ϕ1(n, v), . . . , ϕn(n, v)), where for
i ∈ [n]

ϕi(n, v) = κi(n, v)/n!, (1.8)

and
κi(n, v) =

∑
P⊆[n]\{i}

(|P |!)(n− |P | − 1)!(v(P ∪ {i})− v(P )). (1.9)
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For i ∈ [n] the value ϕi(n, v) is called the Shapley value of player i and the value
κi(n, v) is called the raw Shapley value of player i. It is well-known and straightfor-
ward to derive that the raw Shapley value can be written as

κi(n, v) =
∑
σ∈Sn

(v(p(i, σ) ∪ {i})− v(p(i, σ))),

where Sn denotes the set of permutations on [n] and for i ∈ [n], σ ∈ Sn, p(i, σ)
denotes the set {i′ | σ−1(i′) < σ−1(i)} of players that appear before i in σ.

The Shapley value is a solution concept that is of central importance in cooperative
game theory. It has been shown that it is the sole solution concept that satisfies the
following four properties simultaneously [Winter, 2002]:

• Efficiency:
∑
i∈[n] ϕi(n, v) = v(n);

• Symmetry: if i, i′ ∈ [n] are symmetric, then ϕi(n, v) = ϕi′(n, v); (Players
i, i′ ∈ [n] are called symmetric in (n, v) if v(P ∪ {i}) = v(P ∪ {i′}) for any
coalition P ⊆ [m] \ {i, i′}.)

• Dummy: if i is a dummy, then ϕi(n, v) = 0; (A player i ∈ [n] is a dummy if
v(P ∪ {i})− v(P ) = 0 for all P ⊆ [n].)

• Additivity: For two cooperative games (n, v1) and (n, v2) it holds that ϕi(n, v1+
v2) = ϕi(n, v1) + ϕi(n, v2) for all i ∈ [n];4

• Anonymity: permuting the players does not affect their Shapley value.

Various other such axiomatic characterizations of the Shapley value exist. We refer the
reader to any introductory text on cooperative game theory.

Chapter 10 of this thesis deals with computing the Shapley value in a well-known
class of games called matching games.

1.4 Summary of Notational Conventions
The symbols introduduced above will be used consistently throughout this thesis. We
summarize these here. For convenience, a list of symbols can be found at the end of
the thesis.

4The sum of two characteristic functions v1 and v2 on the same player set is defined in the standard way:
as v1(P ) + v2(P ) for all P ⊆ [n].



24 CHAPTER 1. INTRODUCTION AND PRELIMINARIES

The standard symbol that we use to denote a game is Γ. The standard symbol
that we use to denote a (hyper)graph is G. All games and graphs that we study or
discuss throughout this thesis are assumed to have finite player sets and vertex sets,
respectively.

In the context of games, nwill be used to denote the number of players in the game,
and [n] will usually be identified with the player set of the game. Symbols Σ and ΣV

will denote the set of strategy profiles and Bayesian strategy profiles, respectively (and
we use Σi and ΣVii to refer to the strategy set and Bayesian strategy set of player i ∈ [n],
respectively). We use u to denote the vector of utility functions of a game. The symbol
i will be used to denote a player in [n], and P will be used to refer to a subset of [n].
Symbol s will be used to refer to strategy profiles in Σ (for full information games)
or Bayesian strategy profiles in ΣV (for incomplete information games). Symbol σ
will be used to refer to probability distributions on Σ (for full information games) or
elements in ∆(Σ)V (for incomplete information games). We use pi to denote the type
distribution of player i ∈ [n], and we use π to refer to the vector (π1, . . . , πn) or
to the product distribution of (π1, . . . , πn), interchangeably. Symbol U will be used
to refer to a social welfare function. In case we discuss a cost minimization game,
the convention will be to name the cost functions c instead of u and C instead of
U . Symbol CsEΓ,ClEΓ, NEΓ, and PEΓ will be used to refer to the sets of coarse,
correlated, Nash, and pure equilibria of game Γ, respectively. MBNEΓ and PBNEΓ

will be used to refer to the set of mixed and pure Bayes-Nash equilibria of incomplete
information game Γ, respectively.

We may sometimes discuss multiple games simultaneously. In cases where con-
fusion can arise, we subscript all relevant symbols with the appropriate game (e.g., in
such a situation, ui,Γ denotes the utility function of player i in game Γ).

In many games that we will discuss throughout this thesis, there will be a notion of
facility of machine present in the definition of these games, such as in the congestion
games we introduced above. We will denote in these settings the number of facilities
or machines by m, and the set of facilities or machines will be identified with [m]. We
use j to denote particular facilities or machines. The symbol S will be used to refer to
a subset of [m].

In the context of a graph or hypergraph G = (V,E), n will denote the number of
vertices in the graph, and the vertex set V is usually identified with [n]. Symbol E
is the standard symbol that we use for denoting the edge set of the graph, and m will
normally denote the number of edges of the graph, i.e., m = |E|. We normally use v
when we want to refer to a particular vertex in [n] and e to refer to a particular edge
in E. When the vertices of a graph correspond to the players of a game (which will
sometimes be the case), we may also use i to refer to a particular vertex of the graph.
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1.5 Outline of the Thesis
The subsequent chapters cover a large part of the research in algorithmic game theory
that I and various collaborators carried out while I was a Ph.D. student. The topics
studied are somewhat diverse, but a large part of them has in common that it deals
with algorithmic problems in games in which there are externalities present among the
players, or the players may behave cooperatively in some way. Multiple sub-themes
can be identified throughout the thesis, and each of the chapters deals with one or more
of these. The chapters have been grouped together according to these themes in the
following way:

• Chapters 2 to 6 concern the study of the price of anarchy.

• Chapters 4 to 7 deal with various aspects of externalities.

• Chapters 6 to 8 cover various mechanism design problems.

• In Chapters 7 to 10, the algorithmic theme is most prominently present.

• In Chapters 9 and 10, various algorithmic problems in cooperative game theory
are studied.

In more detail, the contents of the chapters are as follows.

Chapter 2. The first chapter studies the price of anarchy of some classes of auction
games that fall under the family of multi-unit auctions. These are auctions in
which there are multiple copies of a single good, and the auction allocates these
to the players (possibly allocating multiple copies to the same player). A player
has a valuation for each number of copies of the good that it may get allocated. A
player therefore submits a bid for each number of copies that they may recieve.
Items are allocated to the players corresponding to the highest marginal bids.
In the discriminatory variant of the auction, the player pays a price equal to
the bid corresponding to the number of bids it receives. In the uniform price
variant of the auction, the player pays a price equal to the highest marginal bid
for which no item is allocated. For both variants, we derive upper and lower
bounds on the price of anarchy. We do this for two different bidding interfaces,
two different classes of valuation functions, under both a full information setting
and an incomplete information setting. Some of the bounds obtained are the first
known bounds, while the others are significant improvements over the previously
best known bounds.
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Chapter 3. Here, we are concerned with the price of anarchy when deviations of sets
of players can take place, rather than deviations of individual players. A strategy
profile that for which no set of player can deviate such that each player in the set
improves its utility, is called a strong equilibrium. We study the strong price of
anarchy, i.e., price of anarchy for strong equilibria, for a variation of congestion
games called bottleneck congestion games, in which strong equilibria are guar-
anteed to exist. In bottleneck congestion games, the cost function of a player is
defined as the maximum delay among the facilities that it chooses. The social
cost function we consider is the one that returns the maximum cost among the
players. We restrict our studies to linear latency functions, and derive various
upper and asymptotically matching lower bounds on the strong price of anarchy.

Chapter 4. This chapter is concerned with the price of anarchy as well. This time, we
consider games with (partially) altruistic players. for various classes of games
when players are (partially) altruistic. We model altruistic behavior by associat-
ing a number αi ∈ [0, 1] to each player i, and assuming that player i’s perceived
cost is a convex combination of 1 − αi times his direct cost and αi times the
social cost. Within this framework, we study altruistic extensions of various
well-known game classes: linear congestion games, fair cost-sharing games and
valid utility games. We derive (tight) bounds on the price of anarchy of these
games for several solution concepts. Thereto, we adapt the smoothness notion
and show that often this variation on smoothness captures the essential properties
to determine the price of anarchy of these games.

Chapter 5. We extend here the ideas introduced in the previous chapter, and consider
a more fine-grained model of social player behavior: for each pair of players
(i, j), we introduce a parameter αi,j that reflects the attitude of player i towards
player j. A positive value of αi,j reflects a friendly attitude, while a negative
value reflects a spiteful attitude. The perceived utility of a player i is then a linear
combination of the direct utilities of all the players, where the values αi,j , j ∈ [n]
are the coefficients. We refer to the matrix α as a social context, and our interest
is in the price of anarchy for classes of games in which the players are embedded
into such a social context. We extend the smoothness notion further, in order to
make it suitable studying the price of anarchy of games with social contexts. We
apply this smoothness framework to three classes of games: linear congestion
games, minsum scheduling games, and generalized second price auction. For
these classes of games, we establish upper bounds on the price of anarchy for a
broad class of altruistic social contexts. For linear congestion games and minsum
scheduling games, the price of anarchy remains bounded by a constant.
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Chapter 6. We study the phenomenon of spite in procurement auctions (i.e., auctions
where the auctioneer buys an item from the bidders). As a result of spite, bid-
ders that do not win the auction themselves might derive negative utility from
the auction when an enemy or competitor wins, altering the players’ bidding
strategies. We consider generalizations of first-price and second-price procure-
ment auctions with spiteful players under a full information model. The class of
auctions studied is more general than the standard first-price and second-price
procurement auction due to the fact that for each bidder a penalty multiplier µ
may be set by the auction designer, such that the bid considered in the auction
is the bid of the bidder multiplied by µ. For two bidders, we characterize all
ε-equilibria (i.e., bidding profiles such that no bidder can change strategy and
improve by more than ε) for ε > 0, and quantify the extent to which the spite
levels of the bidders impact the quality of the equilibria, by deriving the price of
anarchy and price of stability relative to the spiteless optimum. Moreover, we
find closed form expressions for setting the penalty multipliers so as to minimize
the price of anarchy and price of stability of the auction, for a setting where no
assumptions can be made on the valuations of the two bidders, but the spite lev-
els are known. For n > 2 bidders, we characterize the set of ε-equilibria when
ε → 0, give a polynomial time algorithm to compute them all, and derive the
price of anarchy and price of stability.

Chapter 7. In this chapter we depart from the price of anarchy theme that has been
dominant in the previous chapters, but retains the theme of externalities among
the players. We consider a variant of congestion games where every player i
expresses for each resource e and player j a positive externality, i.e., a value for
being on e together with player j. We adopt an optimization point of view and
consider the problem of optimizing the social welfare, i.e., sum of all players’
utilities.

We show that this problem is NP-hard even for very special cases, notably also
for the case where the players’ utility functions for each resource are affine (con-
trasting with the tractable case of linear functions Blumrosen and Dobzinski
[2006]). We derive a 2-approximation algorithm by rounding an optimal solution
of a natural LP formulation of the problem. Our rounding procedure is sophis-
ticated because it needs to take care of the dependencies between the players
resulting from the pairwise externalities. We also show that this is essentially
best possible by showing that the integrality gap of the LP is close to 2.

Small adaptations of our rounding approach enable us to derive approximation
algorithms for several generalizations of the problem. Most notably, we obtain
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an (r + 1)-approximation when every player may express for each resource ex-
ternalities on player sets of size r. Further, we derive a 2-approximation when
the strategy sets of the players are restricted and a 3

2 -approximation when these
sets are of size 2.

Finally, we consider the associated mechanism design problem where the players
may misreport the values of their externalities and the mechanism may charge
payments to the bidders. We show that in this setting, the social welfare can be
(r + 1)-approximated in expectation, within expected polynomial time, while
satisfying some desirable mechanism-design-theoretic properties: truthfulness,
individual rationality, and non-negative payments. On the negative side, this
mechanism requires the extension of the solution set where the mechanism is
allowed to “disable” a set of externalties, preventing the players from obtaining
the utility associated with these externalities.

Chapter 8. We study in this chapter another mechanism design problem. The prob-
lem we study appears in a social setting, in housing markets. The (Shapley-Scarf)
housing market is a well-studied and fundamental model of an exchange econ-
omy. Each agent owns a single house and the goal is to reallocate the houses to
the agents in a mutually beneficial and stable manner. The focus of this chapter
of the thesis, is on the case where agents express indifferences among houses. In
Alcalde-Unzu and Molis [2011] and Jaramillo and Manjunath [2011], Shapley-
Scarf housing markets with such indifferences were independently examined.
These papers proposed two important families of mechanisms, known as TTAS
and TCR respectively. We formulate in this chapter a family of mechanisms
which not only includes TTAS and TCR but also satisfies many desirable prop-
erties of both families. As a corollary, we show that TCR satisfies the desirable
property that it always outputs an allocation that is in the strict core, in case such
an allocation exists. Finally, we settle an open question regarding the computa-
tional complexity of the TTAS mechanism.

Chapter 9. We move in this setting to an abstract cooperative problem and consider
the coalition structure generation problem, in which the goal is to partition the
players into exhaustive and disjoint coalitions so as to maximize the social wel-
fare. The optimization problem considered in Chapter 7 is a special case of a
coalition structure generation problem, and in this chapter we study it from a
broader perspective. One of our results is a polynomial time algorithm to solve
the problem for all coalitional games provided that player types are known and
the number of player types is bounded by a constant. As a corollary, we obtain
a polynomial-time algorithm to compute an optimal partition for weighted vot-
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ing games with a constant number of weight values, for coalitional skill games
with a constant number of skills, and for linear games with a constant number of
desirability classes. We also consider the coalition structure generation problem
for various coalitional games defined compactly on combinatorial domains. For
these games, we characterize the complexity of computing an optimal coalition
structure by presenting polynomial time algorithms, approximation algorithms,
or NP-hardness and inapproximability lower bounds.

Chapter 10. This chapter studies in more depth one of the classes of cooperative
games introduced in Chapter 9, concerns the analysis of the Shapley value.
Matching games form a fundamental class of cooperative games that help un-
derstand and model auctions and assignments. In a matching game, the players
correspond to vertices of a graph, and the value of a coalition of vertices is the
weight of the maximum size matching in the subgraph induced by the coali-
tion. After establishing some general insights, we show that the Shapley value
of matching games can be computed in polynomial time for some special cases:
graphs with maximum degree two, and graphs that have a small modular decom-
position into cliques or cocliques (complete k-partite graphs are a notable spe-
cial case of this). The latter result extends to various other well-known classes
of graph-based cooperative games. We continue by showing that computing the
Shapley value of unweighted matching games is #P-complete in general. Fi-
nally, a fully polynomial-time randomized approximation scheme (FPRAS) is
presented. This FPRAS can be considered the best positive result conceivable,
in view of the #P-completeness result.
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Chapter 2

On the Inefficiency of Standard
Multi-Unit Auctions*

In this chapter, we analyze the price of anarchy for a family of incomplete-information
utility maximization games: multi-unit auctions. Among the material presented in
Chapter 1, Section 1.3.1 up to Section 1.3.1.9 is important to the present chapter. Par-
ticularly relevant are Sections 1.3.1.6 and the material about incomplete information
games in Section 1.3.1.8.

The solution concept we will focus on is the mixed Bayes-Nash equilibrium.
To define properly a multi-unit auction, we first need the notion of a submodular

vector.

Definition 32 (Submodular vector, submodular function, subadditive function). A sub-
modular vector v ∈ Rm≥0 is a vector such that vi+1− vi ≤ vi− vi−1 and vi+1− vi ≥ 0
for all i ∈ [m− 1], where we define v0 = 0.

When f is a function from {0} ∪ [m] to R≥0, we define it to be:

• submodular iff (f(0), f(1), . . . , f(m)) is a submodular vector.

• subadditive iff f(a+ b) ≤ f(a) + f(b) for all a, b ∈ N≥0 such that a+ b ≤ [m].

We note that the class of submodular functions is strictly contained in the class of
subadditive ones [Lehmann et al., 2006].

In this chapter, the symbols we use for vectors are often subscripted (for example,
si will be used to denote a vector of more than one element). For convenience, when

*The contents of this chapter have been published as De Keijzer et al. [2013a,b].
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we want to denote a particular element of such a vector, we will write its index between
suffixed parentheses (for example, si(1) is the first element of si).

Definition 33 (Multi-unit auction). A multi-unit auction is a game where there are
m ∈ N>0 indivisible units of a single good that are to be allocated to the players [n].
Each player i submits a bid ŝi(j) for each j ∈ [m], reflecting the amount of money that
i is willing to pay for getting j items. A player does this by specifying a marginal bid
vector: a vector si of m marginal bids (i.e., numbers in R), such that

∑j
k=1 si(j) =

ŝi(j) for j ∈ [m]. The marginal bid vector must satisfy a set of requirements, called
a bidding interface, to be specified later. The subset of Rm of marginal bid vectors
that satisfies the requirements of the bidding interface thus serves as player i’s strategy
set Σi for all i ∈ [n]. The set of n-dimensional vectors of bid vectors that satisfy the
requirements of the bidding interface thus form the set Σ of strategy profiles of the
game, and the strategy profiles will in this context be referred to as bid profiles. We
often refer to the marginal bid vectors of a bid profile as simply bid vectors, and we
often refer to the marginal bids of a bid vector as simply bids.

Based on the bid profile, the items are allocated to the players according to an
allocation function x : Σ→ ∆m,n, where ∆m,n = {a ∈ Nn≥0 |

∑n
i=1 ai = m}. xi(s)

indicates how many items player i receives on bid profile s. This function is defined
as follows: xi(s) items are given to a player iff exactly xi(s) elements of si are among
the m highest marginal bids of s, i.e., exactly xi(s) elements of si are among the first
m elements of the non-increasingly ordered vector of all nm marginal bids of s. Ties
are broken according to an any fixed tie-breaking rule.

Moreover, each player i ∈ [n] has to pay a certain price pi(s), where p : Σ→ Rn≥0.
Associated to a player i ∈ [n] is a subadditive valuation function vi : [m]∪{0} → R≥0,
vi(0) = 0, which expresses for each possible number of items that i can get allocated,
how much i values getting that number of items. The utility of a player is then given
by ui(s, vi) = vi(xi(s))− pi(s).

In the full information setting, the valuation function is fixed, so that the utility
function boils down to a function from Σ to R. In the incomplete information setting,
the valuation functions take the role of the types, and are drawn from a given type
distribution π. Note that, in accordance to Definition 12, we assume that π has finite
support, and that π is the product distribution of vector (π1, . . . , πn) of type distribu-
tions, where πi, i ∈ [n] is on a given finite set Vi of valuation functions for player i.
The set V = ×i∈[n]Vi therefore takes the role of the set of type profiles and will also
be called the set of valuation profiles in this setting.

We study two standard multi-unit auction formats:

Definition 34 (Discriminatory auction, uniform price auction).
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• A discriminatory auction is a multi-unit auction where pi(s) =
∑
j∈[xi(s)]

si(j)

• A uniform price auction is a multi-unit auction where pi(s) = xi(s)`(s), where
`(s) is defined as the (m + 1)th element in the non-increasingly ordered vector
of all mn marginal bids. I.e., `(s) is the “highest losing marginal bid”.

Note that for the special case of a single item, the discriminatory auction is equal
to a first price auction, where the highest bidding player gets the item, and pays its bid.
Likewise, the uniform price auction is for a single item equal to a second price auction,
where the highest player gets the item, and pays the second-highest bid. Discriminatory
and uniform price auctions can thus be seen as a natural generalization of first price and
second price auctions to multiple items.

Both auction formats are popular in practice. Among the applications of these auc-
tions are [Ausubel and Cramton, 2002]: the allocation of state bonds to investors, spec-
trum auctions, the Eurosystem, to online sales over the internet, facilitated by popular
online brokers.

We consider two bidding interfaces:

Definition 35 (Standard bidding interface, uniform bid vector, uniform bidding inter-
face).
A multi-unit auction is said to have the standard bidding interface iff Σ consists of
all vectors of nondecreasing and non-negative marginal bid vectors. I.e., the vectors s
such that for all i ∈ [n] the vector ŝi (defined as ŝi(j) =

∑
k∈[j] si(k) for j ∈ [m] ) is

submodular, non-negative and non-decreasing.

A uniform bid vector is a non-decreasing and non-negative marginal bid vector (i.e.,
conform the standard bidding interface) that additionally satisfies the requirement that
there are numbers a ∈ [k] ∪ {0} and b ∈ R≥0 such that the marginal bid si(j) = b
when j ≤ a and si(j) = 0 when j > a. A multi-unit auction is said to have the
uniform bidding interface iff Σ consists only of the vectors of uniform bid vectors.

The standard bidding interface is most prevalent in the scientific literature, and
the uniform bidding interface is more popular in practice. We evaluate the economic
inefficiency of both multi-unit auction formats for both bidding interfaces, by means of
upper and lower bounds on the price of anarchy for pure equilibria and mixed Bayes-
Nash equilibria.

The usual definition of a multi-unit auction is more restrictive than the one we give
here: it is usually required that the valuation functions of the players are submodular,
instead of subadditive. The bounds on the price of anarchy that were obtained prior
to this work [Markakis and Telelis, 2012, Syrgkanis and Tardos, 2013] indeed assume
submodular valuation functions.
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We consider here the more general subadditive valuation functions, and we study
submodular valuation functions separately as a special case. Our results signify that
these auctions are nearly efficient, which provides further justification for their use in
practice.

Our developments improve the bounds that have been obtained in Markakis and
Telelis [2012] and Syrgkanis and Tardos [2013] for submodular valuation functions.

2.1 Background
Multi-unit auctions are one of the most widespread and popular tools for selling iden-
tical units of a good with a single auction process. In practice, they have been in use
for a long time, one of their most prominent applications being the auctions offered
by the U.S. and U.K. Treasuries for selling bonds to investors, see e.g., of Treasury
[1998]. In more recent years, they are also implemented by various online brokers:
eBid [2013], Ockenfels et al. [2006]. In the literature, multi-unit auctions have been a
subject of study ever since the seminal work of Vickrey [1961] (although the need for
such a market enabler was conceived even earlier, in Friedman [1960]) and the success
of these formats has led to a resurgence of interest in auction design.

There are three simple standard multi-unit auction formats that have prevailed and
are being implemented; these are the two auction formats defined above (i.e., the dis-
criminatory and uniform price auctions) and the Vickrey multi-unit auction, which
charges prices according to an instance of the Clarke payment rule, which is a stan-
dard payment rule in the mechanism design literature. All three formats have seen
extensive study in auction theory [Krishna, 2002, Milgrom, 2004].

Except for the Vickrey auction, which is truthful (i.e., incentivizes players to bid
equal to their valuation) and efficient (i.e., attains maximum social welfare when play-
ers behave rationally), the others suffer from a demand reduction effect [Ausubel and
Cramton, 2002], whereby players may have incentives to submit a bid vector that is
less than their valuation, in order to receive less units at a better price. This effect is
amplified when players have non-submodular valuation functions, since the bidding in-
terface forces them to encode their value within a submodular bid vector. Even worse,
in many practical occasions players need to submit bids according to the uniform bid-
ding interface. In such a setting, each player is required to “compress” its valuation
function into a bid that scales linearly with the number of units. The mentioned alloca-
tion and pricing rules apply also in this uniform bidding setting, thus yielding different
versions of discriminatory and price auctions. Despite the volume of research from
the economics community [Ausubel and Cramton, 2002, Noussair, 1995, Engelbrecht-
Wiggans and Kahn, 1998, Binmore and Swierzbinski, 2000, Reny, 1999, Bresky, 2008]
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and the widespread popularity of these auction formats, the first attempts of quantify-
ing their economic efficiency are [Markakis and Telelis, 2012, Syrgkanis and Tardos,
2013]. There has also been no study of these auction formats for non-submodular
valuations, as noted by Milgrom [2004].

The multi-unit auction formats that we examine here present technical and con-
ceptual resemblance to the simultaneous auctions format that has received attention
in [Feldman et al., 2013, Christodoulou et al., 2008, Bhawalkar and Roughgarden,
2011, Hassidim et al., 2011, Syrgkanis and Tardos, 2013]. However, upper bounds in
this setting do not carry over to our format. Simultaneous auctions were first studied
by Christodoulou et al. [2008]. The authors proposed that each of a collection of dis-
tinct goods, with one unit available for each of them, is sold in a distinct second price
auction, simultaneously and independently of the other goods. Bidders in this setting
may have combinatorial valuation functions over the subsets of goods, but they are
forced to bid separately for each good. For players with fractionally subadditive valu-
ation functions, they proved a tight upper bound of 2 on the mixed Bayes-Nash price
of anarchy of the Simultaneous Second Price Auction. Bhawalkar and Roughgarden
[2011] extended the study of inefficiency for players with subadditive valuations func-
tions and showed an upper bound of O(log(m)) which was reduced to 4 by Feldman
et al. [2013]. For arbitrary valuation functions, Fu et al. [2012] proved an upper bound
of 2 on the inefficiency of pure Nash equilibria, when they exist.

Hassidim et al. [2011] studied simultaneous first price auctions. They showed that
pure equilibria in this format are always efficient, when they exist. They proved con-
stant upper bounds on the inefficiency of Nash equilibria for (fractionally) subadditive
valuation functions and O(log(m)) and O(m) for the inefficiency of mixed Bayes-
Nash equilibria for subadditive and arbitrary valuation functions. Syrgkanis [2012]
showed that this format has mixed Bayes-Nash price of anarchy e/(e− 1) for fraction-
ally subadditive valuation functions. Feldman et al. [2013] proved an upper bound of 2
for subadditive ones.

Syrgkanis and Tardos [2013] and Roughgarden [2012] independently developed ex-
tensions of the smoothness technique for games of incomplete information. In Syrgka-
nis and Tardos [2013], these ideas are further developed for analyzing the inefficiency
of simultaneous and sequential compositions of simple auction mechanisms. They
demonstrate extensive applications of their techniques on welfare analysis of standard
multi-unit auction formats and their compositions. For submodular valuation functions,
they prove inefficiency upper bounds of 2e/(e− 1) and 4e/(e− 1) for the discrimina-
tory and uniform price auction, respectively. Here, we improve upon these results; our
improvements carry over to simultaneous and sequential compositions as well.
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2.2 Contributions and Outline
The main results we give in this chapter are bounds on the pure price of anarchy and
mixed Bayes-Nash price of anarchy of multi-unit auctions. For the incomplete infor-
mation setting, our bounds are improvements over the previously best known bounds
for the case that the players have submodular valuation functions, and the first known
bounds on the price of anarchy for the case that the players have subadditive valuation
functions. The price of anarchy studied here is with respect to the sum of valuations as
a choice of social welfare function. This is a standard choice of social welfare function
in the case of auction games, and all the price of anarchy bounds in the literature we
mentioned above are with respect to this social welfare function. Note that this is equal
to the “standard” social welfare function (1.4) when we consider the auctioneer as a
player of the game, for which its utility is the total amount of money that the other
players have to pay.

The pure price of anarchy, in the full information setting, is studied in Section 2.4.
For uniform price auctions, we show that the undominated pure price of anarchy (ex-
plained in the next section) is at least (1− 1/e− 2/m)−1 when the valuation functions
of the players are submodular and the uniform bidding interface is used. (For the case
of the standard bidding interface, an almost matching upper bound of (1 − 1/e)−1

was shown to hold in Markakis and Telelis [2012].) In the same section, we addition-
ally point out for uniform price auctions some of the consequences that our bounds on
the mixed Bayes-Nash price of anarchy (proved later in the chapter) have for the pure
price of anarchy. For the discriminatory auction, we show that the existence of pure
equilibria is strongly dependent on the tie-breaking rule that the auction employs. We
prove that there is always a tie breaking rule in which pure equilibria are guaranteed to
exist (although this rule needs to be tailored to the valuation functions of the players),
and when they exist, we prove that they always attain the optimal social welfare. I.e.,
the pure price of anarchy of discriminatory auctions is 1, even for arbitrary valuation
functions under the uniform bidding interface.

We focus in Section 2.5 on the efficiency of mixed Bayes-Nash equilibria. Our
results for the mixed Bayes-Nash price of anarchy are summarized in Table 2.1. For
uniform-price auctions, our bounds assume a restriction on the bid profiles that may
form, known as no-overbidding. This restriction is explained in the next section.

For submodular valuation functions, we derive upper bounds of e/(e − 1) and
3.1462 = |W−1(−1/e2)| < 2e/(e − 1) for the discriminatory and the uniform price
auctions, respectively. These improve upon the previously best known bounds of
2e/(e − 1) and 4e/(e − 1) [Syrgkanis and Tardos, 2013]. For the uniform price auc-
tion, our bound is less than a factor 2 away from the known lower bound of e/(e− 1)
[Markakis and Telelis, 2012]. We also prove lower bounds of e/(e − 1) and 2 for
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Valuation Functions
Auction Format

(bidding: standard | uniform)
discriminatory auction uniform price auction

Submodular e

e− 1
|W−1(−1/e2)| ≈ 3.1462

Subadditive 2
∣∣∣ 2e

e− 1
4
∣∣∣ 2|W−1(−1/e2)| ≈ 6.2924

Table 2.1: Upper bounds on the Bayes-Nash price of anarchy of multi-unit auctions.
The upper bounds for uniform price auctions are under the no-overbidding assumption
(see Section 2.3). W−1 denotes the lower branch of the Lambert W function.

the discriminatory price auction and uniform price auction, with respect to the known
proof techniques of Syrgkanis and Tardos [2013], Feldman et al. [2013], Christodoulou
et al. [2008], Bhawalkar and Roughgarden [2011], Hassidim et al. [2011]. As a con-
sequence, unless the upper bound of e/(e − 1) for the discriminatory auction is tight,
its improvement requires the development of novel tools; the same holds for reduc-
ing the uniform price auction upper bound below 2 (if e/(e − 1) from Markakis and
Telelis [2012] is indeed the worst-case). For subadditive valuations, we obtain bounds
of 2e/(e− 1) and 6.2924 < 4e/(e− 1) for discriminatory and uniform price auctions
respectively, independent of which of the two bidding interfaces is used.

Further, for the standard bidding interface we derive improved bounds of 2 and
4, respectively, by adapting a technique from Feldman et al. [2013]. We also give a
lower bound of almost 2 for uniform pricing and subadditive valuations. In Section
2.6 we discuss further applications of our results in connection with the smoothness
framework of Syrgkanis and Tardos [2013]. In particular, some of these bounds carry
over to simultaneous and sequential compositions of such auctions (see Table 2.2 in
Section 2.6).

The outline of this chapter is as follows. After introducing some preliminary knowl-
edge in Section 2.3, we present in Sections 2.4 and 2.5 our bounds results for the full
information setting and incomplete information setting, respectively. Finally in Section
2.6, the connections between our result and the smoothness-framework of Syrgkanis
and Tardos [2013] is explored. Some concluding remarks are given in Section 2.7.
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2.3 Definitions and Preliminaries
Proposition 36. For any non-negative non-decreasing function f : {0} ∪ [m]→ R≥0

and any integers x, y ∈ [m], x < y, the following hold:

• If f is submodular, then f(x)/x ≥ f(y)/y.

• If f is subadditive, then f(x)/x ≥ f(y)/(x+ y).

Proof. We prove f(a)/a ≥ f(a + 1)/(a + 1) for all a ∈ [m]. Note that the value
f(a)/a is the average increase of f on the interval [0, a]. f(a + 1) is the sum of f(a)
and f(a + 1) − f(a). The latter, f(a + 1) − f(a), is the increase on [a, a + 1]. This
is at most f(a) − f(a − 1) by submodularity, and the latter is in turn at most f(a)/a,
also by submodularity.

It remains to prove the second claim. Note that subadditivity implies that for all
a ∈ Q≥0 and b ∈ N≥0 such that ab ∈ N, f(ab) ≤ f(daeb) ≤ daef(b). We write y
as (1 + a)x, for a ∈ Q≥0. We see that f(y)/(x + y) = f((1 + a)x)/(2 + a)x ≤
d1 + aef(x)/(2 + a)x ≤ f(x)/x, because 2 + a ≥ d1 + ae.

Marginal valuations. Just like for bid vectors, we can specify a valuation function
vi by its marginal vector of valuations. We will denote this vector by v̌i, where v̌i(j) =
vi(j)− vi(j − 1) for j ∈ [m]. If vi is submodular it holds that v̌i is non-increasing.

Winning bids. For a vector of vectors of (marginal) bids s, and i ∈ [m] we write
βi(s) to denote the mth element of the non-increasingly ordered vector of all bids of
s. We refer to β(s) = (β1(s), . . . , βm(s)) as the vector of winning bids of s, as the
number of winning bids that a player submits, is the number of items it wins.

Distributions on vectors of bid vectors. When σ is a mixed Bayesian strategy and
v ∈ V and i ∈ [n], we write σ̄(v) to refer to the distribution of (σ1(v1), . . . , σn(vn))
on ×i∈[n]Σi. In general, when we use the symbol σ, we will write a bar above σ to
indicate that σ̄ is a distribution on bid profiles, rather than a mixed Bayesian strategy
profile.

Lambert W. The LambertW function defined as: For all x ∈ R,W (x) is the number
satisfying the solution x = W (x)eW (x). This function is two-valued on a certain inter-
val, and hence we discriminate between the lower branch W−1 and the upper branch
W0 of the Lambert W function.
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Social welfare. The social welfare function we use for studying the price of anarchy
is the following: In case of incomplete information, for a bid profile s ∈ Σ and a
valuation profile v ∈ V :

U(s, v) =
∑
i∈[n]

vi(xi(s)).

For v ∈ V , we will denote the bid profile maximizing U(·, v) by sv (i.e., as in Defini-
tion 18).

In case of complete information, the vector v is fixed, and the social welfare func-
tion is:

U(s) =
∑
i∈[n]

vi(xi(s)).

As we mentioned earlier in the background discussion above: this is a standard social
welfare function in the study of auction games. This function is equal to the “standard”
social welfare function (1.4) when we consider the auctioneer as a player of the game,
for which its utility is the total amount of money that the other players have to pay.

No-overbidding. For the case of the uniform price auction, an important note is in
order: We assume that the players do not bid more than their valuation.

Definition 37 (No-overbidding bid vector, no-overbidding Bayesian strategy). For a
player i and a valuation vi ∈ Vi, a no-overbidding bid vector is a bid vector si ∈ Σi
such that ŝi(j) ≤ vi(j) for all j ∈ [m] (where ŝ is the vector defined by ŝi(j) =∑
k∈[j] si(k) for j ∈ [m]. A mixed Bayesian strategy σ ∈ ∆(Σi)

Vi of player i ∈ [n]

is said to be no-overbidding iff for all vi ∈ Vi, a bid vector drawn from σ(vi) is a
no-overbidding bid vector with probability 1.

This no-overbidding assumption implies, for uniform price auctions, that our anal-
ysis of the pure price of anarchy is actually with respect to only the subset of the
pure equilibria that contain only no-overbidding bid vectors. Likewise, our analysis
of the mixed Bayes-Nash price of anarchy for uniform price auctions is only with re-
spect to the subset of mixed Bayes-Nash equilibria where it is almost surely the case
that no player overbids. We refer to these equilibria as no-overbidding pure equilibria
and no-overbidding mixed Bayes-Nash equilibria respectively, and to its correspond-
ing prices of anarchy as the no-overbidding pure price of anarchy and no-overbidding
mixed Bayes-Nash price of anarchy respectively. We emphasize that the bounds given
for uniform price auctions in Table 2.1 and discussed in Section 2.2 are on the no-
overbidding mixed Bayes-Nash price of anarchy. The bounds for discriminatory auc-
tions do allow overbidding.
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The assumption of no-overbidding that we make on uniform price auctions is stan-
dard, and is made due to the observation that without this assumption, unnatural equi-
libria can emerge. These equilibria may have bad social welfare and as a consequence
they should not be part of a reasonable solution concept. More specifically: strategies
in which players overbid are dominated, meaning that it is never beneficial for a player
to bid more than its valuation; instead it may only harm the player. It is easy to see
that if a player overbids in some given strategy profile, then it will always get at least
as much utility if it instead switches to bidding precisely its valuation on the number
of items that it wins.

Existence of equilibria. As the auctions we study are not full-information games
in which the players have finite strategy sets, equilibria are not guaranteed to exist in
multi-unit auctions. The bounds on the mixed Bayes-Nash price of anarchy that we
present in this chapter are thus preconditioned on the assertion that there is at least
one Bayes-Nash equilibrium in the auction. We omit stating this precondition in the
theorems below. In case the reader finds this assertion unsatisfying, we note that our
results can be easily seen to continue to hold in case we impose on our multi-unit
auction the restriction that for each player there is a maximum amount of money that it
may bid, and moreover it may only bid multiples of a (sufficiently small) prespecified
least unit of money. This is a valid assumption for every realistic setting that one may
think of. Moreover, if we impose this restriction on the strategy sets of the players,
then the strategy sets become finite and consequently a mixed Bayes-Nash equilibrium
is guaranteed to exist (by Theorem 15 in Section 1.3.1.6).

2.4 The Price of Anarchy of Full Information Multi-
Unit Auctions

In this section we discuss the properties of pure equilibria of the two multi-unit auction
formats, under both the standard and uniform bidding interfaces. As we show, pure
equilibria are always efficient under the discriminatory auction, unlike the uniform
price auction.

2.4.1 Uniform Pricing
Pure equilibria of the uniform price auction have been analyzed in Markakis and Telelis
[2012]. It is well-known that for uniform price auctions, a pure Nash equilibrium
that attains optimal social welfare is guaranteed to exist. Markakis and Telelis [2012]
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showed that the pure price of anarchy is e/(e−1) under the standard bidding interface,
when only the subset of undominated pure equilibria is considered.1

The following simple example shows that the inefficiency of pure equilibria of the
uniform price auction for no-overbidding strategies is slightly higher than the bound
of Markakis and Telelis [2012] (under the standard or uniform bidding interface):

Theorem 38. The no-overbidding price of anarchy of the uniform price auction is at
least (2m − 1)/m when all players have submodular valuation functions. This holds
for both the standard and uniform bidding interface.

Proof. Consider two players with submodular valuation functions, as follows:

v1(j) =

{
m if j ≥ 1 ,

0 otherwise .
and v2(j) = j

The socially optimal allocation achieves social welfare 2m− 1, by allocating one item
to player 1 and m − 1 items to player 2. For a pure equilibrium, consider the uniform
bid profile s where s1(j) = 1 and s2(j) = 0 for all j ∈ [m]. Clearly, u1(s) = m, and
player 2 cannot improve its utility by deviating. Therefore, s is an equilibrium with
U(s) = m, and the no-overbidding pure price of anarchy is (2m− 1)/m.

For both bidding interfaces, upper bounds on the no-overbidding pure price of anar-
chy for uniform price auctions emerge from our results for the more general incomplete
information model (Section 2.5), combined with the following lemma:

Lemma 39. For arbitrary valuation functions, every no-overbidding pure equilibrium
of the uniform price auction with uniform bidding is also a pure equilibrium of the
auction under standard bidding.

Proof. Let s̄ be a no-overbidding pure equilibrium of the uniform price auction under
the uniform bidding interface, for arbitrary valuation functions. We argue that it re-
mains a pure equilibrium under the standard bidding interface. If any player i that does
not win an item has an incentive to deviate using a (standard) bid si, in order to win
at least one unit, it may do so also by using a uniform bid obtained from si by setting
si(j) to 0 for j ≥ 2, a contradiction. If a player that wins an item under s̄ has an
incentive to deviate using a standard bid si, in order to win qi items, then it may as well

1A strategy si of a player i ∈ [n] is said to be dominated if for any choice of strategies of the other
players, there is a different strategy s′ithat will guarantee the player achieve a utility that is at least as high as
the utility it would get when it plays s (and moreover, there is at least one strategy profile s−i of the opposing
players such that ui(si, s−i) < ui(s

′
i, s−i)). An undominated pure equilibrium is a pure equilibrium where

everyone plays a strategy that is not dominated
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do so with a uniform bid obtained from si by bidding
∑
j∈[qi]

si(j)/qi as the first qi of
its bid vector and 0 on the remaining elements, because

∑
j∈[qi]

si(j)/qi ≥ si(qi) due
to submodularity of si. Thus, the assumed uniform bid should grant i at least as many
units as si against a price of at most pi(s̄).

The above lemma, along with Theorem 45 in Section 2.5, leads to the following:

Corollary 40. The no-overbidding pure price of anarchy of the uniform price auction
with submodular players under the standard or the uniform bidding interface is at most
|W−1(−1/e2)|) ≈ 3.1462.

For classes of valuation functions that are more general than the submodular one,
we do not know whether the uniform price auction generally has pure Nash equilibria.
To the best of our knowledge, and as mentioned by Milgrom [2004], the standard multi-
unit auction formats have not been studied before for any larger class of valuation func-
tions. In Section 2.5 we give upper bounds of 4 and 2|W−1(−1/e2)|) ≈ 6.2924 on the
no-overbidding mixed Bayes-Nash price of anarchy of uniform price auctions for sub-
additive valuation functions, under the standard and uniform bidding interfaces, respec-
tively. By Lemma 39 however, the former bound of 4 is valid for the no-overbidding
pure price of anarchy also for uniform bidding.

Corollary 41. The no-overbidding pure price of anarchy of the uniform price auction
with players with subadditive valuation functions under the standard or the uniform
bidding interface is at least 2 and at most 4.

The upper bound of this corollary follows by Lemma 39 and Theorem 46, discussed in
Section 2.5. The lower bound is constructed in Section 2.5.3.

2.4.2 Discriminatory Pricing
The discriminatory auction is not guaranteed to possess pure equilibria; their existence
depends heavily on the choice of a tie-breaking rule, as is often the case for games
where players have a continuum of strategies. For example, consider a two player
discriminatory auction with one item (i.e., first-price auction) where the valuation of
player 1 is 1, the valuation of player 2 is ε < 1, and the tie-breaking rule always
favors player 2. Obviously there can be no equilibrium where player 2 bids above 1.
Furthermore, if player 2 bids some value δ < 1, then player 1 does not have a best
response in (δ, 1); no matter what it bids to win the unit, it always has an incentive
to lower its bid while still being above δ. Hence there is no pure equilibrium for this
auction. We show here that, as with first-price auctions, an appropriate choice of a tie-
breaking rule induces a uniform bidding profile that is a pure equilibrium, even under
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the standard bidding interface. Additionally, we show that we can always obtain close
approximations to pure equilibria, i.e., pure ε-equilibria, for every possible tie breaking
rule.

Proposition 42. The following two statements hold:

• For every discriminatory auction there is a tie-breaking rule inducing a uniform
bid profile that is a pure Nash equilibrium under that tie-breaking rule.

• For every ε > 0, the discriminatory auction has a pure ε-equilibrium.

Proof. We start with proving the first claim. Let v̌ be the nm-dimensional vector
obtained by non-increasingly ordering all marginal valuations v̌i(j), i ∈ [n], j ∈ [m].
We show that the set of bid profiles s where every player sets all its marginal bids to
v̌(m) is a pure equilibrium, if ties are broken according to any tie-breaking rule that
satisfies v̌i(xi(s)) ≥ v̌(m).

Assume without loss of generality that there are at least two players. Let s be the
bid profile where all players bid v̌(m) on all items, and break ties in any way that
satisfies that v̌i(xi(s)) ≥ v̌(m). To see why this is a pure equilibrium, consider the
player deviating to bid vector s′i. Note that s′i − si is non-increasing. Define ` as the
lowest index such that si(`)−s′i(`) is negative (and define ` asm+1 if there is no such
index). If ` ≤ xi(s), then the utility of player i will certainly not increase by deviating
to s′i, as it will lose utility from the fact that xi(s) − ` less items are now allocated
to it under (s′i, s−i), compared to s. As player i used to derive non-negative utility
from these items under s, this removal of items accounts for a non-negative decrease
in utility. Moreover, player i increases its bid on its first ` items, so this accounts for a
non-negative decrease in utility as well. His total utility will therefore decrease in this
case.

In case ` > xi(s), we are in a situation where player i increases its bids (under s′i,
compared to si) on some of the first xi(s) items by at least 0, so it will win these items
under (s′i, s−i) but spend more money on it, leading to a decrease in utility. On any
remaining items that player i wins under (s′i, s−i), it overbids. This also accounts for
a non-negative decrease in utility. The total decrease in utility is thus non-negative in
this case.

We proceed with the proof of the second claim. Let s∗ be a social welfare max-
imizing bid profile. Consider the uniform bid profile s as defined in the proof of the
first claim. Let ξ1, . . . , ξn be vectors that indicate an optimal allocation x(s∗), i.e., ξi is
the (0, 1)-vector of which the first xi(s∗) entries are 1, and the remaining entries are 0.
We show that s̃ = s+ εξ/k is a pure ε-equilibrium. The reasoning we apply is largely
analogous to the proof of the first claim.
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First, observe that there are no ties that need to be broken under s, and that the
allocation x(s̃) satisfies v̌i(xi(s)) ≥ v̌(m).

Consider the player deviating to a bid vector s′i. If player i wins less items un-
der (s′i, s̃−i) than under s̃, it will experience an increase in utility of at most (xi(s̃) −
xi(s

′
i, s̃−i))ε/k due to losing items, because the utility that player i derived under s̃

from each of these lost items was at least −ε/k. On the remaining items that player
i still wins, the player decreases its bid by at most ε/k, and this accounts for an in-
crease in utility of at most xi(s′i, s̃−i)ε/k. The total increase in utility is thus at most
xi(s̃)ε/k ≤ ε.

If player i wins at least as much items under (s′i, s̃−i) than under s̃, the player will
have decreased its bids on the first xi(s̃) items by at most ε/k, and by at most 0 on the
remaining items. For these remaining items, the player experiences non-positive utility
under (s′i, s̃−i), whereas it experienced 0 utility under s̃. Therefore, the total increase
in utility is in this case at most xi(s̃)ε/k ≤ ε.

We show next that, whenever pure equilibria exist in a discriminatory auction, then
they are socially optimal, even with arbitrary valuation functions (even valuations func-
tions that are not-necessarily non-decreasing). This is in analogy with other results on
mechanisms with “first price” rules [Hassidim et al., 2011].

Theorem 43. The pure price of anarchy of discriminatory auctions is 1. This holds for
both the standard and uniform bidding interface, and players with arbitrary valuation
functions.

The proof of Theorem 43 is based on the following lemma, that captures the main
structural properties of pure equilibria in discriminatory auctions.

Lemma 44. Let s be a pure Nash equilibrium in a given discriminatory auction where
the players have general valuation functions. Let d = max{si(j) |i ∈ [n], j ∈ [m], j >
xi(s)}. Then:

1. For each player i ∈ [n] that wins at least one item under s, and for all j ∈
[xi(s)], si(j) = d,

2. `d ≤
∑xi(s)
j=xi(s)−`+1 si(j) for all i ∈ [n], and ` ∈ [xi(s)],

3.
∑xi(s)+`
j=xi(s)+1 v̌i(j) ≤ `d for all i ∈ [n], and ` ∈ [m− xi(s)].

Proof. Let c be the smallest value in {si(j) | i ∈ [n], j ∈ [k], j ≤ xi(s)}, i.e., the
smallest winning marginal bid. Observe that c = d: Otherwise, a player i that bids
si(xi(s)) = c could change si(xi(s)) to a lower bid in order to obtain more utility.
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For the same reasons, we conclude that any winning marginal bid si(j) is equal to the
largest marginal bid that is smaller than si(j). It follows inductively that all winning
marginal bids are equal to d. This establishes point 1 of the claim.

Suppose that for some i ∈ [n] and ` ∈ [xi(s)], it holds that

`d =

xi(s)∑
j=xi(s)−`+1

si(j) >

xi(s)∑
j=xi(s)−`+1

v̌i(j).

Then if player i changes all marginal bids si(j) for j ∈ {j′ | ` ≤ j′} to 0, it would
increase its utility. This is not possible since s is a pure equilibrium, so we conclude
that for all i ∈ [n] and ` ∈ [xi(s)], it holds that

xi(s)∑
j=xi(s)−`+1

si(j) ≤
xi(s)∑

j=xi(s)−`+1

v̌i(j).

This establishes point 2 of the claim.
Note that there is no i ∈ [n] and ` ∈ [m− xi(s)] such that

∑xi(s)+`
j=xi(s)+1 v̌i(j) > `d:

Otherwise, if player i would change its marginal bids si(j), j ∈ {j′ | 1 ≤ j′ ≤ xi(s) +

`} to d+ε for some ε > 0, then player i’s utility increases by
∑xi(s)+`
j=xi(s)+1 v̌i(j)−`(d+

ε) − xi(s)ε. Because
∑xi(s)+`
j=xi(s)+1 v̌i(j) − `d is positive, this total increase is positive

when we take for ε a sufficiently small value. This is in contradiction with the fact that
s is a pure equilibrium, and this establishes point 3 of the claim.

Proof of Theorem 43. Let s∗ be a bid vector that attains the optimum social welfare.
Denote by A the set of players that get more items under s than under s∗. For a player
i ∈ A, define `i as the number of extra items that i gets under s, when compared to
s∗; i.e., `i = xi(s)− xi(s∗). Denote by B the set of players that get more items under
s∗ than under s. For a player i ∈ B, define `i as the number of extra items that i gets
under s∗, when compared to s; i.e., `i = xi(s

∗)− xi(s). Then,

∑
i∈[n]

vi(xi(s))−
∑
i∈[n]

vi(xi(s
∗)) =

∑
i∈[n]

 ∑
j∈[xi(s)]

v̌i(j)−
∑

j∈[xi(b∗)]

v̌i(j)


=

∑
i∈A

xi(s)∑
j=xi(s)−`i+1

v̌i(j)−
∑
i∈B

xi(s)+`i∑
j=xi(s)+1

v̌i(j)

≥
∑
i∈A

`id−
∑
i∈B

`id = 0.
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The inequality in the derivation above follows from points 2 and 3 of Lemma 44,
and the final equality holds because

∑
i∈A `i =

∑
i∈B `i. Thus, the social welfare of

the pure equilibrium s is optimal.

2.5 The Price of Anarchy for Incomplete Information
Multi-Unit Auctions

We derive bounds on the mixed Bayes-Nash price of anarchy for the discriminatory
auctions and the no-overbidding mixed Bayes-Nash price of anarchy for the uniform
price auctions, with submodular and subadditive valuation functions. The class of
subadditive valuation functions has not been studied before in the literature of standard
multi-unit auctions (see also the commentary in [Milgrom, 2004, Chapter 7]).

Theorem 45. The mixed Bayes-Nash price of anarchy (under the standard or uniform
bidding interface) is at most e/(e−1) and 2e/(e−1) for the discriminatory price auc-
tion when the valuation functions are submodular and subadditive valuation functions,
respectively. The no-overbidding mixed Bayes-Nash price of anarchy (under the stan-
dard or uniform bidding interface) is at most |W−1(−1/e2)| ≈ 3.1462 < 2e/(e − 1)
and 2|W−1(−1/e2)| ≈ 6.2924 < 4e/(e − 1) for the uniform price auction with
submodular and subadditive valuation functions, respectively (W−1 being the lower
branch of the Lambert W function).

This theorem improves on the bounds of 2e/(e−1) and 4e/(e−1) for the discrim-
inatory auction and the uniform price auction, respectively, with submodular valuation
functions due to Syrgkanis and Tardos [2013]. For the uniform price auction, this fur-
ther reduces the gap from the known lower bound of e/(e− 1) [Markakis and Telelis,
2012]. Syrgkanis and Tardos [2013] obtained their bounds through an adaptation of the
smoothness framework for games with incomplete information [Roughgarden, 2012,
Syrgkanis, 2012]. The bounds of Theorem 45 and some additional results can also be
obtained through this framework. We comment on this in more detail in Section 2.6.

For subadditive valuation functions and the standard bidding interface, however,
better bounds can be obtained by adapting a technique introduced by Feldman et al.
[2013], which does not fall within the smoothness framework. We were unable to
derive these bounds via a smoothness argument and believe that this is due to the addi-
tional flexibility provided by this technique.

Theorem 46. The mixed Bayes-Nash price of anarchy is at most 2 and 4 for the dis-
criminatory price auction with subadditive valuation functions under the standard bid-
ding interface. The no-overbidding mixed Bayes-Nash price of anarchy is at most 4
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for the uniform price auction with subadditive valuation functions under the standard
bidding interface.

2.5.1 Proof Template for Mixed Bayes-Nash Price of Anarchy
In order to present all our bounds from Theorem 45 and Theorem 46 in a self-contained
and unified manner, we make use of a proof template which is formalized in The-
orem 47 below. Variants of this approach have been used in several other works
(e.g., Markakis and Telelis [2012], Christodoulou et al. [2008], Bhawalkar and Rough-
garden [2011]).

Theorem 47. Suppose that for every valuation profile v ∈ V , for every player i ∈
[n], and for every probability distribution σ̄−i on profiles of bid vectors in Σ−i =
×i′∈[n]\{i}Σ

′
i, there is a bid vector s′i ∈ Σi such that the following inequality holds for

some λ ∈ R>0 and µ ∈ R≥0:

Es−i∼σ̄−i [ui((s
′
i, s−i), vi)] ≥ λvi(xi(sv))− µEs−i∼σ̄−i

 ∑
j∈[xi(sv)]

βm−j+1(s−i)

 .
(2.1)

Then:

• for the discriminatory auction, the mixed Bayes-Nash price of anarchy is at most
1/λ if µ ≤ 1,

• If σ̄−i has only no-overbidding bid vectors in its support, then the no-overbidding
mixed Bayes-Nash price of anarchy of discriminatory auctions is at most (µ −
1)/λ,

• If σ̄−i has only no-overbidding bid vectors in its support, then the no-overbidding
mixed Bayes-Nash price of anarchy for uniform price auctions is at most (µ +
1)/λ .

Note that in this theorem we make no assumptions regarding which of the two
bidding interfaces is used. Proving a bound for the uniform bidding interface only
requires that we provide a uniform bid vector s′i for each player i ∈ [n] and for each
distribution σ̄−i on profiles of uniform non-overbidding vectors s−i.

Proof of Theorem 47. Consider a mixed Bayes-Nash equilibrium σ. Fix any valuation
profile v = (vi, v−i) ∈ V and a player i ∈ [n]. Assume that player i deviates accord-
ing to a bid vector s′i satisfying (2.1), where σ̄−i = σ̄−i(w−i), w−i ∼ π−i. Taking
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expectation over all valuation profiles w−i ∈ V−i = ×j∈[n]\{i}Vj , we obtain

Ew−i∼π−i
[
Es−i∼σ̄−i(w−i) [ui((s

′
i, s−i), vi)]

]
≥ λvi(xi(sv))− µEw−i∼π−i

Es−i∼σ̄−i(w−i)
 ∑
j∈[xi(sv)]

βm−j+1(s−i)


≥ λvi(xi(sv))− µEw∼π

Es∼σ̄(w)

 ∑
j∈[xi(sv)]

βm−j+1(s)

 ,
where the last inequality holds because βm−j+1(s−i) ≤ βm−j+1(s) for every j ∈ [m].
Because σ is a mixed Bayes-Nash equilibrium, player i does not have an incentive to
deviate and thus

Ew−i∼π−i
[
Es∼σ̄(vi,w−i) [ui(s, vi)]

]
≥ Ew−i∼π−i

[
Es−i∼σ̄−i(w−i) [ui(b

′
i, b−i), vi)]

]
.

We conclude that

Ew−i∼π−i
[
Es∼σ̄(vi,w−i) [ui(s, vi)]

]
+ µEw∼π

Es∼σ̄(w)

 ∑
j∈[xi(sv)]

βm−j+1(s)


≥ λvi(xi(sv)).

Taking the sum over all players and all valuation functions on both sides gives us∑
i∈[n]

∑
v∈V

π(v)

(
Ew−i∼π−i

[
Es∼σ̄(vi,w−i) [ui(s, vi)]

]

+ µEw∼π

Es∼σ̄(w)

 ∑
j∈[xi(sv)]

βm−j+1(s)


≥
∑
i∈[n]

∑
v∈V

π(v)λvi(xi(s
v))

=
∑
v

π(v)
∑
i∈[n]

λvi(xi(s
v))

= λEv∼π[U(sv, v)].

Simplifying the left hand side of the above inequality, we obtain

Ev∼π

Es∼σ̄(v)

∑
i∈[n]

ui(s, vi)

+ µEw∼π

Es∼σ̄(w)

∑
i∈[n]

∑
j∈[xi(sv)]

βm−j+1(s)
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≥ λEv∼π[U(sv, v)].

Note that
∑
i∈[n] xi(s

v) = m and that βm−j+1(s) is non-decreasing in j. We can
therefore bound ∑

i∈[n]

∑
j∈[xi(sv)]

βm−j+1(s) ≤
∑
j∈[m]

βm−j+1(s)

and obtain

Ev∼π

Es∼σ̄(v)

∑
i∈[n]

ui(s, vi)

+ µEw∼π

Es∼σ̄(w)

∑
j∈[m]

βm−j+1(s)


≥ λEv∼π[U(sv, v)]. (2.2)

Note that for the discriminatory pricing rule the total payments under s ∈ Σ are
equal to

∑
j∈[m] βm−j+1(s). Thus (2.2) yields

Ev∼π
[
Es∼σ̄(v) [U(s, v)]

]
+ (µ− 1)Ew∼π

Es∼σ̄(w)

∑
j∈[m]

βm−j+1(s)


≥ λEv∼π[U(sv, v)].

If µ ≤ 1, the first statement of the theorem holds. If µ > 1, then we exploit that
the total payments satisfy

∑
j∈[m] βm−j+1(s) ≤

∑
i∈[n] vi(xi(s)) = U(s, v) because

players never overbid. Dividing both sides by µ > 0 proves the first statement of the
theorem in this case.

For the uniform pricing rule we use that
∑
j∈[m] βm−j+1(s) ≤

∑
i∈[n] vi(xi(s)) =

U(s, v) because of the no-overbidding assumption, and that∑
i∈[n]

ui(s, vi) ≤
∑
i∈[n]

vi(xi(s)) = U(s, v).

Thus (2.2) yields

(µ+ 1)Ev∼π
[
Es∼σ̄(v) [U(s, v)]

]
≥ λEv∼π[U(sv, v)].

Dividing both sides by µ+ 1 > 0 proves the claim.

In Section 2.5.3 we show that our bound of e/(e − 1) for the discriminatory price
auction is essentially best possible if one sticks to the proof template of Theorem 47.
This rules out that better bounds can be obtained via the techniques in Syrgkanis and
Tardos [2013], Feldman et al. [2013].
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2.5.2 Key Lemma and Proofs of Theorem 45 and Theorem 46
The following is our key lemma to prove Theorem 45. We point out that it applies to
arbitrary valuation functions (even those that are not subadditive) and to any multi-unit
auction that is discriminatory price dominated, i.e., the total payment pi(s) of player
i ∈ [n] under profile s ∈ Σ satisfies pi(s) ≤

∑
j∈[xi(s)]

si(j).

Lemma 48 (Key Lemma). Let v be a valuation profile and suppose that the pricing
rule is discriminatory price dominated. Define τi = argj min{vi(j)/j | j ∈ [xi(s

v)]}
for every i ∈ [n]. Then for every player i ∈ [n] there exists a no-overbidding random-
ized uniform bid strategy σ̄′i(vi) (i.e., a probability distribution on the subset of uniform
bid vectors of Σi) such that for every bid profile s−i:

Es′i∼σ̄′i(vi)[ui((s
′
i, s−i), vi)] ≥ α

(
1− 1

e1/α

)
xi(s

v)
vi(τi)

τi
−α

∑
j∈[xi(sv)]

βm−j+1(s−i).

(2.3)

Proof. Define B = (1 − e−1/α) and let ci be the vector of which the first xi(sv)
elements are vi(τi)/τi, and the other elements are 0. Let t be a random variable with
probability distribution f(t) = α/(1 − t), on [0, B]. Define σ̄′i as the probability
distribution of s′i = tci. Note that s′i is indeed always a uniform bid vector.

Let m∗ be the number of items that player i would win under profile (Bci, s−i),
i.e., the number of items won by i, when i would deviate to bid vector Bci. For
j ∈ [m∗]∪{0}, let γj refer to the infimum value in [0, B] such that player i would win
j items if it would deviate to bid vector γjci. Note that this definition is equivalent to
defining γj as the least value in [0, B] that satisfies γjvi(τi)/τi = βm−j+1(b−i). For
notational convenience, we define γm∗+1 = B.

Let xi(s′i, s−i) be the random variable that denotes the number of units allocated
to player i ∈ [n] under (s′i, s−i). It always holds that xi(s′i, s−i) ≤ m∗ ≤ xi(s

v),
because player i bids s′i(j) = 0 for all j ∈ {xi(sv) + 1, . . . ,m}. More precisely, we
have xi(s′i, s−i) = j if t ∈ (γj , γj+1] for j ∈ [k∗] ∪ {0}. By assumption, the payment
of player i under profile (s′i, s−i) is at most txi(s′i, s−i)vi(τi)/τi. Also note that, by
definition of τi, it holds that vi(j) ≥ jvi(τi)/τi for j ≤ xi(s

v). Using these two facts,
we can bound the expected utility of player i as follows:

Es′i∼σ̄′i(vi)[ui((s
′
i, s−i), vi)] ≥

∑
j∈[m∗]

∫ γj+1

γj

(
vi(j)− tj

vi(τi)

τi

)
f(t)dt

≥
∑
j∈[m∗]

∫ γj+1

γj

j
vi(τi)

τi
(1− t)f(t)dt
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= α
∑
j∈[m∗]

j
vi(τi)

τi

∫ γj+1

γj

1dt

= α
∑
j∈[m∗]

j
vi(τi)

τi
(γj+1 − γj)

= αBm∗
vi(τi)

τi
− α

∑
j∈[m∗]

γj
vi(τi)

τi

= αBm∗
vi(τi)

τi
− α

∑
j∈[m∗]

βm−j+1(s−i)

≥ αBxi(sv)
vi(τi)

τi
− α

∑
j∈[xi(sv)]

βm−j+1(s−i).

The last inequality holds because Bvi(τi)/τi ≤ βm−j+1(s−i), for j ∈ {m∗ + 1,
. . . , xi(s

v)}, by the definition of m∗. The above derivation implies (2.3).

The bid σ̄′i defined in Lemma 48 is a distribution on uniform bid strategies. That is,
the lemma applies to both the standard and the uniform bidding format. Observe also
that σ̄′i satisfies the no-overbidding assumption.

Proof of Theorem 45. First consider the case of submodular valuation functions. In
this case, τi = xi(s

v) for every i ∈ [n], by Proposition 36. Using our Key Lemma, we
conclude that Theorem 47 holds for (λ, µ) = (α

(
1− e−1/α

)
, α), for all α ∈ R>0.

The stated bounds are obtained by choosing α = 1 for the discriminatory auction and
α = −1/(W−1(−1/e2) + 2) ≈ 0.87 for the uniform price auction.

Next consider the case of subadditive valuation functions. The following lemma
shows that subadditive valuation functions can be approximated by uniform ones, only
losing at most a factor 2.

Lemma 49. If vi is a subadditive valuation function, then

vi(τi)

τi
≥ vi(xi(s

v))

2xi(sv)
,

where τi = argj min{vi(j)/j | j ∈ [xi(s
v)]}.

Proof. We analyze two cases: τi ≤ xi(s
v) ≤ 2τi, and xi(sv) > 2τi. (Note that the

case xi(sv) < τi is impossible by the definition of τi.)
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In case τi ≤ xi(sv) ≤ 2τi it holds that

vi(xi(s
v))

2xi(sv)
≤ 1

2

(
vi(xi(s

v − τi))
xi(sv)

+
vi(τi)

xi(sv)

)
≤ 1

2

(
vi(x

v
i − τi)
τi

+
vi(τi)

τi

)
≤ vi(τi)

τi
,

where we use subadditivity for the first inequality and monotonicity for the third in-
equality (i.e., vi(xi(sv)− τi) ≤ vi(τi)).

In case xi(sv) > 2τi it holds that

vi(xi(s
v))

2xi(sv)
≤ 1

2

(
vi(xi(s

v − τi))
xi(sv)

+
vi(τi)

xi(sv)

)
≤ 1

2

(
vi(xi(s

v − τi))
xi(sv)

+
vi(τi)

τi

)
≤ vi(τi)

τi
,

where the first inequality holds by subadditivity, and the second inequality holds be-
cause (vi(xi(s

v) − τi))/xi(sv) = (vi(xi(s
v) − τi))/(xi(sv) − τi + τi) ≤ vi(τi)/τi,

which follows from the second point of Proposition 36.

By combining Lemma 49 with our Key Lemma, it follows that Theorem 47 holds
for

(λ, µ) =
(α

2

(
1− e−1/α

)
, α
)
.

The bounds stated in Theorem 45 are obtained by the same choices of α as for sub-
modular valuation functions.

Next, consider subadditive valuations under the standard bidding interface. We
derive improved bounds of 2 and 4 for the discriminatory and uniform price auction,
respectively. To this end, we adapt a technique by Feldman et al. [2013] to establish
an analog of Lemma 48. The main idea is to construct the bid s′i ∈ Σi by using the
distribution σ̄−i(v), v ∼ π on Σ−i. Theorem 46 then follows from Theorem 47 in
combination with Lemma 50 below.

Lemma 50. The conditions of Theorem 47 hold for (λ, µ) = (1/2, 1) for discrim-
inatory auctions with subadditive valuation functions (both under the standard and
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uniform bidding interface). The conditions of Theorem 47 hold for (λ, µ) = (1/2, 1)
for uniform price auctions with subadditive valuation functions, when there are only
no-overbidding bid-vectors in the support of σ̄−i (both under the standard and uniform
bidding interface).

Proof. Let V be the class of subadditive valuation functions. We consider first the
discriminatory auction. We shall re-use certain arguments from the proof of this case,
for the proof of the case of uniform price auctions. Fix any player i ∈ [n], number
x ∈ [m], valuation v ∈ V , and let s′i ∈ Σ be a bid vector, satisfying the requirements
of the standard bidding interface, and having only its first x components equal to a
non-zero value, for some x ∈ [m]. Given any bid profile s−i ∈ Σ−i:

ui((s
′
i, s−i), vi) ≥ vi(xi(s′i, s−i))−

∑
j∈[x]

s′i(j),

because i may pay at most
∑
j∈[m] s

′
i(j) =

∑
j∈[x] s

′
i(j), by the definition of s′i and

the auction’s payment rule. Taking expectation over the distribution σ̄−i defined as
σ̄−i(v), v ∼ V , we have:

Es−i∼σ̄−i [ui((s
′
i, s−i), vi)] ≥ Es−i∼σ̄−i [vi(xi(s

′
i, s−i))]−

∑
j∈[x]

s′i(j). (2.4)

From this point on we analyze the right-hand side of (2.4). Given the distribu-
tion σ̄−i of s−i(v), v ∼ π, s−i ∼ σ̄−i(v), let D denote the distribution of the vector
(β1(s−i), . . . , βm(s−i)), s−i ∼ σ̄−i. For every fixed bid vector of player i, the ex-
pected utility of i when the other players bid according to σ̄−i, is equal to the expected
utility of player i in the two-player auction, where the other player bids according to
D. We can thus assume that i competes only against β ∼ D.

We consider what happens when i responds to σ̄−i (i.e., D, in the two-players auc-
tion), by bidding a s′i that is drawn from a random distribution constructed as follows:
the player first samples a vector β from D and zeroes out the k − x highest values
in β and reorders the vector such that it is non-increasing. Subsequently, the player
adds to all non-zero components of the “truncated” vector a sufficiently small ε > 0.
Let D̃ denote the distribution of s′i. Moreover, for a vector β in the support of D, we
denote by β̃ the vector obtained from β by executing on it the process just described
(i.e., zeroing out the k− x highest values, reordering non-increasingly, and adding ε to
each of its elements). Continuing from (2.4), the expected utility of i over s′i ∼ D̃ is:

Es′i∼D̃
[
Es−i∼σ̄−i [ui((s

′
i, s−i), vi)]

]
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≥ Es′i∼D̃

Es−i∼σ̄−i [vi(xi(s
′
i, s−i))]−

∑
j∈[x]

s′i(j)


≥ E β′∼D

s−i∼σ̄−i

vi(xi(β̃′, s−i))− ∑
j∈[m]\[m−x]

β′j


= Eβ′∼D

β∼D

[
vi(xi(β̃

′, β))
]
−Eβ′∼D

β∼D

 ∑
j∈[m]\[m−x]

β′j


=

1

2
2Eβ′∼D

β∼D

[
vi(xi(β̃

′, β))
]
−Eβ∼D

 ∑
j∈[m]\[m−x]

βj


=

1

2
Eβ′∼D
β∼D

[
vi(xi(β̃

′, β)) + vi(xi(β̃, β
′))
]
−Eβ∼D

 ∑
j∈[m]\[m−x]

βj


≥ 1

2
Eβ′∼D
β∼D

[vi(x)]−Eβ∼D

 ∑
j∈[m]\[m−x]

βj


=

1

2
vi(x)−Es−i∼σ̄−i

 ∑
j∈[m]\[m−x]

βj(s−i)

 ,
where the last inequality holds by subadditivity of vi, particularly because xi(β̃′, β) +
xi(β̃, β

′) ≥ x. Taking for x the value xi(sv) and applying Theorem 47 proves the
claim for discriminatory auctions.

We now move on to uniform price auctions. Fix any player i ∈ [n] and v ∈ V , and
let s′i ∈ Σi be a bid vector with non-zero value only on its first x elements. Notice that,
given any bid profile s−i ∈ Σ−i:

ui((s
′
i, s−i), vi) = vi(xi(s

′
i, s−i))− xi(s′i, s−i)p(s′i, s−i)

≥ vi(xi(s′i, s−i))−
∑
j∈[x]

s′i(j).

Taking expectation over the distribution σ̄−i of s−i(v), v ∼ π, s−i ∼ σ̄−i(v) we have:

Es−i∼σ̄−i [ui((s
′
i, s−i), vi)] ≥ Es−i∼σ̄−i [vi(xi(s

′
i, s−i))]−

∑
j∈[m]

s′i(j). (2.5)
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Our analysis from this point on will focus on identifying an appropriate bid s′i
for player i that satisfies no-overbidding. Subsequently, we shall return to (2.5) and
rewrite it further. As previously, given the distribution σ̄−i of s−i, we let D denote the
distribution of the vector (β1(s−i), . . . , βm(s−i)), s−i ∼ σ̄−i.

First, let T be a function from the support of D to subsets of [m] \ [m− x], where
for all β inD’s support, T (β) ⊆ [m]\ [m−x] is a maximal subset of indices such that:∑
j∈T (β) βj > vi(|T (β)|). Let T̄ (β) = ([m] \ [m− x]) \ T (β). Then, we claim that:∑

j∈T̄β

βj ≤ vi(|T̄ (β)|).

Indeed, if there exists R ⊆ T̄ (β) with
∑
j∈R βj > vi(|R|), then, by subadditivity of vi

and monotonicity:

vi(|R ∪ T (β)|) ≤ vi(|R|) + vi(|T (β)|) <
∑
j∈R

βj +
∑

j∈T (β)

βj =
∑

j∈R∪T (β)

βj .

which contradicts the maximality of T (β). Next, using T we define D̃ to be a dis-
tribution defined as follows. For every vector β in the support of D that occurs with
a certain probability, a vector β̃ exists in the support of D̃, that occurs with the same
probability and is obtained from β by setting to 0 the elements of β at indices {x +
1, . . . ,m} ∪ T (β), adding a sufficiently small number ε > 0 to each of the element at
indices T̄ (β), and finally reordering the resulting vector non-increasingly.

Sampling a vector from D̃ is equivalent to sampling a vector β from D and con-
structing β̃ as just prescribed. For a vector β in the support of D, we denote by β̃ the
vector obtained from β by executing on it the process just described, and we denote by
β̄ the vector obtain from β by executing on it the process just described, except for the
last step (adding the ε). For any β ∼ D and for any arbitrary bid s′i, we observe that
xi(s

′
i, β̄) ≤ xi(s′i, β)+ |Tβ |. Thus, vi(xi(s′i, β̄)) ≤ vi(xi(s′i, β))+vi(|T (β)|), by sub-

additivity and monotonicity of vi. Using
∑
j∈[m]\[m−x] βj−

∑
j∈T̄β βj =

∑
j∈Tβ βj ≥

vi(|Tβ |), we obtain:

vi(xi(s
′
i, β))−

∑
j∈T̄ (β)

βj ≥ vi(xi(s′i, β̃))−
∑

j∈[m]\[m−x]

βj .

Thus:

Eβ∼D

vi(xi(s′i, β))−
∑

j∈T̄ (β)

βj

 ≥ Eβ∼D

vi(xi(s′i, β̃))−
∑

j∈[m]\[m−x]

βj

 .
(2.6)
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Now consider s′i being drawn from the distribution D̃. Notice that, by their con-
struction, all the bid vectors in the support of D̃ satisfy no-overbidding. We take ex-
pectation of the left-hand side of (2.6) over s′i ∼ D̃, and rewrite:

Es′i∼D̃
β∼D

vi(xi(s′i, β))−
∑

j∈T̄ (β)

βj

 = Eβ′∼D
β∼D

vi(xi(β̃′, β))−
∑

j∈T̄ (β)

βj


= Eβ′∼D

β∼D

[
vi(xi(β̃

′, β))
]
−Eβ′∼D

 ∑
j∈T̄ (β′)

β′j

 . (2.7)

Accordingly, we take expectation of the right-hand side of (2.6) over D̃, to obtain:

Es′i∼D̄
β∼D

vi(xi(s′i, β̃))−
∑

j∈[m]\[m−x]

βj

 (2.8)

= Eβ′∼D
β∼D

[
vi(xi(β̃

′, β̄))
]
−Eβ′∼D

 ∑
j∈[m]\[m−x]

β′j

 . (2.9)

Finally, we take expectation of (2.5) over s′i ∼ D̃, to obtain:

E s′i∼D̃
s−i∼σ̄−i

[ui((s
′
i, s−i), vi)] ≥ E s′i∼D̃

s−i∼σ̄−i

vi(xi(s′i, s−i))− ∑
j∈[m]

s′i(j)


= Eβ′∼D

β∼D

vi(xi(β̃′, β))−
∑

j∈T̄ (β′)

β′j


= Eβ′∼D

β∼D

[
vi(xi(β̃

′, β))
]
−Eβ′∼D

 ∑
j∈T̄ (β′)

β′j

 . (2.10)

By (2.10), (2.9), (2.7), and (2.6), we derive:

E s′i∼D̄
s−i∼σ̄−i

[ui((s
′
i, s−i), vi)] ≥ Eβ′∼D

β∼D

[
vi(xi(β̃

′, β̄))
]
−Eβ′∼D

 ∑
j∈[m]\[m−x]

β′j

 .
The lower bounding by vi(x)/2 of the first term of the right-hand side of this expression
is done completely analogously to what we did for the discriminatory auction.
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E s′i∼D̄
s−i∼σ̄−i

[ui((s
′
i, s−i), vi)]

≥ 1

2
2Eβ′∼D

β∼D

[
vi(xi(β̃

′, β̄))
]
−Eβ∼D

 ∑
j∈[m]\[m−x]

βj


=

1

2
Eβ′∼D
β∼D

[
vi(xi(β̃

′, β̄) + vi(xi(β̃, β̄
′))
]
−Eβ∼D

 ∑
j∈[m]\[m−x]

βj


≥ 1

2
Eβ′∼D
β∼D

[vi(x)]−Eβ∼D

 ∑
j∈[m]\[m−x]

βj


≥ 1

2
vi(x)−Es−i∼σ̄−i

 ∑
j∈[m]\[m−x]

βj(s−i)

 .
This establishes our claim for the uniform price auction.

2.5.3 Lower Bounds
We provided in in Section 2.4 a lower bound of 2 for the no-overbidding price of
anarchy for pure equilibria, for the case of uniform price auctions with submodular
valuation functions. This lower bound trivially carries over to the mixed Bayes-Nash
price of anarchy of uniform price auctions with submodular valuation functions.

No lower bounds are known for the price of anarchy of discriminatory price auc-
tions, although demand reduction (which is responsible for welfare loss in this format)
has been observed previously [Krishna, 2002, Ausubel and Cramton, 2002]. In light
of this, we prove here an impossibility result showing that for the discriminatory price
auction, no bound better than e/(e− 1) on the price of anarchy can be achieved via the
proof template given in Theorem 47.

Theorem 51. For players with submodular valuation functions, the proof template
given in Theorem 47 cannot be used to obtain an upper bound on the mixed Bayes-
Nash price of anarchy that is less than e/(e− 1) for the discriminatory price auction.

Before giving the formal proof, we provide some intuition for how this proof works.
Our goal is to find a instance of a discriminatory price auction such that (2.1) can only
be satisfied with an as large as possible value for max{1, µ − 1}/λ. To make this
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search easier, we restrict ourselves to two players and assume that v1(x1(sv)) = 1, v2

is identically 0, and µ = 1. Therefore, we aim to construct a two-player instance with
(deterministic) bid vector s such that

sup

u1((s′1, s−1), v1) +
∑

j∈[x1(sv)]

βm−j+1(s)

∣∣∣∣∣∣ s′ ∈ Σ


is as small as possible. We simplify the problem further by restricting ourselves to
constant marginal valuations, i.e., there is a constant c such that v̌1(j) = c for all j,
and we assume that x1(sv) = m. Then the summation

∑
j∈[x1(sv)] βm−j+1(s) in the

above equation can be regarded as a Riemann sum of a non-decreasing non-negative
function f that nowhere exceeds c. We can assume without loss of generality that
the non-zero bids in s′ are equal (as the supremum in the above equation is certainly
attained for such a bid vector) and let z̄(s′) denote the number of non-zero bids in s′.
The term u1((b′1, b−1), v1) can in turn be interpreted as the surface of a rectangle with
dimensions c− f(z̄(s′)) and z̄(s′).

The problem of constructing our instance therefore roughly reduces to the geo-
metric problem of finding the right non-negative non-decreasing curve f such that the
surface under the curve, plus the maximum surface of a rectangle with dimensions
c − f(j) and j, for j ∈ [0,m], is minimized. The proof of Theorem 51, gives es-
sentially a (discretized) description of this curve f , and shows subsequently that with
this choice of f the supremum above is upper bounded by (1 − 1/e)U(sv, v) if we
take an arbitrarily fine Riemann sum of f (i.e., the Riemann integral), which can be
realized by taking m to infinity. Moreover, it coincidentally turns out that if we take
for µ a value other than 1, then this particular instance remains “optimal” in the sense
that there exists no λ that satisfies (2.1) and simultaneously yields a better value for
max{1, µ− 1}/λ than e/(e− 1).

Proof. Fix m ∈ N and µ ∈ R≥0 arbitrarily. We construct an instance of the discrim-
inatory price auction with 2 players, submodular valuation functions v1, v2, and bid
vectors s, such that for every possible strategy s′i of player i ∈ [2] we have

2∑
i=1

ui((s
′
i, s−i), vi) ≤ µ

(
1− 1

e1/µ
+

1

m

(
1− 1

e

))
U(sv, v)− µ

∑
j∈[m]

βm−j+1(s).

By taking m to infinity, we see that for any fixed value of µ, the best price of anar-
chy that we can obtain using Theorem 47 is max{1, µ}/(µ(1 − e−1/µ)). The latter
expression is minimized by taking µ = 1, and from this the claim follows.
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The construction of our instance is as follows: Let the valuation functions be de-
fined as v1(j) = j and v2(j) = 0 for every j ∈ [m]. Then x1(sv) = m and x2(sv) = 0
and the optimal social welfare is U(sv, v) = m. Define the bid vector s1 of player 1 to
be the zero vector and the bid vector s2 of player 2 as

b2(j) =

{
1− m

e1/µ(m−j+1)
if j ∈ [dm

(
1− 1

e1/µ

)
e],

0 otherwise .

We assume that the tie-breaking rule of the auction always assigns a unit to player
1 when there is a tie. Then, if player 2 bids s2, there is a j ∈ [dm

(
1− e−1/µ)

)
e]

such that player 1 maximizes its utility when it sets all its bids equal to s2(j). Let
s′1 = s2(j)1 for some j in this range (where 1 is the m-dimensional all-ones vector).
We have

u1((s′1, s2), v1) = v1(m− j + 1)− (m− j + 1)s2(j)

=
m

e1/µ
+ µ

∑
`∈[m]

s2(j)− µ
∑
`∈[m]

βj(s)

≤ m

e1/µ
+ µ

∫ m(1−e−1/µ)+1

1

(
1− m

e1/µ
(m− t+ 1)

)
dt

+ µ
∑

`∈[dm(1− 1

e1/µ
)e]

(s2(`)− s2(`+ 1))− µ
∑
`∈[m]

βj(s)

= mµ

(
1− 1

e1/µ

)
+ s2(1)− µ

∑
`∈[m]

βj(s)

= µ

(
1− 1

e1/µ
+

1

m

(
1− 1

e

))
U(sv, v)− µ

∑
`in[k]

βm−j+1(s).

For player 2, u2((s′2, s1), v2) ≤ 0 for every bid vector s′2. This establishes our claim
for the discriminatory price auction.

Theorem 51 rules out the possibility of obtaining better upper bounds by means
of the smoothness framework of Syrgkanis and Tardos [2013], or by means of any
approach aiming at identifying the s′i required by Theorem 47, including Feldman et al.
[2013]. These are the only known techniques for obtaining upper bounds on the mixed
Bayes-Nash price of anarchy. Thus, any improvement on our upper bound for the
discriminatory price auction must use either specific structural properties of the (mixed
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Bayes-Nash equilibrium) distribution σ̄, or a new approach altogether. The same holds
for improving the upper bounds for the uniform price auction.

2.6 Smoothness and its Implications
We elaborate in this section on the connections of our results to the smoothness frame-
work that has been developed by Syrgkanis and Tardos [2013].

The results of Syrgkanis and Tardos [2013] concern a class of games that we call
auction mechanisms. We define auction mechanisms here only informally: An auction
mechanism is an incomplete information utility maximization game where the type set
of each player i ∈ [n] consists of valuation functions vi that map some set Di to R,
and a player’s utility on a given strategy profile s is defined as vi(xi(s))− p(s), where
xi is a function from strategy profiles to Di, and p is a function from strategy profiles
to R. Clearly, multi-unit auctions are auction mechanisms.

We first review the smoothness definitions introduced in Syrgkanis and Tardos
[2013]. As introduced earlier, let pi(s) refer to the payment of player i under bid
profile s.

Definition 52 (Syrgkanis and Tardos [2013]). Am auction mechanism is (λ, µ)-smooth
for λ ∈ R>0 and µR≥0 if for any valuation profile v and for any strategy profile s there
exists a bid profile s′i for each i such that∑

i∈[n]

ui((s
′
i, s−i), vi) ≥ λU(sv, v)− µ

∑
i∈[n]

pi(s).

In Syrgkanis and Tardos [2013], it is shown that if an auction mechanism is (λ, µ)-
smooth, then several results related to the price of anarchy follow automatically. One
such result concerns an upper bound on the price of anarchy. Another result is that
the smoothness property (and therefore the upper bound on the price of anarchy) is
roughly retained under simultaneous and sequential compositions. In these compo-
sitions there is a finite number of auction mechanisms with separate allocation and
payment rules. Every player specifies for each auction mechanism a strategy. In a
simultaneous composition, these profiles are submitted simultaneously, while in the
sequential composition, they are submitted sequentially, i.e., a strategy submitted to
an auction mechanism M may depend on the history of strategy profiles submitted to
auction mechanisms that occur before M in this sequence. A player expresses its val-
uation for the m-tuples of outcomes of the auction mechanisms in a restricted way: in
the simultaneous composition it is assumed that the valuation function of each player
is fractionally subadditive across the auction mechanisms (see Syrgkanis and Tardos
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[2013] for a definition). In the sequential composition, the valuation function of each
player is defined as the maximum of its valuations over these auction mechanisms. We
summarize the main composition results of Syrgkanis and Tardos [2013] in the theorem
below.

Theorem 53 (Theorems 4.2, 4.3, 5.1, and 5.2 in Syrgkanis and Tardos [2013]). Let
λ ∈ R>0 and µ ∈ R≥0.

1. If an auction mechanism is (λ, µ)-smooth, then the correlated price of anarchy
and mixed Bayes-Nash price of anarchy of that auction mechanism is at most
max{1, µ}/λ.

2. Simultaneous compositions of (λ, µ)-smooth auction mechanisms are (λ, µ)-
smooth auction mechanisms.

3. Sequential compositions of (λ, µ)-smooth auction mechanisms are (λ, µ + 1)-
smooth auction mechanisms.

By exploiting our Key Lemma, we can show that the discriminatory price auction
is smooth.

Theorem 54. Let α ∈ R≥0. Every discriminatory auction is (λ, µ)-smooth (under
both the standard and uniform bidding interface) with

1. (λ, µ) = (α
(
1− e−1/α

)
, α), when the players have submodular valuation

functions, and

2. (λ, µ) = ((α/2)
(
1− e−1/α

)
, α) when the players have subadditive valuation

functions.

Proof. Note that for the discriminatory price auction we have∑
i∈[n]

pi(s) =
∑
i∈[n]

∑
j∈[xi(s)]

si(j) =
∑
j∈[m]

βm−j+1(s).

Note that Lemma 48 holds for every player i ∈ [n] with λ ∈ R>0 and µ ∈ R≥0 as
stated in Theorem 54. By invoking Lemma 48 and summing (2.3) over all players, we
obtain ∑

i∈[n]

Esi∼σ̄′i(vi)[ui((s
′
i, s−i), vi)]

≥ λ
∑
i∈[n]

vi(xi(s
v))− µ

∑
i∈[n]

∑
j∈[xi(sv)]

βm−j+1(s−i)
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Valuation Functions
discriminatory auction uniform price auction

Simultaneous Sequential Simultaneous Sequential

Submodular e

(e− 1)

2e

(e− 1)

∣∣W−1

(−1
e2

)∣∣ ≈ 3.1462

Subadditive 2e

(e− 1)

4e

(e− 1)
2
∣∣W−1

(−1
e2

)∣∣ ≈ 6.2924

Table 2.2: Upper bounds on the correlated price of anarchy and mixed Bayes-Nash
price of anarchy for compositions of discriminatory and uniform price auctions.

≥ λU(sv, v)− µ
∑
j∈[m]

βm−j+1(s),

where the last inequality holds because for every player i ∈ [n], βm−j+1(s−i) ≤
βm−j+1(s) for every j ∈ [m],

∑
i∈[n] xi(s) = m, and βm−j+1(s) is non-decreasing

in j.

Theorem 54 in combination with Theorem 53 leads to the composition results stated
in the left column of Table 2.2 (these bounds are achieved for α = 1).

For auction mechanisms where one imposes no-overbidding, a different smooth-
ness notion is introduced in Syrgkanis and Tardos [2013]. Given a mechanism, ele-
ment j ∈ Di and strategy si for a player i ∈ [n], define player i’s willingness-to-pay
Bi(si, j) as the maximum payment it could ever pay conditional to that the outcome
for player i is j, i.e.,Bi(si, j) = sup{pi(si, s−i) | xi(si, s−i) = j}. For auction mech-
anisms, a mixed Bayesian strategy σi for a player i is said to satisfy no-overbidding if
for all i ∈ [n] and vi ∈ Vi it holds that Es∼σi(vi)[Bi(si, xi(s))] ≤ Es∼σ[vi(xi(s))].
This definition of no-overbidding specializes to for multi-unit auctions to the definition
of no-overbidding that we provided in Section 2.3. The no-overbidding mixed Bayes-
Nash price of anarchy and no-overbidding correlated price of anarchy are defined in
the same way as for the multi-unit auction case, but now with this more general of
no-overbidding taken into account. The following definition is taken from Syrgkanis
and Tardos [2013]:

Definition 55 (Syrgkanis and Tardos [2013]). An auction mechanism is said to be
weakly (λ, µ1, µ2)-smooth for λ ∈ R>0 and µ1, µ2 ∈ R≥0 iff for any valuation profile
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v and for any bid profile s there exists for each player i a bid profile s′i such that∑
i∈[n]

ui((s
′
i, s−i), vi) ≥ λU(sv, v)− µ1

∑
i∈[n]

pi(s)− µ2

∑
i∈[n]

Bi(si, xi(s)).

Syrgkanis and Tardos [2013] establish the following results.

Theorem 56 (Theorems 7.4, C.4 and C.5 in Syrgkanis and Tardos [2013]). Let λ ∈
R>0 and µ1, µ2 ∈ R≥0.

1. If an auction mechanism is weakly (λ, µ1, µ2)-smooth, then the no-overbidding
correlated price of anarchy and the no-overbidding mixed Bayes-Nash price of
anarchy is at most (µ2 + max{1, µ1})/λ.

2. Simultaneous compositions of weakly (λ, µ1, µ2)-smooth auction mechanisms
are weakly (λ, µ1, µ2)-smooth mechanisms.

3. Sequential compositions of weakly (λ, µ1, µ2)-smooth auction mechanisms are
weakly (λ, µ1 + 1, µ2)-smooth mechanisms.

Using our Key Lemma, we can show that the uniform price auction is weakly
smooth.

Theorem 57. Every uniform price auction is weakly (λ, µ1, µ2)-smooth (both under
the standard and uniform bidding interface) with

1. (λ, µ1, µ2) = (α
(
1− e−1/α

)
, 0, α) when the players have submodular valua-

tion functions, and

2. (λ, µ1, µ2) = ((α/2)
(
1− e−1/α

)
, 0, α) when the players have subadditive val-

uation functions.

The following transformation will be helpful in the poof of Theorem 57. Let s
be an arbitrary bid profile. We derive a uniform bid profile s̄ from s as follows: Let
ci = si(xi(s)). For ease of notation, we adopt the convention that si(0) = 0. Define
s̄i as the vector that is ci on the first xi(s) entries and zero everywhere else. Clearly, s̄
is a uniform bid profile.

Lemma 58. Let s̄ be the uniform bid profile derived from s as described above. Then
for the uniform price auction, the following holds for every player i ∈ [n]:

1. xi(s̄) = xi(s);

2. Bi(s̄i, xi(s̄)) = Bi(si, xi(s)).
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Proof. Let βm and βm+1 refer to themth and (m+1)th element in the non-increasingly
ordered vector of all bids of s, respectively. Note that all of the highest m bids among
all bids of s are at least βm. Also, all of the remaining bids of s are at most βm+1.
We conclude that a bid is among the highest m bids of s̄ if and only if it is among the
highest m bids under s, which proves the first point of the claim.

Observe that Bi(s̄i, xi(s̄)) = xi(s̄)s̄i(xi(s̄)). Now, using the first point of the
claim (which we just proved), and the definition of s̄i, we obtain:

Bi(s̄i, xi(s̄)) = xi(s̄)s̄i(xi(s̄))

= xi(s)s̄i(xi(s))

= xi(s)si(xi(s))

= Bi(si, xi(s)),

which shows the second point of the claim.

Proof of Theorem 57. We first prove weak smoothness for the uniform bidding inter-
face and then extend this result to the standard bidding interface via a coupling argu-
ment.

For every uniform price auction it holds that Bi(si, j) = jbi(j) for all i ∈ [n], j ∈
[m], si ∈ Σi. As before, exploiting Lemma 48 and summing inequality (2.3) over all
players, we obtain that for every strategy profile s and valuation profile v there is a
randomized uniform bid strategy σ̄′i(vi) such that∑

i∈[n]

Es′i∼σ̄′i(vi)[ui((s
′
i, s−i), vi)] ≥ λU(sv, v)− µ

∑
j∈[m] βm−j+1(s).

If s is a uniform bid profile then the claim follows because∑
j∈[m]

βm−j+1(s) =
∑
i∈[n]

xi(s)si(xi(s)) =
∑
i∈[n]

Bi(si, xi(s)). (2.11)

Note that for the standard bidding interface, the first equality here would be false, be-
cause we can only infer that

∑
j∈[m] βm−j+1(s) ≥

∑
i∈[n] xi(s)si(xi(s)). However,

the following work-around establishes weak smoothness for the uniform price auction
and the standard bidding interface.

Note that in general pi(s̄) 6= pi(s), because all losing bids in s̄ are zero. However,
the above two properties turn out to be sufficient to prove weak smoothness in the
standard bidding interface: Let s̄ be the uniform bid profile that we obtain from s as
described above. Applying Lemma 48 to the uniform bid profile s̄ and pricing rule
pi(s̄) = Bi(s̄i, xi(s̄)) (which is discriminatory price dominated), we conclude that for
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every player i ∈ [n], for every strategy profile s ∈ Σ, and for every valuation profile
v ∈ V , there exists a no-overbidding randomized uniform bid strategy σ̄′i(vi) such that

Es′i∼σ̄′i(vi)[vi(xi(s
′
i, s̄−i))−Bi(s′i, xi(s′i, s̄−i))]

≥ λvi(xi(sv))− µ
∑

j∈[xi(sv)]

βm−j+1(s̄−i). (2.12)

Note that by Lemma 58:

ui(s
′
i, s−i), vi) = vi(xi(s

′
i, s−i))− pi(s′i, s−i)

≥ vi(xi(s
′
i, s−i))−Bi(s′i, xi(s′i, s−i))

= vi(xi(s
′
i, s̄−i))−Bi(s′i, xi(s′i, s̄−i)). (2.13)

By summing (2.12) over all players and using (2.13), we obtain:∑
i∈[n]

Es′i∼σ̄′i(vi)[ui((s
′
i, s−i), vi)] ≥ λU(sv, v)− µ

∑
j∈[m]

βm−j+1(s̄)

= λU(sv, v)− µ
∑
i∈[n]

Bi(s̄i, xi(s̄))

= λU(sv, v)− µ
∑
i∈[n]

Bi(si, xi(s)),

where the first equality follows from (2.11) because s̄ is a uniform bid profile and the
second equality holds because of Lemma 58.

As a consequence, we obtain the composition results stated in right column of
Table 2.2. (These bounds are achieved by choosing α = −1/(W−1(−1/e2) + 2) ≈
0.87).

2.7 Conclusions
We derived inefficiency upper bounds in the incomplete information model for the
widely popular discriminatory and uniform price auctions, when players have submod-
ular or subadditive valuation functions. Notably, our bounds for subadditive valuation
functions already improve upon the ones that were known for players with submodular
valuation functions [Markakis and Telelis, 2012, Syrgkanis and Tardos, 2013]. More-
over, for each of the two formats and valuation function classes we considered both the
standard bidding interface [Krishna, 2002, Milgrom, 2004] and a practically motivated
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uniform bidding interface. To derive our results, we elaborated on several techniques
from the literature on simultaneous auctions [Syrgkanis and Tardos, 2013, Feldman
et al., 2013, Christodoulou et al., 2008, Bhawalkar and Roughgarden, 2011]. By the
developments of Syrgkanis and Tardos [2013], our bounds for players with submodular
valuation functions yield improved inefficiency bounds for simultaneous and sequen-
tial compositions of the considered formats. In absence of an indicative lower bound in
the incomplete information model, we showed that our upper bound of e/(e−1) for the
discriminatory auction with submodular valuation functions is the best possible with
respect to the currently known proof techniques. Additionally, for the uniform price
auction (with players with submodular valuation functions), we showed that, proving
an upper bound of less than 2, also requires novel techniques; this poses a particularly
challenging problem, given the lower bound of e/(e − 1) from Markakis and Telelis
[2012].



Chapter 3

The Strong Price of Anarchy of
Linear Bottleneck Congestion
Games*

We study in this chapter the inefficiency of strong equilibria of bottleneck congestion
games. Strong equilibria are strategy profiles for which it is not possible for a coali-
tion of players to deviate to alternative strategies such that every player in the coalition
decreases its cost (or increases its utility, depending on whether the game considered
is a cost minimization game or a utility maximization game). Strong equilibria were
first introduced as a solution concept by Aumann [1960]. Bottleneck congestion games
are a variation on congestion games, where the cost of a player is the maximum delay
among the facilities that it chooses, instead of the sum of the delays. These games
therefore model situations in which the performance of the slowest utility is the crucial
factor, so that the players want to maximize this slowest performance. Bottleneck con-
gestion games are thus cost minimization games. With respect to a social cost function
C : Σ→ R, the ratio of the worst strong equilibrium and the minimum in the image of
C is referred to as the strong price of anarchy, analogous to the price of anarchy and its
variations that we introduced in Section 1.3.1.8. Strong equilibria are known to exist
in bottleneck congestion games Harks et al. [2009], and this motivates the study of the
strong price of anarchy of these games, which is the subject of the present chapter. Our
choice of social cost function will be the one that takes the maximum cost among all

*The contents of this chapter have been published as De Keijzer et al. [2010].
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the players, i.e., (1.5) in Chapter 1.
The material from Chapter 1 that is relevant to this chapter, consists of Section 1.3.1

up to Section 1.3.1.1, and Sections 1.3.1.7, 1.3.1.8, and 1.3.1.10. We proceed by first
defining formally the essential concepts just mentioned.

Definition 59 ((Standard, linear, (a)symmetric, network) bottleneck congestion game).
A bottleneck congestion game is a full information cost minimization game (n,Σ, c)
for which there exists an m ∈ N>0 such that Σi ⊆ 2[m]. Moreover, for each j ∈ [m]
there exists a function dj : 2[n] → R≥0, and for each player i ∈ [n], its cost function
ci is given by ci(s) = maxj∈Σi dj(Pj(s)) where Pj(s) = {i′ ∈ [n] | j ∈ si′} is the
set of players i choosing j in their strategy si. In the context of a congestion game,
the elements of [m] are called facilities, and dj is referred to as the delay function of
facility j ∈ [m]. A bottleneck congestion game may thus be represented as a quadruple
(n,m,Σ, d) where d = (d1, . . . , dm) is the vector of delay functions.

The following are some properties of relevance, that a bottleneck congestion game
may possess.

• A bottleneck congestion game is called monotone if de(P ) ≥ de(P
′) for all

P, P ′ ⊆ [n] with P ⊇ P ′.

• A bottleneck congestion game is called linear if for each j ∈ [m] there exists
aj ∈ R≥1 and for each i ∈ [n] there exists wi ∈ R≥1 such that dj(P ) =
aj
∑
i∈P wi for all j ∈ [m] and P ⊆ [n]. The number wi is in this context

referred to as the weight of player i, for i ∈ [n].

• A bottleneck congestion game is called symmetric if Σi = Σj for all i, j ∈ [n].

• A bottleneck congestion game is a network bottleneck congestion game if there
is a directed graph G = (V,E), a bijection b : E → [m], and two vertices vi, wi
for all i ∈ [n] such that Σi = {{b(e) | e ∈ S} | S is a (vi, wi)-path in G } for all
i ∈ [n].

Note that for linear bottleneck congestion games, the assumption that aj , wi ≥ 1
for i ∈ [n], j ∈ [m], is without loss of generality, as we can always enforce them by
scaling the weights and coefficients appropriately in case one of these numbers lies in
(0, 1].

Moreover, note the strongly similar definition of congestion games given in Section
1.3.1.10. Bottleneck congestion games differ from congestion games in two aspects:
First, a player’s cost is now the maximum delay among the facilities, instead of the
sum. Secondly, the delay of a facility is a function of the player set that chooses it,
instead of only the cardinality of the player set that chooses it.
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Definition 60 (Notation for deviations by coalitions). Given a game Γ = (n,Σ, c), a
strategy profile s ∈ Σ, and a player set P ⊆ [n], we define ΣP = ×i∈PΣi. For a
strategy vector s′P ∈ ΣP , we denote by (s′P , s−P ) the strategy profile obtained from s
by replacing for all i ∈ P the strategy si by the strategy of i in the vector s′P . Just as
our notation for single-player deviations, this notation overloads standard notation and
is formally ambiguous. However, it will always be clear from context what is meant,
and no confusion will arise.

Since we study strong equilibria only for bottleneck congestion games, which are
cost minimization games, we define the strong equilibria and strong price of anarchy
only for cost minimization games.

Definition 61 ((k-)strong equilibrium for cost minimization games). A k-strong equi-
librium for a cost minimization game Γ = (n,Σ, c) and a number k ∈ [n] is a strategy
profile s ∈ Σ such that for all P ⊆ [n], |P | ≤ k and for all s′P ∈ ΣP , there exists
a player i ∈ P such that ci(s′P , s−P ) ≥ ci(s). A strong equilibrium is an n-strong
equilibrium. We denote the set of strong equilibria of a game Γ by SEΓ, and the set of
k-strong equilibria, for k ∈ N>0, by SEkΓ. The subscript Γ may be omitted in case it is
clear from the context.

The intuition behind the above definition is that in a k-strong equilibrium, no player
set of at most k players will form a coalition in order to deviate in a coordinated way to
alternative strategies: there will always be a player in such a set that will not improve
its cost by switching, so this player will not be willing to cooperate.

Observe that a 1-strong equilibrium of a game is a pure equilibrium. Clearly, we
have for k, ` ∈ N>0, k < `, that SEkΓ ⊇ SE`Γ for all games Γ.

Definition 62 ((k-)strong price of anarchy for cost minimization games). The k-strong
price of anarchy for a cost minimization game Γ = (n,Σ, c) is the price of anarchy
of cost minimization game Γ for the set SEkΓ (see Definition 17). The strong price of
anarchy is the n-strong price of anarchy.

The k-strong price of stability for a cost minimization game Γ = (n,Σ, c) is the
price of stability of cost minimization game Γ for the set SEkΓ (see Definition 17). The
strong price of stability is the n-strong price of stability.

For a class of games G the k-strong price of anarchy of G and k-strong price of
stability of G are defined as the supremum of respectively the k-strong price of anarchy
and k-strong price of stability of the games in G. The strong price of anarchy of G and
strong price of stability of G are the n-strong price of anarchy and n-strong price of
stability, respectively.

Theorem 63 (Harks et al. [2009]). SEΓ 6= ∅ if Γ is a monotone bottleneck congestion
game.
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3.1 Background
A well-studied subclass of bottleneck congestion games are load balancing games.
These are linear bottleneck congestion games where the strategy set for each player
consists of only singleton sets.

The latter class of games capture many applications of practical relevance. They
model situations in which a set of strategically acting players (or jobs) compete for a
limited number of facilities (or machines). Every player chooses one of the resources
available to it and assigns its weight (or load) to this resource. The delay of a resource
depends on the total weight of the players using it. The goal of each player is to select
a resource such that the delay that it experiences on this resource is minimized.

As load balancing games model situations where there is a set of autonomous play-
ers that utilize distributed processors upon which a system is built, the need for studying
the price of anarchy of these games is clear. The social cost objective of an assignment
of loads to processors is usually measured by the the completion time of the most
loaded machine, i.e., (1.5). Load balancing games were studied extensively for a vari-
ety of different machine environments, including

• identical machines [Koutsoupias and Papadimitriou, 1999], where the delay func-
tions on the facilities are identical.

• uniformly related machines [Czumaj and Vöcking, 2007, Gairing et al., 2006,
Koutsoupias et al., 2003, Koutsoupias and Papadimitriou, 1999], where each fa-
cility j has an associated number aj ∈ R≥0 and the delay of a facility is the sum
of the weights of the players that have j in their strategy set.

• restricted assignment [Awerbuch et al., 2006, Gairing et al., 2006], where the
case is allowed that Σi ⊂ [m] for i ∈ [n] (as opposed to unrestricted assignment,
where for all i ∈ [n] it holds that Σi = [m].

• unrelated machines [Andelman et al., 2007], which are actually a generalization
of the load balancing games that we just defined them. These load balancing
games are (non-linear) bottleneck congestion games where the strategy set of
each player consists only of singleton sets, such that there is a given number ai,j
for all i ∈ [n], j ∈ [m] such that dj(P ) =

∑
i∈P ai,j for all j ∈ [m], P ⊆ [n].

Clearly, a natural extension of load balancing games are the bottleneck conges-
tion games. They generalize load balancing games by allowing a player to choose
among sets of resources, instead of just single resources. Also, in bottleneck conges-
tion games, the delay functions may be more general. This generalization brings the
model closer to practice, as in most large scale computing systems the workload of
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a player occupies different components of a system simultaneously. For example, in-
stances of such games emerge if the components form paths in networks, or if they
correspond to parallel processors. It is often natural to assume that each player wants
to balance its load across the different components available to it and hence attempts to
minimize the maximum delay of a facility that it uses.

A more restrictive definition of network bottleneck congestion games was consid-
ered first by Banner and Orda [2007]. The authors showed existence of pure equilibria
and provided a Θ(m) bound on the price of anarchy for facilities with identical delay
functions. Busch and Magdon-Ismail studied in Busch and Magdon-Ismail [2009] the
(non-strong) price of anarchy of network bottleneck congestion games for identically
weighted players. Harks et al. [2009] introduced the general bottleneck congestion
games (i.e., the variant that we defined above) and showed that strong equilibria are
guaranteed to exist in these games when the delay functions are monotone. In Harks
et al. [2010], the problem of computation of pure and strong equilibria is addressed.
The paper shows several hardness results and proposes polynomial time algorithms for
special cases. In a work of Busch and Kannan [2012], the (non-strong) price of anar-
chy of bottleneck congestion games is analyzed under the assumption that the player
has bounded stretch. Stretch is a measure of variation in the resource utilization in the
strategy sets of the players.

Load balancing games were first studied by Koutsoupias and Papadimitriou [1999].
Among other results, the authors provided a lower bound on the mixed price of anarchy
for the case of identical machines. Koutsoupias et al. [2003] and, independently Czu-
maj and Vöcking [2007], proved a matching upper bound. They also proved that the
pure price of anarchy is Θ(logm/ log logm). The same bound on the price of anarchy
was shown by Awerbuch et al. [2006] for the case of identical machines and restricted
assignment. Gairing et al. [2006] obtained independently the same bounds and proved
that the price of anarchy is at least m − 1 and at most m for the case of restricted
assignment and uniformly related machines.

Andelman et al. [2007] were the first to study strong and k-strong equilibria in the
context of load balancing games. They proved that the strong price of anarchy lies
between m and 2m − 1 for the case of unrelated machines, which was tightened to
exactly m by Fiat et al. [2007]. In the latter work it was also shown that for uniformly
related machines, the strong price of anarchy is Θ(logm/(log logm)2). For results
in the context of more general scheduling games and associated scheduling policies
(termed coordination mechanisms), the interested reader is referred to Immorlica et al.
[2009] and the references therein.

Bottleneck congestion games owe their name to their similarity to congestion games
(see Section 1.3.1.10). The pure price of anarchy was derived by Christodoulou and
Koutsoupias [2005a], and independently by Awerbuch et al. [2005]. It is shown in
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Christodoulou and Koutsoupias [2005a] that the pure price of anarchy is in Θ(
√
n)

for linear congestion games with respect to the social cost function being the maxi-
mum over the players’ cost. Christodoulou and Koutsoupias [2005a] also shows that
the price of anarchy is 5/2 for linear congestion games with respect to the social cost
function being the sum of the players’ costs. Bounds on the pure price of anarchy
for polynomial delay functions were also derived in Christodoulou and Koutsoupias
[2005a]. Exact bounds for polynomial delay functions and also for weighted players
were developed in Aland et al. [2006].

Related to the topic of coalition formation in congestion games is the work in
Hayrapetyan et al. [2006], where the impact of “collusion” in network congestion
games is studied, where players form coalitions to minimize their collective cost. These
coalitions are assumed to be formed exogeneously, i.e., conceptually, each coalition is
replaced by a “super-player” that acts on behalf of its members. The authors show that
collusion in network congestion games can lead to Nash equilibria that are inferior to
the ones of the collusion-free game (in terms of social cost). They also derive bounds
on the the price of anarchy caused by collusion.

3.2 Contributions and Outline
We study the price of anarchy and strong price of anarchy of bottleneck congestion
games. Our choice of social cost function C is the maximum among the player costs,
i.e., (1.5) in Chapter 1. We restrict our study to linear bottleneck congestion games,
which still constitute a rich class of games. For example, they include as a special case
load balancing games with identical or uniformly related machines with or without
restricted strategy sets. We provide upper and lower bounds on the (strong) price of
anarchy for symmetric and asymmetric linear bottleneck congestion games.

1. In Section 3.3, we show that both the price of anarchy and the strong price of
anarchy of linear bottleneck congestion games is Θ(m). More precisely, we
show that the price of anarchy is between m and 2m− 1 and the strong price of
anarchy is between m− 1 and m.

2. We derive better bounds for games in which all players have identical weights,
in Section 3.3.2. We prove that the strong price of anarchy equals 2 for sym-
metric linear network bottleneck congestion games and is at most O(

√
n) and

O(
√
mC(s∗)) for asymmetric linear bottleneck congestion games, whereC(s∗)

denotes the minimum social cost.
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general identical players identical facilities
symmetric O(m) 2 2

asymmetric Θ(m) O(
√
n), O(

√
mC(s∗)) Θ(

√
(m))

Table 3.1: Summary of the bounds obtained for the strong price of anarchy and the
k-strong price of anarchy of linear bottleneck congestion games. The left column dis-
plays the bounds on the strong price of anarchy for the general case. The middle
column displays our bounds on the strong price of anarchy for the special case that the
players have identical weights. The right column displays our bounds on the strong
price of anarchy for the special case that the facilities have identical delay functions.
The top row displays the bounds for the symmetric case, and the bottom row displays
the bounds for the asymmetric case.

3. We consider in Section 3.4 the special case where all facilities have identical
linear delay functions, and show that the strong price of anarchy is Θ(

√
m).

Most of our results are summarized in Table 3.1. A result not displayed there is that
the price of anarchy of linear bottleneck congestion games is at most 2m− 1 and there
is an asymptotically matching lower bound showing that the strong price of anarchy is
at least m − 1. Moreover, we remark that the asymptotically tight lower bounds that
we provide are all for the class of linear network bottleneck congestion games.

3.3 Arbitrary Facilities
In this section, we derive bounds on the price of anarchy and strong price of anarchy
of linear bottleneck congestion games. We consider both the case of general player
weights and identical player weights.

3.3.1 General Player Weights
We first consider the most general case of arbitrary linear delay functions with player
weights that may be distinct. We show that the price of anarchy is at most 2m − 1 in
this case. We obtain a better bound of m on the strong price of anarchy and present an
almost tight lower bound.

Theorem 64. The price of anarchy of linear bottleneck congestion games is at most
2m− 1 and at least m.
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Proof. Let s be a pure equilibrium with cost C(s) = αC(s∗) for some α ≥ 1 and let
s∗ be a strategy profile that minimizes C. We prove by induction that for every integer
κ such that 1 ≤ κ < (α + 3)/2, there is a set Sκ ⊆ [m], |Sκ| = κ, such that for every
j ∈ Sκ, dj(Pj(s)) ≥ (α− κ+ 1)C(s∗).

The claim holds for κ = 1 because there must exist a facility j ∈ [m] with delay
dj(Pj(s)) = αC(s∗). Suppose that the induction hypothesis holds for κ < (α+ 1)/2.
We will prove that there exists a set Sκ+1 ⊆ [m], |Sκ+1| = κ+1 such that dj(Pj(s)) ≥
(α− κ)C(s∗) for every j ∈ Sκ+1.

Choose from Sκ a facility ĵ with minimal aj , i.e., ĵ = argj min{aj | j ∈ Sκ}. By
the induction hypothesis, we have

dĵ(Pĵ(s)) ≥ (α− κ+ 1)C(s∗) > κC(s∗).

Note that ∑
i∈Pĵ(s)

wi =
dĵ(Pĵ(s)(s))

aĵ
>
κC(s∗)

aĵ
.

Consider the strategies that the players in Pĵ(s) choose under s∗ and suppose for the
sake of a contradiction that for every i ∈ Pĵ(s), s∗i ∩ Sκ 6= ∅. Then there is a facility
j ∈ Sκ with ∑

i∈Pj(s∗)

wi ≥

∑
i∈Pĵ(s)

wi

κ
>
C(s∗)

aĵ
.

By the choice of ĵ, we have

dj(Pj(s
∗)) = aj

∑
i∈Pj(s∗)

wi > C(s∗),

which is in contradiction with the definition of C. Thus, there is a player i ∈ Pĵ(s)
that chooses a strategy s∗j that is disjoint from Sκ. Note that for every j ∈ s∗i we have
ajwi ≤ C(s∗). Since s is a pure equilibrium, player i cannot decrease its cost by
deviating to s∗i and thus there is some facility j′ ∈ s∗i such that:

dj′(Pj′(s)) = (dj′(s) + aj′wi)− aj′wi
≥ ci(s)− aj′wi
≥ dĵ(Pj(s))− C(s∗)

≥ (α− κ)C(s∗).

The inductive step follows by setting Sκ+1 = Sκ ∪ {j′}. By choosing κ = d(α +
1)/2e < (α + 3)/2, we obtain that there is a set Sκ ⊆ [m] with |Sκ| = κ and thus
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m ≥ |Sκ| = κ ≥ (α + 1)/2. We conclude that C(s)/C(s∗) = α ≤ 2m − 1, and
therefore the price of anarchy is at most 2m− 1.

The following instance shows that the price of anarchy is at least m, even for sym-
metric bottleneck congestion games with identical facilities and identical players. Con-
sider a bottleneck congestion game with m = n. Every player i ∈ [n] has unit weight
wi = 1 and the delay dj(Pj(s)) of every j ∈ [m] is given by dj(Pj(s)) =

∑
i∈Pj(s) wi

for all s ∈ Σ. Suppose that each player i ∈ [n] has strategy set Σi = 2[m]. If
every player chooses a distinct facility we obtain an optimal strategy profile s∗ with
C(s∗) = 1. On the other hand, consider the strategy profile s in which every player
chooses [m] as its strategy. This is a pure equilibrium of cost C(s) = m.

We derive a better upper bound on the strong price of anarchy for linear bottleneck
congestion games. The following key lemma will be used several times in this chapter.

Lemma 65. Let s be a strong equilibrium, let s∗ be a strategy profile minimizing
C, let λ ∈ R≥1 and let Pλ ⊆ [n], P 6= ∅ be such that for every i ∈ Pλ we have
ci(s) ≥ λC(s∗). Then, the following two statements hold.

1. There is a player i ∈ Pλ and a facility j ∈ s∗i such that dj({i ∈ [n] \ Pλ | j ∈
si}) ≥ (λ− 1)C(s∗).

2. Suppose that Pλ is maximal, i.e., there is no i ∈ [n] \ Pλ such that ci(s) ≥
λC(s∗). Then there is a set of players Qλ ⊆ [n] \ Pλ and a j ∈ [m] such that
j ∈ si for all i ∈ Qλ. Moreover, it holds that aj

∑
i∈Qλ wi = dj(Qλ) ≥ (λ −

1)C(s∗), and
∑
i∈Qλ wi ≥ λ−1, and for every i ∈ Qλ we have (λ−1)C(s∗) ≤

ci(s) < λC(s∗).

Proof. We first prove the first claim. Note that for every player i ∈ Pλ and every
j ∈ s∗i we have

dj({i ∈ Pλ | s∗i = j}) ≤ dj(Pj(s∗)) ≤ C(s∗). (3.1)

Suppose for the sake of a contradiction that for every player i ∈ Pλ and for every
j ∈ S∗i it holds that dj({i ∈ [n] \Pλ | j ∈ si}) < (λ− 1)C(s∗). Consider the strategy
profile s′ = (s∗Pλ , s−Pλ) in which the players in Pλ deviate to their optimal strategies
in s∗. Using (3.1), we obtain for every i′ ∈ Pλ and for every j ∈ s∗i :

dj(s
′) = dj({i ∈ Pλ | s∗i = j}) + dj({i ∈ [n] \ Pλ | j ∈ si})

< C(s∗) + (λ− 1)C(s∗)
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= λC(s∗). (3.2)

Thus, for every i ∈ Pλ, ci(s′) = maxj∈s∗i dj(s
′) < λC(s∗), which is in contradic-

tion with s being a strong equilibrium.
We next prove the second part of the lemma. Let i ∈ Pλ be a player and j ∈ s∗i be

a facility satisfying dj({i ∈ [n] \ Pλ | j ∈ si}) ≥ (λ− 1)C(s∗). Define Qλ as the set
of players that choose j under s but are not in Pλ, i.e., Qλ = Pj(s) \ Pλ ⊆ [n] \ Pλ.
We have

aj
∑
i∈Qλ

wi = dj(Qλ) ≥ (λ− 1)C(s∗). (3.3)

Since j ∈ s∗i and wi ≥ 1 for every i ∈ [n], we have aj ≤ C(s∗). Thus,∑
i∈Qλ wi ≥ λ − 1. Consider an arbitrary player i ∈ Qλ. By the above we have,

ci(s) ≥ dj(Pj(s)) ≥ dj(Qλ) ≥ (λ − 1)C(s∗). Moreover, by the maximality of Pλ
and since i 6∈ Pλ, we have ci(s) < λC(s∗).

Remark 66. Observe that in the above proof we exploit the linearity of the delay func-
tions only in (3.2). In fact, we can draw exactly the same conclusion if all delay func-
tions are set-subadditive, i.e., for every j ∈ [m], dj(P1 ∪ P2) ≤ dj(P1) + dj(P2)
for every P1, P2 ⊆ [n]. As a consequence, all our upper bounds on the strong price of
anarchy that exploit the first part of Lemma 65 hold for set-subadditive delay functions.

Theorem 67. The strong price of anarchy of linear bottleneck congestion games is at
most m.

Proof. Let s∗ be a strategy profile minimizing C and let s be a strong equilibrium with
cost C(s) = αC(s∗) for some α ∈ R>1. For λ ∈ (1, α], let Pλ be the maximal
non-empty set of players {i ∈ [n] | ci(s) ≥ λC(s∗)}. Applying Lemma 65, we
obtain a player set Qλ such that for every i ∈ Qλ we have (λ − 1)C(s∗) ≤ ci(s) <
λC(s∗). Moreover,

∑
i∈Qλ wi ≥ λ − 1 > 0 because λ > 1 and thus Qλ is non-

empty. Therefore, there exists a set F = {Qα, Qα−1, . . . , Qα−κ} of κ + 1 player
sets that are non-empty and pairwise disjoint, where κ is the largest integer satisfying
α − κ > 1. Every set Qλ ∈ F contains at least one distinct facility j ∈ [m] with
(λ − 1)C(s∗) ≤ dj(s) < λC(s∗). Moreover, there is one facility j ∈ [m] with
dj(s) = αC(s∗). We conclude that m ≥ |F | + 1 = κ + 2 ≥ α and thus the strong
price of anarchy is α ≤ m.

Theorem 68. The strong price of anarchy is at least m − 1 in linear bottleneck con-
gestion games and at least (m+ 1)/3 in linear network bottleneck congestion games.
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Proof. We describe first the lower bound example for linear network bottleneck con-
gestion games, and subsequently adapt it to the desired lower bound example for lin-
ear bottleneck congestion games. Define 0! = 1 and let player i ∈ [n] have weight
wi = 1/(i − 1)!. The source and destination vertices of the players in the network
are as follows. For each player i there is a distinct source vertex si, and all players
share the same destination vertex, which we call t. Besides the source and destination
vertices, there are n− 1 auxiliary vertices vi, i ∈ [n] \ {1}, in the network. The set of
arcs in the network E = E1 ∪ E2 ∪ {(s1, t), (sn, t)}, where:

• E1 = {(si, vi+1) | i ∈ [n− 1]} ∪ {(si, vi) | i ∈ [n] \ {1}}.

• E2 = {(vi, t) | i ∈ [n] \ {1}}.

Then m = |E| = |E1|+ |E2|+2 = 2(n−1)+(n−1)+2 = 3n−1. For each arc
e ∈ E1 define ae = 1.1 For i ∈ [n−1]\{1} let a(vi,t) = (i−1)!. Also, set a(s1,t) = 1
and a(sn,t) = n!. An example for the case n = 4 is depicted in Figure 3.1. Each player
has two strategies, an upper path and a lower path. For almost every player i, the upper
path is {(si, vi+1), (vi+1, t)} and the lower path is {(si, vi), (vi, t)}. Exceptions are
the upper path of player n, which is {(sn, t)}, and the lower path of player 1, which is
{(s1, t)}.

Under configuration s where all players choose their upper path as their strategy,
we have ci(s) = (1/(i − 1)!)i! = i, thus C(s) = n = (m + 1)/3. We claim s is a
strong equilibrium. Consider any coalition P ⊆ [n] changing its strategies, and call s′

the resulting profile. Let i be the least player in P and assume first i ≥ 2. Then under
s and s′, i − 1 plays its upper path, {(si−1, vi), (vi, t)}. The only strategies available
to i are (si, vi) and (vi, t). Then:

ci(s
′) = max{d(si,vi)(P(si,vi)(s

′)), d(vi,t)(P(vi,t)(s
′))}

= max

{
1

(i− 1)!
, (i− 1)!

(
1

(i− 1)!
+

1

(i− 2)!

)}
= max

{
1

(i− 1)!
, 1 + (i− 1)

}
= i = ci(s).

Player 1 will not participate in any deviating coalition either, because a cost of 1 is
incurred to it under s and when playing its lower path. So s is a strong equilibrium.
In the socially optimum configuration every player plays its lower path alone and has
cost ci(s∗) = (1/(i − 1)!)(i − 1)! = 1. Thus, the strong price of anarchy is at least

1We abuse notation slightly and identify the arcs of the graph with the facilities, instead of explicitly
constructing a bijection b conform Definition 59.
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Figure 3.1: A worst-case example for the strong price of anarchy of linear network
bottleneck congestion games.

(m + 1)/3. For the general case we simply regard links in {(s1, t)} ∪ E2 ∪ {(sn, t)}
as m = n + 1 facilities ei′ , i′ ∈ [n + 1] and restrict the strategy space of every player
i to {ei, ei+1}. If every player plays ei+1 we obtain a strong equilibrium similar to s
described above. The social optimum occurs when player i plays ei. We omit a detailed
analysis, since a similar construction has appeared in Gairing et al. [2006].

3.3.2 Identical Players
We next derive an upper bound on the strong price of anarchy for linear bottleneck
congestion games if the weights of all players are identical. We assume without loss of
generality that the weight wi of each player i ∈ [n] is 1.
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Theorem 69. Let Γ be a bottleneck congestion game and s∗ be a strategy profile of Γ
that minimizes C. The strong price of anarchy of Γ is at most

min

{
1

2
+
√

2n− 3/2,
1

2
+
√
mC(s∗)− 3/2

}
for linear bottleneck congestion games with identical player weights, and the strong
price of anarchy is 2 for linear symmetric network bottleneck congestion games with
identical player weights.

Proof. We start with proving the first claim. Let s be a strong equilibrium with cost
C(s) = αγ∗ for some α ∈ R≥1. As in the proof of Theorem 67, we can apply Lemma
65 to identify a set F = {Qα, Qα−1, . . . , Qα−κ} of κ + 1 player sets that are non-
empty and pairwise disjoint, where κ is the largest integer satisfying α− κ > 1. Each
such set Qλ ∈ F contains at least λ− 1 players, i.e., |Qλ| ≥ dλ− 1e. Moreover, there
is at least one player that experiences a congestion of αC(s∗). Thus

n ≥ 1 +
∑

λ∈[dα−1e]

λ ≥ 1 +
α(α− 1)

2
.

Solving for α we obtain α ≤ 1
2 +

√
2n− 3/2. Recall that we assume without loss

of generality that aj ≥ 1 for every j ∈ [m] and thus C(s∗) ≥ n/m. We therefore also
obtain α ≤ 1

2 +
√
mC(s∗)− 3/2.

We continue with the second claim of the theorem. In a strong equilibrium s, at
least one player i ∈ [n] must have cost ci(s) ≤ C(s∗) since otherwise the grand coali-
tion could deviate to the socially optimal strategy profile. Suppose there is a player
i′ ∈ [n] having cost more than two times larger than the cost of i. Consider the strat-
egy profile s′ = (si, s−i′) where player i′ deviates to the strategy of player i. Then
ci′(s

′) ≤ maxj∈si(dj(Pj(s)) + aj) ≤ maxj∈si 2dj(Pj(s)) ≤ 2ci(s), which is a
contradiction to s being a strong equilibrium.

Tightness of this bound is shown by Example 70 below, which is a symmetric
network bottleneck congestion game with identical player weights.

Example 70. Let n = 3 and m = 6. The strategy set of every player is {S1 =
{1}, S2 = {2, 3}, S3 = {4, 5}, S4 = {2, 5, 6}}. The delay functions of the facilities
are identical and are given by dj(P ) = |P | for all j ∈ [m], P ⊆ [n]. The optimal
social cost is attained for the strategy profile s∗, where player i ∈ [3] plays Si. Then,
C(s∗) = 1. A strong equilibrium s is given by s1 = S4 and s2 = s3 = S1. The cost of
s is C(s) = 2. It is easy to verify that this example is a network bottleneck congestion
game.
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3.4 Identical Facilities
In this section, we study the strong price of anarchy for the case of linear bottleneck
congestion games with facilities that have identical delay functions. We refer to this
case as bottleneck congestion games with identical facilities. For this section, we as-
sume without loss of generality that the delay function of every facility j ∈ [m] is given
by dj(P ) =

∑
i∈P wi for all P ⊆ [n].

Theorem 71. The strong price of anarchy of linear bottleneck congestion games with

identical facilities is at most− 1
2 +
√

2m+ 1
4 . The strong price of anarchy of symmetric

linear bottleneck congestion games with identical facilities is 2.

Proof. Let s∗ denote a strategy profile attaining minimum social cost. For the sym-
metric case observe that in any strong equilibrium s, there is at least one player i′ with
ci′(s) ≤ C(s∗). Indeed, if ci(s) > C(s∗) for all i ∈ [n], then [n] would deviate to s∗.
Let i ∈ [n] and j ∈ [m] be such that j ∈ si and ci(s) = dj(s) = C(s). Consider player
i deviating to si′ . Then, because s is a pure equilibrium, C(s) = ci(s) ≤ ci′(s)+wi ≤
2C(s∗). From Example 70 it follows that this bound is tight.

For the asymmetric case, let the cost of a strong equilibrium s be C(s) = αC(s∗),
for some α ∈ R>1. Similar to the proof of Theorem 67, let Pλ be the (maximal)
(non-empty) set of players {i ∈ [n] | ci(s) ≥ λC(s∗)} for λ ∈ (1, α]. By Lemma 65,
we obtain a player set Qλ such that for every i ∈ Qλ we have (λ − 1)C(s∗) ≤
ci(S) < λC(s∗), and there is a j ∈ [m] such that j ∈ si for all i ∈ Qλ. Because
the facilities are identical, and by non-emptiness of Qλ it holds that

∑
i∈Qλ wi =

aj
∑
i∈Qλ wi ≥ (λ − 1)C(s∗) > 0 by Lemma 65. That is, we can identify a set

F = {Qα, Qα−1, . . . , Qα−κ} of κ + 1 player sets that are non-empty and pairwise
disjoint, where κ is the largest integer satisfying α−κ > 1. Moreover, by construction
we have Pα ∩Qλ = ∅ for every Qλ ∈ F and

∑
i∈Pα wi ≥ αC(s∗) since facilities are

identical. The total weight
∑
i∈[n] wi is then:

∑
i∈[n]

wi ≥ αC(s∗) +

α∑
λ=α−κ

∑
i∈Qλ

wi

≥ αC(s∗) +

α∑
λ=α−κ

(λ− 1)C(s∗)

≥ αC(s∗) +
∑

λ∈[α−1]

λC(s∗).
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The latter equals (1/2)α(1 + α)C(s∗). Observe that C(s∗) ≥
∑
i∈[n] wi/m be-

cause the facilities are identical. We obtain 2m ≥ α(1 + α) or equivalently α ≤
− 1

2 +
√

2m+ 1/4.

Theorem 72. The strong price of anarchy of linear bottleneck congestion games with
identical players and identical facilities is at least (−1/2)+

√
2m+ (1/4). The strong

price of anarchy of linear network bottleneck congestion games with identical players
and identical facilities is at least (−1/4) +

√
2 + 2m/2.

Proof. We construct a sequence of bottleneck congestion game instances where m
grows to infinity. That the price of anarchy of each of these instances will be at least
(−1/2)+

√
2m+ (1/4). We turn these instances subsequently into network bottleneck

congestion game instances in order to prove the second claim.
Fix q ∈ N>0 and consider a partition of the set of players [n] into q subsets, [n] =⋃

`∈[q] P`, where |P`| = ` for all ` ∈ [q]. Denote players in P` by p`i, i ∈ [`], ` ∈ [q].
Likewise, for each ` ∈ [q] there is a set of facilities E` = {e`j | j ∈ [`]}. Define
moreover Eq+1 = E1. For every player p`i ∈ P`, i ∈ [`], ` ∈ [q], the strategy set of p`i
is

Σp`i = {{e} | e ∈ E`} ∪ {E`+1}
The socially optimal configuration s∗ is given by s∗p`i = {e`i} for all i ∈ [`], ` ∈

[q]. Then C(s∗) = 1. Now consider the configuration s where sp`i = E`+1 for all
i ∈ [`], ` ∈ [q]. For every player i ∈ P`, ` ∈ [q], we now have ci(s) = `. C(s) is
therefore the delay of the unique facility j = e11 ∈ E1 and is dj(Pj(s)) = |Pq| = q.

We claim that s is a strong equilibrium. Assume for the sake of contradiction that
this is not the case. Then there must exist a player set P ⊆ [n] that can change its
strategies such that it decreases the cost of every player in P . Let s′ be the strategy
profile resulting from the change in strategies of P . Note that for the player p = p11 ∈
P1 we have cp(s) = 1, hence no deviation can decrease its cost and P1 ∩ P = ∅.

Let ` = min{`′ | P`′ ∩P 6= ∅}. Then ` ≥ 2. For all `− 1 players p`−1,i ∈ P`−1 it
holds that sp`−1,i

= E`, because P∩P`−1 = ∅. Hence, c`(s′) = `−1+1 = ` = c`(s).
This is in contradiction with the definition of P , hence s is a strong equilibrium, and
the strong price of anarchy is at least q. We have

m =

∣∣∣∣∣∣
⋃
`∈[q]

Ej

∣∣∣∣∣∣ =
∑
`∈[q]

` =
q(q + 1)

2
,

which yields q ≥ (−1/2) +
√

2m+ (1/4).
We convert the example into a network bottleneck congestion game. The player

set will remain the same, but the facility set will be different and will correspond to
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the edge set of a directed graph G that we will now describe. The strategy set of a
player in P`, ` ∈ [q] consist of the paths in G from a source node s` to a destination
node t. I.e., all players share the same destination node The remainder of the vertex
set of G follows implicitly from the description of the paths available to each player.
It is recommended to inspect Figure 3.2 along with the description that follows, which
depicts the network for q = 4.

For each ` ∈ [q], i ∈ [`−1] there is a path of length 3: {(s`, u`i), (u`i, v`i), (v`i, t)},
and there is additionally a path of length 2: {(s`, u``), (u``, t)}. Let A` be the union of
these paths. There are auxiliary arcs A′` = {(v`i, u`,i+1) | i ∈ [` − 1]}, ` ∈ [q]. And
finally, there is an arc (s`−1, u`1), ` ∈ [q] \ {1}. For the last group of players we add
an arc (sq, t).

We illustrate the analog of s on the constructed network. For ` ∈ [q−1], all players
p`i ∈ P` choose the strategy corresponding to the following path:

s`i = {(s`, u`+1,1}
∪ {(u`+1,r, v`+1,r), (v`+1,r, u`+1,r+1) | r ∈ [`− 1]}
∪ {(u`+1,`, v`+1,`), (v`+1,`, t)},

and spqi = (sq, t) for i ∈ [q]. The proof that s is strong is analogous to the proof
given for the non-network example. In the optimal configuration, every player plays a
disjoint path. The number of links m is

m =
∑
`∈[q]

(|Aj |+ |A′j |) + q =
∑
j∈[q]

(3`− 1 + (`− 1)) + q − 1 = 2q2 + q − 1,

which yields q ≥ (−1/4) +
√

2 + 2m/2.
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4 players

3 players

2 players

1 player

Figure 3.2: An example instance from the set of instances constructed in the proof of
Theorem 72. The dashed edges indicate the strategy played by the players according
to the strong equilibrium.
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Chapter 4

The Robust Price of Anarchy of
Altruistic Games*

Strategic games are often studied under the assumption that players strive to optimize
a utility function that reflects an entirely selfish objective. In many realistic scenarios
however, we may assume that players do not behave entirely selfishly but instead also
take into account the well-being of others. In this chapter, we introduce a simple model
for introducing altruistic behavior in games. We focus on establishing bounds on the
price of anarchy for various well-known classes of games, extended with altruism. The
bounds we obtain are in many cases expressed as a function of the degree of altruism
introduced into the game. In order to establish these bounds, we adapt the smoothness
notion of Roughgarden [2009] for use in altruistic games. Because we make use of (an
adaptation of) smoothness, many of our bounds on the price of anarchy will turn out to
hold for the broad equilibrium concept of coarse equilibria.

Among the preliminaries given in Chapter 1, the relevant material for this chapter
is Section 1.3 up to Section 1.3.1.4, and Section 1.3.1.7 up to Section 1.3.1.10, with
emphasis on Sections 1.3.1.9 and 1.3.1.10.

The classes of games we study (all full information games) are linear congestion
games, symmetric singleton linear congestion games, fair cost sharing games, and valid
utility games. For the first three classes, see Section 1.3.1.10. The fourth class is
defined as follows.

*The contents of this chapter have been published as Chen et al. [2011a,b]. Part of the content of this
chapter appears in the Ph.D. thesis of Po-An Chen. Both authors have contributed to this content in equal
shares.
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Definition 73 (Valid utility game [Vetta, 2002], valid social welfare function). A valid
utility game [Vetta, 2002] is a utility maximization game Γ = (n,Σ, u) where there
is a set [m] of facilities and the strategy sets Σi are subsets of 2[m]. Moreover, there
must exist a valid social welfare function for Γ, which is a social welfare function
U : Σ→ R for which there exists a function V : 2[m] → R such that:

• U(s) = V
(⋃

i∈[n] si

)
for all s ∈ Σ;

• V is submodular, i.e., for all S1, S2 ⊆ [m], j ∈ E,S1 ⊆ S2, it holds that
V (S1 ∪ {j})− V (S1) ≥ V (S2 ∪ {j})− V (S2).

• V is non-decreasing, i.e., for all S1, S2 ⊆ [m], S1 ⊆ S2, it holds that V (S1) ≤
V(S2).

• ui(s) ≥ U(s)− V
(⋃

i′∈[n]\{i} si′
)

for all i ∈ [n], s ∈ Σ. Intuitively, a player’s
utility is at least its contribution to U .

•
∑
i∈[n] ui(s) ≤ U(s) for all s ∈ Σ.

Examples of games falling into the class of valid utility games include natural
game-theoretic variants of the facility location, k-median and network routing prob-
lems [Vetta, 2002]. A bound of 2 was proved on the pure price of anarchy of valid
utility games with respect to any valid social welfare function, by Vetta. Roughgarden
[2009] showed how this bound can be achieved via smoothness, lifting the result up to
the coarse price of anarchy. We extend this result to the altruistic extensions of these
games.

Thus, the price of anarchy for altruistic valid utility games will be studied with
respect to any valid social welfare function. The price of anarchy for altruistic linear
congestion games, symmetric singleton linear congestion games, and fair cost shar-
ing games, will be studied with respect to the standard sum-of-cost social cost, i.e.,
(1.3.1.8).

We model altruistic behavior by assuming that player i’s perceived cost is a convex
combination of 1 − αi times its direct cost and αi times the social cost. Tuning the
parameters αi allows smooth interpolation between purely selfish and purely altruistic
behavior. Our altruism model is based on one used (among others) by Chen et al.
[2010], and similar to ones introduced by Caragiannis et al. [2010], Chen and Kempe
[2008], Chen et al. [2010], Hoefer and Skopalik [2009b], Ledyard [1997].

Definition 74 (Altruistic extension of a cost-minimization game, α̂, α̌, (non)-uniform
altruism). Let Γ = (n,Σ, c) be a cost minimization game and let C be a social cost
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function for Γ. Let α ∈ [0, 1]n. The α-altruistic extension of G with respect to C (or
simply α-altruistic game) is defined as the strategic game Γα = (n,Σ, cα), where for
every i ∈ [n] and s ∈ Σ,

cαi (s) = (1− αi)ci(s) + αiC(s).

The function ci is called the selfish cost, and cαi is called the perceived cost function,
in the context of Γ. Thus, the perceived cost that player i experiences is a convex
combination of its direct (selfish) cost ci and the social costC. We call player i in game
Γα an αi-altruistic player. When αi = 0, we say that player i ∈ [n] is entirely selfish.
A player i ∈ [n] with αi = 1 is entirely altruistic. When αi = αj for all i, j ∈ [n], we
speak of uniform altruism, and the game is a uniformly altruistic extension. Otherwise,
we speak of non-uniform altruism, and the game is a non-uniformly altruistic extension.

Given an altruism vector α ∈ [0, 1]n, we let α̂ = maxi∈N αi and α̌ = mini∈N αi
denote the maximum and minimum altruism levels, respectively.

We define the altruistic extension of a utility maximization game analogously.

Definition 75 (Altruistic extension of a utility maximization game). Let Γ = (n,Σ, u)
be a utility maximization game and let U be a social welfare function for Γ. Let α ∈
[0, 1]n. The α-altruistic extension of G with respect to U (or simply α-altruistic game)
is defined as the strategic utility maximization game Γα = (n,Σ, uα), where for every
i ∈ [n] and s ∈ Σ,

uαi (s) = (1− αi)ui(s) + αiU(s).

The function ui is called the selfish utility, and uαi is called the perceived utility func-
tion, in the context of Γ.

We note that the altruistic part of a player’s perceived cost does not recursively take
other players’ perceived cost into account. Such recursive definitions of altruistic utility
have been studied, e.g., by Bergstrom [1999], and can be reduced to our definition
under suitable technical conditions.

The price of anarchy and price of stability are studied with respect to the social cost
functionC of the original game, and not its altruistic extension. This reflects our desire
to understand the overall quality of the equilibria of the strategic game, which is not
affected by different perceptions of costs of the individual players. Note, however, that
if all players have a uniform altruism level αi = α ∈ [0, 1] and the social cost function
C is equal to the sum of all players’ individual costs, then for every strategy profile
s ∈ Σ, Cα(s) = (1−α+αn)C(s), where Cα(s) =

∑
i∈N C

α
i (s) denotes the sum of

all players’ perceived costs. In particular, bounding the price of anarchy with respect
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to C is equivalent to bounding the price of anarchy with respect to total perceived cost
Cα in this case.

The bounds on the price of anarchy that we establish in this chapter show that for
congestion games and cost-sharing games, the worst-case price of anarchy increases
with increasing altruism, while for valid utility games, it remains constant and is not
affected by altruism. However, the increase in the price of anarchy is not a universal
phenomenon: for symmetric singleton linear congestion games, we derive a bound on
the pure price of anarchy that decreases as the level of altruism increases. Since the
bound is also strictly lower than the mixed price of anarchy, it exhibits a natural exam-
ple in which pure equilibria are more efficient than more permissive solution concepts.

4.1 Background
The accuracy of the price of anarchy as a predictor for how bad the natural stable
outcomes of a game can be, has been criticized by a variety of arguments. One of these
arguments is that the assumption that players seek only to maximize their own utility is
at odds with altruistic behavior routinely observed in the real world. While modeling
human incentives and behavior accurately is a formidable task, several papers have
proposed natural models of altruism [Ledyard, 1997, Levine, 1998] and analyzed its
impact on the equilibria of various games [Caragiannis et al., 2010, Chen et al., 2010,
Chen and Kempe, 2008, Elias et al., 2010].

The work of Hayrapetyan et al. [2006], where the impact of collusion in network
congestion games is studied (see Section 3.1 for a discussion) can be regarded as being
orthogonal to the viewpoint that we adopt in this chapter: in their setting, players are
assumed to be entirely altruistic but locally attached to their coalitions. In contrast, in
our setting, players may have different levels of altruism but locality does not play a
role.

Several recent studies investigate “irrational” player behavior in games. Exam-
ples include studies on malicious (or spiteful) behavior [Babaioff et al., 2007, Brandt
et al., 2007, Chen and Kempe, 2008, Karakostas and Viglas, 2007] and unpredictable
(or Byzantine) behavior [Blum et al., 2008, Moscibroda et al., 2006, Roth, 2008]. The
work that is most related to our work in this context is the one by Blum et al. [2008].
The authors consider games that the players play repeatedly, where every player is as-
sumed to minimize its own regret (see Section 1.3.1.4). They derive bounds on the
inefficiency of the resulting outcomes for certain classes of games, including conges-
tion games and valid utility games. This degree of inefficiency is termed the total price
of anarchy. The bounds they prove exactly match the respective price of anarchy and
even continue to hold if only part of the players minimize their regret, while the other
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players behave arbitrarily. The latter result is surprising in the context of valid utility
games because it means that the price of total anarchy remains at 2, even if additional
players are added to the game that behave arbitrarily. Our findings allow us to draw
an even more dramatic conclusion: Our bounds extend to the total price of anarchy
of the respective repeated games (see Section 4.3). As a consequence, our result for
valid utility games implies that the price of total anarchy would remain at 2, even if the
arbitrarily behaving players were to act altruistically. That is, while the result in Blum
et al. [2008] suggests that arbitrary behavior does not harm the inefficiency of the final
outcome, our result shows that altruistic behavior does not help.

If players’ altruism levels are not uniform, then the existence of pure equilibria
is not obvious. Hoefer and Skopalik established it for several subclasses of atomic
congestion games [Hoefer and Skopalik, 2009b]. For the generalization of arbitrary
player-specific cost functions, Milchtaich [1996] showed existence of pure equilibria
for singleton congestion games, and Ackermann et al. [2006] did so for matroid con-
gestion games, in which the strategy space of each player are the bases of a matroid on
the set of facilities.

Models of Altruism Models of altruism either identical or very similar to the one
used in this chapter have been studied in several papers. Perhaps the first published
suggestion of a similar model is due to Ledyard [1997], but since then, variations of
it have been studied more extensively, e.g., in Caragiannis et al. [2010], Chen et al.
[2010], Chen and Kempe [2008], Elias et al. [2010]. The main difference is that in
some of these models, linear combinations (rather than convex combinations) of cost
functions are considered. For most of these variations, a straightforward scaling of the
coefficients shows equivalence with the model we consider here.

Our altruism model can be naturally extended to include αi < 0, modeling spiteful
behavior (see, e.g., Chen and Kempe [2008]). While this modeling extension is natural,
several results of this chapter and other papers do not continue to hold directly for
negative αi.

Besides models based on linear combinations of individual players’ costs (as well
as social welfare), several other approaches have been studied as well. Generally, al-
truism or other “other-regarding” social behavior has received some attention in the
behavioral economics literature (e.g., Gintis et al. [2005]). Alternative models of altru-
ism and spite have been proposed by Levine [1998], Rabin [1993], and Geanakoplos
et al. [1989]. These models are designed more with the goal of modeling the psycho-
logical processes underlying spite or altruism (and reciprocity): they involve players
forming beliefs about other players. As a result, they are well-suited for experimental
work, but perhaps not as directly suited for the type of analysis done in this chapter.
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4.2 Contributions and Outline
In Section 4.3 we present our extension of smoothness, and prove some preliminary
properties about it in order to motivate this extension.

Subsequently, we analyze the price of anarchy of altruistic extensions of four classes
of games. In many cases, we use our smoothness extension to do this.

1. Using our framework, we derive in Section 4.4 a bound of n/(1 − α̂) on the
coarse price of anarchy of fair cost sharing games, where α̂ is the maximum
altruism level of a player. This bound is tight for uniformly altruistic players.

2. For valid utility games, in Section 4.5 we show that the bound of 2 on the price of
anarchy that was proved by Vetta [2002], remains 2 in the altruistic setting, this
bound holds with respect to all valid social welfare functions and is independent
of the altruism level. Moreover, we show that this bound is tight.

3. For linear congestion games, Caragiannis et al. [2010] derive a tight bound of
(5 + 4α)/(2 + α) on the pure price of anarchy when all players have the same
altruism level α.
Remark 76. Caragiannis et al. [2010] model uniformly altruistic players by defin-
ing the perceived cost of player i as (1 − ξ)Ci(s) + ξ(C(s) − Ci(s)), where
ξ ∈ [0, 1]. It is not hard to see that in the range ξ ∈ [0, 1

2 ] this definition is equiv-
alent to ours by setting α = ξ/(1 − ξ) or ξ = α/(1 + α).1 Therefore, various
bounds we cite here are stated differently in Caragiannis et al. [2010].

Our framework makes it an easy observation that their proof in fact bounds the
coarse price of anarchy. In Section 4.6, we generalize their bound to the case
when different players have different altruism levels, obtaining a bound in terms
of the maximum and minimum altruism levels. This partially answers an open
question from Caragiannis et al. [2010].

4. In Section 4.7, for the special case of symmetric singleton congestion games,
we extend our study of non-uniform altruism and obtain an improved bound of
(4− 2α)/(3− α) on the price of anarchy when an α-fraction of the players are
entirely altruistic and the remaining players are entirely selfish.

Notice that many of these bounds on the coarse price of anarchy reveal a counter-
intuitive trend: For valid utility games, the bound is independent of the level of al-
truism, and for congestion games and cost-sharing games, it actually increases in the

1The model of Caragiannis et al. [2010] with ξ ∈ ( 1
2
, 1] has players assign strictly more weight to others

than to themselves, a possibility not present in our model since we consider altruism to be caring about
others’ costs at most as much as about one’s own cost.
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altruism level, unboundedly so for cost-sharing games. Intuitively, this phenomenon
is explained by the fact that a change of strategy by player i may affect many play-
ers. An altruistic player will care more about these other players than a selfish player;
hence, an altruistic player accepts more states as “stable”. This suggests that the best
stable solution can also be chosen from a larger set, and the price of stability should
thus decrease. Our results on the price of stability lend support to this intuition: for
congestion games, we derive an upper bound on the price of stability which decreases
as 2/(1+α) (Section 4.6); similarly, for fair cost sharing games, we establish an upper
bound which decreases as (1− α)Hn + α (Section 4.4).

The increase in the price of anarchy is not a universal phenomenon, demonstrated
by our results for symmetric singleton congestion games. Caragiannis et al. [2010]
showed a bound of 4/(3 + α) for pure equilibria with uniformly altruistic players,
which decreases with the altruism level α. Our bound of (4−2α)/(3−α) for mixtures
of entirely altruistic and selfish players is also decreasing in the fraction of entirely
altruistic players. We also extend an example of Lücking et al. [2008] to show that
symmetric singleton congestion games may have a mixed price of anarchy arbitrarily
close to 2 for arbitrary altruism levels (Section 4.7). In light of the above bounds, this
establishes that pure Nash equilibria can result in strictly lower price of anarchy than
weaker solution concepts.

Additionally, we provide in Section 4.8 some general insights in how the robust
price of anarchy behaves as a function of the altruism levels of the players: this function
is always quasi-convex, leading to the corollary that for classes of games for which the
robust price of anarchy gives tight bounds, the worst case price of anarchy is attained
when the players are either fully altruistic or fully selfish.

We end this chapter with Section 4.9, providing some concluding remarks and a
discussion about future research.

4.3 Smoothness for Altruistic Extensions of Games
In extending the definition of smoothness to altruistic games, we have to exercise some
care. Simply applying the classical smoothness technique to the new game does not
work, as the social cost function we wish to bound is the sum of all direct costs instead
of the sum of all perceived costs. Moreover, the social cost function is in general not
sum-bounded for an altruistic extension of a game Γ, even if it is sum-bounded for Γ.
Sum-boundedness is needed for applying the smoothness technique. For this reason,
we propose a revised definition of smoothness that is suitable for use with altruistic
extensions of games.

For notational convenience, for a cost minimization game Γ = (n,Σ, c) we define



92 CHAPTER 4. THE ROBUST POA OF ALTRUISTIC GAMES

c−i(s) = C(s)− ci(s) ≤
∑
j∈[n]\{i} cj(s). Note that when the social cost is the sum

of all players’ costs, the inequality is an equality.

Definition 77 ((λ, µ, α)-smoothness). Let Γ = (n,Σ, c) be a cost minimization game,
let α ∈ [0, 1]n, and let C be a social cost function for Γ. Γ is (λ, µ, α)-smooth with
respect to C iff for any two strategy profiles s, s∗ ∈ Σ,∑

i∈[n]

ci(s
∗
i , s−i) + αi(c−i(s

∗
i , s−i)− c−i(s)) ≤ λC(s∗) + µC(s). (4.1)

If Γ is instead a utility maximization game (n,Σ, µ) and U is a social welfare
function for Γ, then we define Γα to be (λ, µ, α)-smooth with respect to U iff for any
two strategy profiles s, s∗ ∈ Σ,∑

i∈[n]

ui(s
∗
i , s−i) + αi(u−i(s

∗
i , s−i)− u−i(s)) ≥ λU(s∗)− µU(s). (4.2)

For α = 0, this definition coincides with Roughgarden’s notion of (λ, µ)-smoothness.
To gain some intuition, consider two strategy profiles s, s∗ ∈ Σ, and a player i ∈ [n]
that switches from its strategy si under s to s∗i , while the strategies of the other players
remain fixed at s−i. The contribution of player i to the left-hand side of (4.1) then
accounts for the individual cost that player i perceives after the switch plus αi times
the difference in social cost caused by this switch excluding player i. The sum of these
contributions needs to be bounded by λC(s∗) +µC(s). We will see that this definition
of (λ, µ, α)-smoothness allows us to derive the coarse price of anarchy of altruistic
extensions of some large and important classes of games.

Preliminary Results
We first show that many of the results of Roughgarden [2009] following from regu-
lar (λ, µ)-smoothness carry over to our altruistic setting using the extended (λ, µ, α)-
smoothness notion (Definition 77). Even though some care has to be taken in extending
these results, most of the proofs of the propositions in this section follow along similar
lines as the analogues of Roughgarden [2009].

Proposition 78. Let Γ = (n,Σ, c) be a cost minimization game, let α ∈ [0, 1]n, let Γα

be a α-altruistic extension of a cost minimization game Γ, and let C be a social cost
function that is sum-bounded with respect to Γ. If Γ is (λ, µ, α)-smooth with respect to
C for some λ, µ ∈ R and µ < 1, then the coarse price of anarchy of Γα with respect
to C is at most λ/(1− µ).
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Likewise, suppose that Γ is instead a utility maximization game Γ, and U is a social
welfare function that is sum-bounded with respect to Γ. If Γ is (λ, µ, α)-smooth with
respect to U for some λ, µ ∈ R and µ > −1, then the coarse price of anarchy of Γα

with respect to U is at most (1 + µ)/λ.

Proof. We prove the claim for cost minimization games. The proof of the claim for
utility maximization games is analogous.

Let σ be a coarse equilibrium of Γα, and s∗ ∈ Σ an arbitrary strategy profile. The
coarse equilibrium condition implies that for every player i ∈ [n]:

Es∼σ[(1− αi)ci(s) + αiC(s)] ≤ Es∼σ[(1− αi)ci(s∗i , s−i) + αiC(s∗i , s−i)].

By linearity of expectation, for every player i ∈ [n]:

Es∼σ[ci(s)] ≤ Es∼σ[ci(s
∗
i , s−i) +αi(C(s∗i , s−i)− ci(s∗i , s−i))−αi(C(s)− ci(s))].

By summing over all players and using sum-boundedness of C and linearity of expec-
tation, we obtain

Es∼σ[C(s)] ≤ Es∼σ

∑
i∈[n]

ci(s
∗
i , s−i) + αi(c−i(s

∗
i , s−i)− c−i(s))

 .
Now we use (4.1) to conclude

Es∼σ[C(s)] ≤ Es∼σ[λC(s∗) + µC(s)] = λC(s∗) + µEs∼σ[C(s)].

Solving for E[C(s)] now proves the claim.

As we show later, for many important classes of games, the bounds obtained by
(λ, µ, α)-smoothness arguments are tight, even for pure equilibria. Therefore, as in
Roughgarden [2009], we define the robust price of anarchy as the best possible bound
on the coarse price of anarchy obtainable by a (λ, µ, α)-smoothness argument.

Definition 79. Let Γ = (n,Σ, c) be a cost minimization game and let α ∈ [0, 1]n. The
α-robust price of anarchy of Γ with respect to a social cost function C for Γ, is defined
as

RPoAΓ(α) = inf

{
λ

1− µ

∣∣∣∣ Γ is (λ, µ, α)-smooth with respect to C, λ, µ ∈ R, µ < 1

}
.

If Γ is instead a utility maximization game, and U is a social welfare function for
Γ, then the α-robust price of anarchy of Γ with respect to U is defined as

RPoAΓ(α) = inf

{
λ

1− µ

∣∣∣∣ Γ is (λ, µ, α)-smooth with respect to U , λ, µ ∈ R, µ > −1

}
.



94 CHAPTER 4. THE ROBUST POA OF ALTRUISTIC GAMES

For a class G of games (each game equipped with a social cost function or social
welfare function), we define the α-robust price of anarchy of G as the supremum of the
α-robust price of anarchy of the games in G (with respect to their social cost functions
or social welfare functions).

The smoothness condition also proves useful in the context of no-regret sequences
and the price of total anarchy, introduced by Blum et al. [2008] (see Section 1.3.1.4).

Proposition 80. Let Γ = (n,Σ, c) be a cost minimization game, let α ∈ [0, 1]n, let
s∗ ∈ Σ be a strategy profile minimizing a sum-bounded social cost function C for
Γ, and let (s1, s2, . . . ) be a vanishing regret sequence of strategy profiles in Σ, with
respect to the α-altruistic extension Γα, with respect to C. This sequence then satisfies
that the factor by which the average social cost deviates from the optimum social cost,
converges to at most the α-robust price of anarchy. I.e.,

lim
T→∞

1

T

∑
t∈[T ]

C(st) ≤ RPoAΓ(α)C(s∗).

If Γ is instead a profit maximization game (n,Σ, u), and U is a sum-bounded so-
cial welfare function for Γ, and (s1, s2, . . .) is a vanishing regret sequence of strategy
profiles in Σ with respect to at most the α-altruistic extension Γα with respect to U ,
then

lim
T→∞

1

T

∑
t∈[T ]

U(st) ≥ U(s∗)

RPoAΓ(α)
.

Proof. We prove the claim for cost minimization games. For profit maximization
games, the proof is analogous. Let λ, µ ∈ R, µ < 1, be such that Γ is (λ, µ, α)-
smooth. By sum-boundedness of C and by the definition of cαi , i ∈ [n] it holds for all
t ∈ N>0 that

C(st) ≤
∑
i∈[n]

(cαi (st)− cαi (s∗i , s
t
−i))

+
∑
i∈[n]

(ci(s
∗
i , s

t
−i) + αi(c−i(s

∗
i , s

t
−i)− c−i(st)))

≤
∑
i∈[n]

(cαi (st)− cαi (s∗i , s
t
−i)) + λC(s∗) + µC(st),

where the second inequality follows from (λ, µ, α)-smoothness. This is equivalent to

C(st) ≤ λ

1− µ
C(s∗) +

1

1− µ
∑
i∈[n]

(cαi (st)− cαi (s∗i , s
t
−i)). (4.3)
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The vanishing regret property of (s1, s2, . . .) implies that for all i ∈ [n],

lim
T→∞

1

T

∑
t∈[T ]

(cαi (st)− cαi (s∗i , s
t
−i))

≤ lim
T→∞

1

T
max

0,
∑
t∈[T ]

(cαi (st)− cαi (s′i, s
t
−i))

∣∣∣∣∣∣ s′i ∈ Σi


= 0.

Combining this with (4.3) proves the claim:

lim
T→∞

1

T

∑
t∈[T ]

C(st)

≤ lim
T→∞

1

T

∑
t∈[T ]

 λ

1− µ
C(s∗) +

1

1− µ
∑
i∈[n]

(cαi (st)− cαi (s∗i , s
t
−i))


≤

 λ

1− µ
C(s∗) + lim

T→∞

1

1− µ
∑
i∈[n]

∑
t∈[T ]

(cαi (st)− cαi (s∗i , s
t
−i))


=

λ

1− µ
C(s∗).

4.4 Fair Cost-sharing Games
It is well-known that the pure price of anarchy of fair cost-sharing games is n [Nisan
et al., 2007]. We show that it can get significantly worse in the presence of altruistic
players: the following theorem gives a much worse upper bound, which we subse-
quently show to be tight.

Theorem 81. Let n ∈ N>0 and α ∈ [0, 1]n. The α-robust price of anarchy of an
n-player cost-sharing game is at most n

1−α̂ (where n/0 =∞), with respect to the sum-
of-costs social cost function C (1.3.1.8). This bound is tight, even for pure equilibria
with uniform altruism. I.e., the pure price of anarchy of the class of uniformly altruistic
extensions of n-player fair cost sharing games is n

1−α̂ .
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Proof. The claim is true for α̂ = 1 because RPoA(α) ≤ ∞ holds trivially.
Let Γ be a fair cost sharing game, given by (n,m,Σ, d) (conform Definition 22).

Let aj , j ∈ [m] denote the costs of the facilities (conform Definition 23). We show that
Γα is (n, α̂, α)-smooth for α ∈ [0, 1)n. For s ∈ Σ we define

B(s) =

j
∣∣∣∣∣∣ j ∈

⋃
i∈[n]

si


Let s, s∗ ∈ Σ be two strategy profiles. Fix an arbitrary player i ∈ [n]. We have

C(s∗i , s−i)− C(s) =
∑

j∈B(s∗i ,s−i)

aj −
∑

j∈B(s)

aj ≤
∑

j∈s∗i \B(s)

aj .

We use this inequality to obtain the following bound. We remind the reader that we
write Pj(s) to denote the set of players choosing facility j ∈ [m] under strategy profile
s ∈ Σ.

(1− αi)ci(s∗i , s−i) + αi(C(s∗i , s−i)− C(s))

≤ (1− αi)
∑
j∈s∗i

aj
Pj(s∗i , s−i)

+ αi
∑

j∈s∗i \B(s)

aj
Pj(s∗i , s−i)

≤
∑
j∈s∗i

aj
Pj(s∗i , s−i)

≤
∑
j∈s∗i

naj
Pj(s∗)

.

The first inequality holds because Pj(s∗i , s−i) = 1 for every j ∈ s∗i \B(s), and the last
inequality follows from Pj(s

∗
i , s−i) ≥ Pj(s

∗)/n for every j ∈ s∗i . The left-hand side
of the smoothness condition (4.1) is equivalent to∑

i∈[n]

((1− αi)ci(s∗i , s−i) + αi(C(s∗i , s−i)− C(s)) + αici(s))

≤
∑
i∈[n]

∑
j∈s∗i

naj
Pj(s∗)

+ α̂C(s)

= nC(s∗) + α̂C(s).

We conclude that the robust price of anarchy is at most n
1−α̂ . Example 82 shows that

this bound is tight, even for pure equilibria with uniform altruism.
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Example 82. Let α ∈ [0, 1]n be a uniform altruism vector. Consider a cost-sharing
game with n players and 2 facilities, where a1 = 1 and a2 = n/(1− α). The strategy
set of each players consists of the two singleton sets. Let s∗ = (e1, . . . , e1) and s =
(e2, . . . , e2). Then C(s∗) = 1 and C(s) = n/(1 − α). Note that s is a pure Nash
equilibrium of the α-altruistic extension of this game, because for every player i,

(1− αi)ci(s) + αiC(s) = 1 + αi
n

1− αi
= cαi ({1}, s−i).

The pure price of anarchy of this game is therefore at least n/(1− α).

We turn to the pure price of stability of uniformly α-altruistic extensions of cost-
sharing games. Clearly, an upper bound on the pure price of stability extends to the
mixed, correlated and coarse price of stability. As opposed to the price of anarchy,
the price of stability does improve with increased altruism. The proof of the following
proposition exploits a standard technique to bound the pure price of stability of exact
potential games (see, e.g., Nisan et al. [2007]).

Proposition 83. Let Γ be a fair cost sharing game, letα ∈ [0, 1]n be a uniform altruism
vector, and letC be the sum-of-costs social cost function (1.3.1.8) for Γ. The pure price
of stability of the uniformly α-altruistic extension Γα of Γ with respect to C is at most
(1− α̌)Hn + α̌, where Hn denotes the nth harmonic number

∑
k∈[n] 1/k.

Proof. It is not hard to verify that Γα is a potential game with potential function
Φα(s) = (1 − α̌)Φ(s) + α̌C(s), where Φ(s) =

∑
j∈[m]

∑
k∈[|Pj(s)|] aj/k. Observe

that for s ∈ Σ,

Φα(s) = (1− α̌)
∑
j∈[m]

∑
k∈[|Pj(s)|]

aj
k

+ α̌
∑

j∈B(s)

aj

≤ ((1− α̌)Hn + α̌)
∑

j∈B(s)

aj

= ((1− α̌)Hn + α̌)C(s).

We therefore have that C(s) ≤ Φα(s) ≤ ((1− α̌)Hn + α̌)C(s).
Let s ∈ Σ be a strategy profile that minimizes Φα, and let s∗ ∈ Σ be a strategy

profile that minimizes C. Note that s is a pure equilibrium of Γα. We have

C(s) ≤ Φα(s) ≤ Φα(s∗) ≤ ((1− α̌)Hn + α̌)C(s∗),

which proves the claim.
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4.5 Valid Utility Games
Theorem 84. Let Γ be a valid utility game and let α ∈ [0, 1]n. The α-robust price of
anarchy of Γ with respect to any valid social welfare function, is at most 2. This bound
is tight, i.e., there exists a valid utility game Γ and valid social welfare function U such
that the α-robust price of anarchy of Γ with respect to U is 2.

Proof. We show that a valid utility game Γ = (n,Σ, u) is (1, 1, α)-smooth with respect
to a valid social welfare function U .

Fix two strategy profiles s, s∗ ∈ Σ and consider an arbitrary player i ∈ [n]. By
assumption, we have ui(s) ≥ U(s)− V

(⋃
i′∈[n]\{i} si′

)
, or equivalently,

−U(s) + ui(s) ≥ −V

 ⋃
i′∈[n]\{i}

si′


Now let Si =

⋃
i′∈[n] si′ ∪

⋃
i′∈[i] s

∗
i′ . Summing over all i ∈ [n],∑

i∈[n]

((1− αi)ui(s∗i , s−i) + αi(U(s∗i , s−i)− U(s) + ui(s)))

≥
∑
i∈[n]

U(s∗i , s−i)− V

 ⋃
i′∈[n]\{i}

si′


=
∑
i∈[n]

V
s∗i ∪ ⋃

i′∈[n]\{i}

si

− V
 ⋃
i′∈[n]\{i}

si′


≥
∑
i∈[n]

(V (Si)− V (Si−1))

≥ U(s∗)− U(s).

Here, the first inequality follows from (4.5) and

ui(s
∗
i , s−i) ≥ U(s∗i , s−i)− V

 ⋃
i′∈[n]\{i}

si′


for all i ∈ [n]. The second inequality holds because V is submodular, and the final
inequality follows from V being non-decreasing. We conclude that Γα is (1, 1, α)-
smooth, which proves an upper bound of 2 on the α-robust price of anarchy of Γ with
respect to U . This bound is tight, as shown by Example 85.
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Example 85. Consider a valid utility game with n = 2 and m = 2. The strategy sets
are Σ1 = {{1}, {2}}, Σ2 = {∅, {1}}. Define V (S) = |S| for every subset S ⊆ [2].
Note that V is non-negative, non-decreasing and submodular. Of course, we define
U(s) as V (s1 ∪ s2) for all s ∈ Σ.

For a given strategy profile s ∈ Σ, the utility functions u1(s) and u2(s) are defined
as follows: u1(s) = 1 for all strategy profiles s. u2(s) = 1 if s = ({2}, {1}) and
u2(s) = 0 otherwise. Observe thatU is sum-bounded. Moreover, it is not hard to verify
that for every player i and every strategy profile s ∈ Σ we have ui(s) ≥ U(s)−V (s−i).
We conclude that Γ is a valid utility game and U a valid social welfare function.

Let α ∈ [0, 1]2, and consider the α-altruistic extension Γα of Γ. We claim that
s = ({1},∅) is a pure equilibrium of Γα:It holds that u1(s) = (1 − α1) + α1 = 1.
This utility remains 1 if player 1 switches to strategy {2}. u2(s) = α2. If player 2
switches to strategy {1}, then its profit is α2 as well. Thus, s is a pure equilibrium.
Since U(s) = 1 and U({2}, {1}) = 2, the pure price of anarchy of Γ with respect to
U is 2.

4.6 Linear Congestion Games
Pure equilibria of altruistic extensions of linear congestion games always exist [Hoefer
and Skopalik, 2009b]. This may not be the case for arbitrary (non-linear) congestion
games.

It has been shown by [Christodoulou and Koutsoupias, 2005a] that the pure price of
anarchy of linear congestion games is 5/2. Recently, Caragiannis et al. [2010] extended
this result to uniformly altruistic extensions of linear congestion games. Applying the
transformation outlined in Remark 76, their result can be stated as follows:

Theorem 86 (Caragiannis et al. [2010]). Let Γ be a linear congestion game, let α ∈
[0, 1]n be a uniform altruism vector, and let C be the sum-of-costs social cost function
(1.3.1.8) for Γ. The pure price of anarchy of the α-altruistic extension Γα of Γ with
respect to C is at most (5 + 4ᾱ)/(2 + ᾱ), where ᾱ is the uniform altruism level αi, i ∈
[n].

The proof in Caragiannis et al. [2010] implicitly uses a smoothness argument con-
form the smoothness framework we defined for altruistic games. Thus, without any ad-
ditional work, our framework allows the generalization of Theorem 86 to the α-robust
price of anarchy, for uniform altruism vectors α. Caragiannis et al. [2010] also showed
that the bound of Theorem 86 is asymptotically tight. A simpler example given below
(Example 92) proves tightness of this bound (not only asymptotically). Thus, the ro-
bust price of anarchy for uniformly α-altruistic extensions of linear congestion games



100 CHAPTER 4. THE ROBUST POA OF ALTRUISTIC GAMES

is exactly (5+4ᾱ)/(2+ ᾱ). We give a refinement of Theorem 86 to non-uniform altru-
ism distributions, obtaining a bound in terms of the maximum and minimum altruism
levels.

Theorem 87. Let Γ be a linear congestion game, let α ∈ [0, 1]n, and let C be the
sum-of-costs social cost function (1.3.1.8) for Γ. The α-robust price of anarchy of a
linear congestion game with respect to C is at most (5 + 2α̂+ 2α̌)/(2− α̂+ 2α̌).

As a first step, we show that without loss of generality we can focus on simpler
instances of linear congestion games.

Definition 88. A simple linear congestion game is a linear congestion game Γ =
(n,m,Σ, d) such that dj(k) = k for all k ∈ [n].

Lemma 89. Let Γ = (n,m,Σ, d) be a linear congestion game. Then there exists a
simple linear congestion game Γ′ = (n,m′,Σ, d′) and a bijection fi : Σi → Σ′i for
every player i ∈ [n] such that cΓi (s1, . . . , sn) = cΓ

′

i (d1(s1), . . . , dn(sn)), where for
i ∈ [n], cΓi denotes the cost function of i in Γ and cΓ

′

i denotes the cost function of i in
Γ′.

Proof. We will show how to transform Γ into a simple linear congestion game that
possesses the required properties.

First, we may assume that for every delay function dj , j ∈ [m], the numbers aj and
bj are integers. This can be ensured by multiplying all coefficients among all facilities
by their least common multiple. In the resulting game, all coefficients are integers, the
price of anarchy is the same, and so is the set of all equilibria.

Next, we can transform Γ into a game such that bj = 0 for all j ∈ m. To show
this, we replace any facility j ∈ [m] by n+ 1 facilities j0, . . . , jn with delay functions
dj0(k) = ajk and dji(k) = bjk for i ∈ [n]. We then adapt the strategy space Σi of each
player i as follows: we replace every strategy si ∈ Σi in which j occurs by the strategy
si \ {j} ∪ {j0, ji}. Now there is an obvious bijection between the strategy profiles in
the original game and those in the new game, preserving the values of individual cost
functions.

Finally, for similar reasons, we can transform our linear congestion game such that
aj = 1 for all j ∈ [m]: We replace j with facilities j1, . . . , jaj , where dji(k) = k, k ∈
[n], j ∈ [aj ]. We adapt the strategy space Σi of each player i ∈ [n] by replacing each
strategy si ∈ Σi in which j occurs by si \ {j} ∪ {j1, . . . , aaj}.

The resulting game is a simple linear congestion game.

Therefore, it suffices to bound the α-robust price of anarchy of simple linear con-
gestion games. The next step in the proof of Theorem 87 is the following technical
lemma:
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Lemma 90. For all x, y ∈ N≥0 and α̂, α̌ ∈ [0, 1] with α̂ ≥ α̌,

((1 + α̂)x+ 1)y + α̌(1− x)x ≤ 5 + 2α̂+ 2α̌

3
y2 +

1 + α̂− 2α̌

3
x2.

To prove this lemma, we make use of the following result:

Lemma 91. For all x, y ∈ N≥0, β, γ ∈ [0, 1] it holds that

((1 + β)x+ 1)y + γβ(1− x)x ≤ (2 + β − δ)y2 + δx2

for all δ ∈ [(1/3)(1 + β − 2γβ), 1 + β].

Proof. The inequality is equivalent to

((1 + β)x+ 1)y + γβ(1− x)x− (2 + β)y2 ≤ δ(x2 − y2).

Assume that x = y. The inequality is then trivially satisfied because x ≤ x2 for all
x ∈ N≥0. Next suppose that x > y. Then

δ ≥ ((1 + β)x+ 1)y + γβ(1− x)x− (2 + β)y2

x2 − y2
.

We show that the maximum of the expression on the right-hand side is attained by
x = 2 and y = 1. First, we fill in these values and conclude that for these values,
δ ≥ (1/3)(1 + β − 2γβ) ≥ 0. We now write x as y + a, a ≥ 1, and rewrite the
right-hand side as

f(y, a) =
(1 + β)y + γβ

2y + a
+

(1 + γβ)(y − y2)

a(2y + a)
− γβ. (4.4)

Because we know that there are choices of y and a for which f(y, a) is positive (e.g.,
when y = 1 and a = 1), and because a only occurs in the denominators, we know that
(4.4) reaches its maximum when a = 1. So we assume a = 1. When we then fill in
y = 0, we see that f(0, 1) = 0, so f(1, 1) ≥ f(0, 1). When y > 1 we write y as w+ 2,
where w ≥ 0, and we further rewrite f(y, a) as

f(w + 2, 1) =
2β − 6γβ

2w + 5
− (2− β + 5γβ)w + (1 + γβ)w2

2w + 5
≤ 2β − 6γβ

2w + 5
.

When 2β − 6γβ is negative, this term is certainly less than f(1, 1). When 2β − 6γβ is
positive, we have

f(w+2, 1) ≤ 2β − 6γβ

2w + 5
≤ 2β − 6γβ

5
≤ 1

3
(2β−6γβ) ≤ 1

3
(1+β−2γβ) = f(1, 1).
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This shows that δ ≥ f(1, 1) = 1
3 (1 + β − 2γβ).

The final case is when x < y. Then,

δ ≤ (2 + β)y2 − ((1 + β)x+ 1)y − γβ(1− x)x

y2 − x2
.

We show that the minimum of the expression on the right-hand side is attained by x = 0
and y = 1. First, we fill in these values and conclude that for these values, δ ≤ 1 + β.
We now write y as x+ a, a ≥ 1, and rewrite the right-hand side as

g(x, a) =
(1 + γβ)x2 − (1 + a+ (a+ γ)β)x− a

a(2x+ a)
+ 2 + β.

Suppose first that x = 0 and that a ≥ 2. Then we can write a as 1 + b, b > 0, and
therefore

g(0, 1 + b) = 2 + β − 1

1 + b
≥ 3

2
+ β ≥ 1 + β = f(0, 1).

When x ≥ 1, we can write x as 1 + b, b ≥ 0. We then have

g(1 + b, a) = 2 + β − 2 + β + (1− β)b

2b+ 2 + a
+

(1 + γβ)(b2 + b)

a(2b+ 2 + a)
.

The last of these terms is positive, hence

g(1 + b, a) ≥ 2 + β − 2 + β + (1− β)b

2b+ 2 + a
≥ 2 + β − 2 + 1 + b

2b+ 2 + a
≥ 2 + β − 1 = 1 + β = f(0, 1).

This shows that δ ≤ f(0, 1) = 1 + β.

Now we can complete the proof of Lemma 90.

Proof of Lemma 90. Choose γ ∈ [0, 1] such that α̌ = γα̂. Using Lemma 91 above, we
obtain

((1+ α̂)x+1)y+ α̌(1−x)x = ((1+ α̂)x+1)y+γα̂(1−x)x ≤ (2+ α̂−δ)y2 +δx2,

for δ ∈ [(1/3)(1 + α̂− 2γα̂), 1 + α̂]. By choosing δ = (1/3)(1 + α̂− 2γα̂), we obtain

((1 + α̂)x+ 1)y + α̌(1− x)x ≤ 5 + 2α̂+ 2γα̂

3
y2 +

1 + α̂− 2γα̂

3
x2.

Substituting γα̂ = α̌ yields the claim.
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We remark that the choice of δ in the proof above has been made in order to mini-
mize the expression λ/(1− µ) (which is an increasing function of δ).

Lemma 90 is essentially the part that generalizes the proof of Caragiannis et al.
[2010], and allows us to complete the proof of Theorem 87.

Proof of Theorem 87. Let Γ = (n,m,Σ, d) be a linear congestion game. We show that
Γ is ((1/3)(5 + 2α̂ + 2α̌), (1/3)(1 + α̂ − 2α̌), α)-smooth. By Lemma 89, we may
assume without loss of generality that Γ is a simple linear congestion game.

Let s, s∗ ∈ Σ. The left-hand side of the smoothness condition (4.1) is equivalent to∑
i∈[n]

((1− αi)ci(s∗i , s−i) + αi(C(s∗i , s−i)− C(s)) + αici(s))

=
∑
i∈[n]

(1− αi)

 ∑
j∈s∗i \si

(|Pj(s)|+ 1) +
∑

j∈si∩s∗i

|Pj(s)|


+αi

∑
j∈[m]

(|Pj(s∗i , s−i)|2 − |Pj(s)|2) + αici(s)


=
∑
i∈[n]

(1− αi)

 ∑
j∈s∗i \si

(|Pj(s)|+ 1) +
∑

j∈si∩s∗i

|Pj(s)|


+αi

∑
j∈(s∗i \si)∪(si\s∗i )

(|Pj(s∗i , s−i)|2 − |Pj(s)|2) + αici(s)


=
∑
i∈[n]

(1− αi)

 ∑
j∈s∗i \si

(|Pj(s)|+ 1) +
∑

j∈si∩s∗i

|Pj(s)|


+ αi

 ∑
j∈s∗i \si

((|Pj(s)|+ 1)2 − |Pj(s)|2)

+
∑

j∈si\s∗i

((|Pj(s)| − 1)2 − |Pj(s)|2)

+ αici(s)


=
∑
i∈[n]

(1− αi)

 ∑
j∈s∗i \si

(|Pj(s)|+ 1) +
∑

j∈si∩s∗i

|Pj(s)|
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+αi

 ∑
j∈s∗i \si

(2|Pj(s)|+ 1) +
∑

j∈si\s∗i

(1− 2|Pj(s)|)

+ αici(s)


≤
∑
i∈[n]

∑
j∈s∗i

((1 + αi)|Pj(s)|+ 1) + αi
∑
j∈si

(1− |Pj(s)|)


≤
∑
j∈[m]

(((1 + α̂)|Pj(s)|+ 1)|Pj(s∗)|+ α̌(1− |Pj(s)|)|Pj(s)|) .

In the above derivation, the first inequality follows from the fact that

(1− αi)|Pj(s)| ≤ (1 + αi)|Pj(s)|+ 1 + αi(1− 2|Pj(s)|)

for every j ∈ si ∩ s∗i , i ∈ [n]. Therefore, it is possible to replace (1 − αi)|Pj(s)|
(in the third summation operator of the left hand side of the first inequality) by (1 +
αi)|Pj(s)| + 1 + αi(1 − 2|Pj(s)|), write ci(s) as

∑
j∈si |Pj(s)|, and finally rewrite

the resulting expression into the form of the right hand side of the first inequality. The
second inequality holds because for every i ∈ [n] and j ∈ si, 1 − |Pj(s)| ≤ 0 and by
the definition of α̂ and α̌. The bound on the robust price of anarchy now follows from
Lemma 90, letting x = |Pj(s)| and y = |Pj(s∗)|.

The following is a simple example that shows that the bound of 5+2α̂+2α̌
2−α̂+2α̌ on the

robust price of anarchy for uniformly α-altruistic linear congestion games is tight, even
for pure equilibria. It improves the lower bound example of Caragiannis et al. [2010],
because it is simpler and it shows tightness of the bound not only asymptotically.

Example 92. Consider a game Γ = (3, 6,Σ, d). The facility set [6] is partitioned
into two sets E1 and E2, of three facilities each. Denote the three facilities in S1

by h0, h1, and h2. Denote the three facilities in S2 by g0, g1, and g2}. Let α ∈
[0, 1]3 be any uniform altruism vector, and let ᾱ be the uniform altruism level of the
players, i.e., ᾱ = αi for i ∈ [3]. The delay functions are given by dj(k) = (1 +
ᾱ)k for j ∈ E1, k ∈ [n], and dj(k) = k for j ∈ E2, k ∈ [n]. We have Σi =
{S1

i = {hi−1, gi−1}, S2
i = {h(i−2) (mod 3), hi (mod 3), gi (mod 3)}}. The strategy profile

(S1
1 , S

1
2 , S

1
3) is a social optimum of cost 3(1 + ᾱ) + 3 = 3(2 + ᾱ).

We argue that the strategy profile (S2
1 , S

2
2 , S

2
3) is a pure equilibrium for the α-

altruistic extension Γα of Γ. In Γα, each player’s perceived cost is (1 − ᾱ)(4(1 +
ᾱ) + 1) + 3ᾱ(5 + 4ᾱ). If a player switches to its first strategy, the new social cost
would become 3(5 + 4ᾱ) + 1 − ᾱ, so that the player’s new perceived individual cost
is (1− ᾱ)(3(1 + ᾱ) + 2) + 3ᾱ((5 + 4ᾱ) + 1− ᾱ), which is not an improvement over
its old social cost. So s is a pure equilibrium, of cost 12(1 + ᾱ) + 3 = 3(5 + 4ᾱ). We
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conclude that the pure price of anarchy of Γα with respect to the sum-of-costs social
cost function (1.3.1.8)is at least (5 + 4ᾱ)/(2 + ᾱ) for α ∈ [0, 1].

We turn to the pure price of stability of altruistic extensions of linear congestion
games. Again, note that an upper bound on the pure price of stability extends to the
mixed, correlated and coarse price of stability.

Proposition 93. Let Γ = (n,m,Σ, d) be a linear congestion game, let α ∈ [0, 1]n be
a uniform altruism vector, and let C be the sum-of-costs social cost function (1.4) for
Γ. The pure price of stability of the α-altruistic extension Γα of Γ with respect to C is
at most 2

1+α̌ .

Proof. By Lemma 89, we may assume without loss of generality that Γ is a simple
linear congestion game. It is not hard to verify that Γα is an exact potential game with
potential function Φα(s) = (1−α̌)Φ(s)+α̌C(s), where Φ(s) =

∑
j∈[m]

∑
i∈[|Pj(s)|] i.

Observe that

Φα(s) = (1− α̌)
∑
j∈[m]

∑
i∈[|Pj(s)|]

i+ α̌C(s)

=
1− α̌

2

∑
j∈[m]

(|Pj(s)|2 + |Pj(s)|) + α̌
∑
j∈[m]

|Pj(s)|2

=
1 + α̌

2
C(s) +

1− α̌
2

∑
j∈[m]

Pj(s).

Therefore, 1+α̌
2 C(s) ≤ Φα(s) ≤ C(s).

Let s ∈ Σ be a strategy profile that minimizes Φα, and let s∗ ∈ Σ be a strategy
profile that minimizes C. Note that s is a pure equilibrium of Γα. We have

C(s∗) ≥ Φα(s∗) ≥ Φα(s) ≥ 1 + α̌

2
C(s),

which proves the claim.

4.7 Symmetric Singleton Linear Congestion Games
For symmetric singleton linear congestion games, we distinguish between the cases of
uniform altruism levels and non-uniform altruism.
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4.7.1 Uniform Altruism
Caragiannis et al. [2010] prove the following theorem (stated using the transformation
described in Remark 76). It shows that the pure price of anarchy does not always
increase with the altruism level. The relationship between α and the price of anarchy
is thus rather subtle.

Theorem 94 (Caragiannis et al. [2010]). Let Γ = (n,m,Σ, d) be a symmetric sin-
gleton linear congestion game, let α ∈ [0, 1]n be a uniform altruism vector, and let
C be the sum-of-costs social cost function (1.3.1.8). The pure price of anarchy of the
uniformly α-altruistic extension Γα of Γ with respect to C is 4/(3 + ᾱ), where ᾱ is the
uniform altruism level αi, i ∈ [n].

We show that even the mixed price of anarchy (and thus also the robust price of
anarchy) will be at least 2 regardless of the altruism levels of the players, by general-
izing the proof of Theorem 5.4 of Lücking et al. [2008]. This implies that for uniform
altruism, the benefits of higher altruism in singleton congestion games are only reaped
in pure equilibria, and the gap between the pure and mixed price of anarchy increases
in α̌. Also it shows that singleton congestion games constitute a class of games for
which a smoothness proof cannot deliver tight bounds on the pure price of anarchy.

Proposition 95. Let Γ be a symmetric singleton linear congestion game, let α ∈
[0, 1]n, and let C be the sum-of-costs social cost function (1.3.1.8). The mixed price of
anarchy of the α-altruistic extension Γα of Γ with respect to C is at least 2.

Proof. Let m ∈ N≥2 and consider the symmetric singleton linear congestion game
with player set [m] and facility set [m], with dj(k) = k for j, k ∈ [m]. Denote by σ the
mixed strategy profile where each player chooses each facility with probability 1/m. It
is straightforward to verify that Es∼σ[C(s)] = 2−1/m. Moreover, the strategy profile
s∗ where each player i ∈ [m] plays facility i is a minimizer for C, and C(s∗) = m. It
therefore suffices to show that σ is a Nash equilibrium of Γα.

By symmetry, it suffices to show that the expected cost of player 1 increases if it
deviates to the strategy where it chooses facility 1 with probability 1. Let s∗1 = 1. We
have

Es∼σ[cα1 (s∗1, s−1)] = Es∼σ[(1− α1)c1(s∗1, s−1) + α1C(s∗1, s−1)]

= (1− α1)Es∼σ[c1(s∗1, s−1)] + α1Es∼σ[C(s∗1, s−1)].

In Theorem 5.4 of Lücking et al. [2008] is shown that s is a Nash equilibrium when
α = 0, so it remains to show that

Es∼σ[C(s∗1, s−1)] ≥ Es∼σ[C(s)] = 2m− 1.
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For i, j ∈ [m], let Xi,j : Σ→ {0, 1} be the indicator function that maps a strategy
profile s′ ∈ Σ to 1 iff player i chooses facility j under s′. Then it is clear that ci(s′) =∑
j∈[m]Xi,j(s

′)dj(s
′) and dj(s′) =

∑
i∈[m]Xi,j(s

′) for all i, j ∈ [m], s′ ∈ Σ. So
ci(s

′) =
∑
i,i′,j∈[m]Xi,j(s

′)Xi′,j(s
′) for all i ∈ [m], s ∈ Σ. Using this last identity,

along with symmetry, stochastic independence, and linearity of expectation, we derive
the following:

Es∼σ[C(s∗1, s−1)] =
∑
i∈[m]

Es∼σ[ci(s
∗
1, s−1)]

= Es∼σ[c1(s∗1, s−1)] + (m− 1)Es∼σ[c2(s∗1, s−1)]

= Es∼σ[d1(s∗1, s−1)] + (m− 1)
∑

i′,j∈[m]

Es∼σ[X2,j(s
∗
1, s−1)Xi′,j(s

∗
1, s−1)]

=
∑
i∈[m]

Es∼σ[Xi,1(s∗1, s−1)]

+ (m− 1)

 ∑
i′∈[m]

Es∼σ[X2,1(s∗1, s−1)Xi′,1(s∗1, s−1)]

+(m− 1)
∑
i′∈[m]

Es∼σ[X2,2(s∗1, s−1)Xi′,2(s∗1, s−1)]


=

(
1 + (m− 1)

1

m

)
+ (m− 1)

(
1

m
+

1

m
+ (m− 2)

1

m2

+(m− 1)

(
0 +

1

m
+ (m− 2)

1

m2

))
= 2m− 1.

We prove next that when every player in a symmetric singleton linear congestion
game is completely altruistic, the pure price of anarchy is 1 for a broader class of delay
functions, namely semi-convex delay functions. This is a corollary of the following
lemma, which is stated for (0, 1)-altruism vectors. The reason for this is that the lemma
is reused in the next section.

Definition 96. For a congestion game Γ = (n,m,Σ, d), a delay function dj of a
facility j ∈ [m] is called semi-convex iff kdj(k)− (k − 1)dj(k − 1) ≥ `dj(`)− (`−
1)dj(`− 1) for k, ` ∈ [n], k ≥ `.
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Lemma 97. Let Γ = (n,m,Σ, d) be a symmetric singleton congestion game, let α ∈
{0, 1}n, let C be the sum-of-costs social cost function (1.3.1.8), let s ∈ Σ be a pure
equilibrium, let

S1 = {j ∈ [m] | ∃i ∈ [n] : αi = 1, si = {j}},

and assume that all delay functions d are semi-convex. Then there is strategy profile
s∗ ∈ Σ that minimizes C, such that |Pj(s)| ≤ |Pj(s∗)| for every facility j ∈ S1.

Proof. Let s∗ ∈ Σ be a strategy profile minimizing C, and assume that |Pj(s∗)| <
|Pj(s)| for some j ∈ S1. Then there is a facility j′ ∈ [m] with |Pj′(s∗)| > |Pj′(s)|.
Consider a player i ∈ P1 with si = {j} and αi = 1. (Note that i exists by the definition
of S1.) Because s is a pure equilibrium, player i has no incentive to change its strategy
from j to j′, i.e., C({j′}, s−i) ≥ C(s), or, equivalently,

(|Pj′(s)|+ 1)dj′(|Pj′(s) + 1)− |Pj′(s)|dj′(|Pj′(s)|)
≥ |Pj(s)|dj(|Pj(s)|)− (|Pj(s)| − 1)dj(|Pj(s)| − 1). (4.5)

Since |Pj(s∗)| < |Pj(s)| and |Pj′(s)| < |Pj′(s∗)|, the semi-convexity of the delay
functions implies

(|Pj(s∗)|+ 1)dj(|Pj(s∗)|+ 1)− |Pj(s∗)|dj(|Pj(s∗)|)
≤ |Pj(s)|dj(|Pj(s)|)− (|Pj(s)| − 1)dj(|Pj(s)| − 1), (4.6)

and

(|Pj′(s)|+ 1)dj′(|Pj′(s)|+ 1)− |Pj′(s)|dj′(|Pj′(s)|)
≤ |Pj′(s∗)|dj′(|Pj′(s∗)|)− (|Pj′(s∗)| − 1)dj′(|Pj′(s∗)| − 1). (4.7)

By combining (4.5), (4.6) and (4.7) and re-arranging terms, we obtain

(|Pj(s∗)|+ 1)dj(|Pj(s∗)|+ 1) + (|Pj′(s∗)| − 1)dj′(|Pj′(s∗)| − 1)

≤ |Pj(s∗)|de(|Pj(s∗)|) + |Pj′(s∗)|dj′(|Pj′(s∗).

The above inequality implies that by moving a player i with s∗i = {j′} from j′ to j,
we obtain a new strategy profile s′ = ({j}, s∗−i) of cost C(s′) ≤ C(s∗). (Note that
i must exist because |Pj′(s∗)| > |Pj′(s)| ≥ 0.) Moreover, the number of players on
j under the new strategy profile s′ is increased by one. We can therefore repeat the
above argument (with s′ in place of s∗) until we obtain an optimal strategy profile that
satisfies the claim.

Corollary 98. With respect to the sum-of-costs social cost function (1.3.1.8), the pure
price of anarchy of 1-altruistic extensions of symmetric singleton congestion games
with semi-convex delay functions, is 1.
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4.7.2 Non-Uniform Altruism
We analyze the case where the altruism vector consists of numbers in {0, 1}, i.e., each
player is either completely altruistic or completely selfish.2 The next theorem shows
that in this case too, the pure price of anarchy improves with the overall altruism level.

Theorem 99. Let Γ = (n,m,Σ, d) be a symmetric singleton linear congestion game,
let β ∈ [0, 1] and let α ∈ {0, 1}n such that

∑
i∈[n] αi/n = β, and let C be the sum-of-

costs social cost function (1.3.1.8). Then, the pure price of anarchy of the α-altruistic
extension Γα of Γ with respect to C is at most (4− 2β)/(3− β).

Proof. Let s ∈ Σ be a pure equilibrium of Γα and let s∗ ∈ Σ be a strategy profile that
minimizes C. Based on the strategy profile s, we partition [m] into sets S0 and S1. The
set S1 is defined as in Lemma 97, i.e.,

S1 = {j ∈ [m] | ∃i ∈ [n] : αi = 1, si = {j}},

is the set of facilities that have at least one player choosing it under s. We let S0 =
[m] \ S1 be the set of facilities that are used exclusively by selfish players or not used
at all. Let P1 refer to the set of players i ∈ [n] such that si ∩ S1 6= ∅, and let P0 refer
to [n]\P1, i.e., the set of players that choose a facility in P0, under s. The set P1 may
contain both altruistic and selfish players, while P0 consists of selfish players only.

Let γ ∈ [0, 1] be the number that satisfies that γC(s) =
∑
j∈S0

|Pj(s)|dj(|Pj(s)|)
and (1 − γ)C(s) =

∑
j∈S1

|Pj(s)|dj(|Pj(s)|). The high-level approach of this proof
is as follows: We bound γC(s) and (1− γ)C(s) separately, to show that

3

4
γC(s) + (1− γ)C(s) ≤ C(s∗). (4.8)

The pure price of anarchy is therefore at most ((3/4)γ + (1− γ))−1 = 4(4− γ). The
bound then follows by deriving an upper bound on γ, which is done in Lemma 101.

By Lemma 97, we may assume without loss of generality that s∗ satisfies the prop-
erties expressed in Lemma 97.

Lemma 100. Define y∗ = (y1, . . . , ym) as y∗j = |Pj(s∗)| − |Pj(s)| ≥ 0 for j ∈ S1,
and y∗j = |Pj(s∗)| for j ∈ S0. Then,

∑
j∈S0

|Pj(s)|dj(|Pj(s)|) ≤
4

3

∑
j∈[m]

y∗j dj(|Pj(s∗)|).

2This model relates naturally to Stackelberg scheduling games (see, e.g., Chen and Kempe [2008]).
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Proof. Consider the game Γ′ = (n,m,Σ′, d′) obtained from Γα by removing for each
player i ∈ P1 from Σi all strategies except si. I.e., in Γ′ players in P1 are “fixed” on
the facilities in S1 according to s. It is clear that s is a pure equilibrium of the game
Γ′. Let s̄∗ ∈ Σ′ be a strategy profile that minimizes C on the domain Σ′. Because Γ′ is
in essence a symmetric singleton linear congestion game with only selfish players (i.e.,
P0), we can apply Theorem 94 to conclude that

C(s) ≤ 4

3
C(s̄∗).

Let s′ ∈ Σ′ be any strategy profile such that |{i ∈ P0 | si = {j}}| = y∗j . Note that s′

exists, because
∑
j∈[m] y

∗
j = |P0|. Because s̄∗ minimizes C, it follows from the above

inequality that

C(s) ≤ 4

3
C(s′).

We subtract
∑
j∈S1

|Pj(s)|dj(|Pj(s)|) from both sides, to obtain

∑
j∈S0

|Pj(s)|dj(|Pj(s)|) ≤
4

3

∑
j∈[m]

|Pj(s′)|dj(|Pj(s′)|)−
∑
j∈S1

|Pj(s)|dj(|Pj(s)|)


=

4

3

∑
j∈S0

|Pj(s∗)|dj(|Pj(s∗)|)

+
∑
j∈S1

((y∗j + Pj(s))dj(y
∗
j + |Pj(s)|)− |Pj(s)|dj(|Pj(s)|))


=

4

3

∑
j∈S0

y∗j dj(|Pj(s∗)|)

+
∑
j∈S1

((y∗j + Pj(s))dj(|Pj(s∗)|)− |Pj(s)|dj(|Pj(s)|))


≥ 4

3

∑
j∈S0

y∗j dj(|Pj(s∗)|)

+
∑
j∈S1

(y∗j dj(|Pj(s∗)|) + (|Pj(s)| − |Pj(s)|)dj(|Pj(s)|))
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=
4

3

∑
j∈[m]

y∗j dj(|Pj(s∗)|).

Lemma 101. It holds that γ ≤ 2(1− β)/(2− β).

Proof. The claim follows directly from Theorem 94 if P1 = ∅. Assume therefore that
P1 6= ∅, and let i ∈ P1 with si = {j̄}. Let C̄(s) =

∑
i′∈P0

ci′(s)/|P0| be the average
cost experienced by players in |P0|. We first show ci(s) ≥ C̄(s)/2. If |P0| = ∅, then
ci(s) ≥ C̄(s)/2 trivially holds. Suppose therefore that P0 6= ∅, and let i′ ∈ P0 with
s′i = {j}. Recall that i is selfish. Because s is a pure equilibrium, we have

ci′(s) = aj |Pj(s)|+ bj ≤ aj̄(|Pj̄(s) + 1) + bj̄ ≤ 2(aj̄ |Pj̄(s)|+ bj̄) = 2ci(s).

By summing over all selfish players in P0, we obtain ci(s) ≥ C̄(s)/2 and thus∑
i∈P1

ci(s) ≥ |P1|C̄(S)/2. We have

γ =

∑
i∈P0

ci(s)∑
i∈P0

ci(s) +
∑
i∈P1

cj(s)

≤ |P0|C̄(s)

|P0|C̄(s) + 1
2 |P1|C̄(s)

=
2|P0|

n+ |P0|

≤ 2(1− β)

2− β
,

where the last inequality follows because |P0| ≤ (1− β)n.

Using the above lemmas, we can show that the relation in (4.8) holds:

3

4
γC(s) + (1− γ)C(s) =

3

4

∑
j∈S0

|Pj(s)|dj(|Pj(s)|) +
∑
j∈S1

|Pj(s)|dj(|Pj(s)|)

≤
∑
j∈[m]

y∗j dj(|Pj(s∗)|) +
∑
j∈S1

|Pj(s)|dj(|Pj(s)|)

=
∑
j∈[m]

|Pj(s∗)|dj(Pj(s∗)|)

+
∑
j∈S1

(|Pj(s)|dj(|Pj(s)|)− |Pj(s)|dj(|Pj(s∗)|))
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≤
∑
j∈[m]

|Pj(s∗)|dj(|Pj(s∗)|) = C(s∗),

where the first inequality follows from Lemma 100 and the last inequality follows from
the property that |Pj(s∗)| ≥ |Pj(s)| for all j ∈ S1. We conclude that the pure price of
anarchy is at most (

3

4
γ + (1− γ)

)−1

=
4

4− γ
≤ 4− 2β

3− β
,

Where the last inequality follows from Lemma 101.

4.8 General Properties of Smoothness
For the game classes that we analyzed (with the exception of symmetric singleton con-
gestion games), we used (λ, µ, α)-smoothness as our main tool to derive bounds on
the price of anarchy. In this section, we provide some general results about (λ, µ, α)-
smoothness.

Proposition 102. Let n ∈ N≥0. Suppose that G is a class of cost minimization games
with player set [n], each game equipped with a sum-bounded social cost function. The
set SG = {(λ, µ, α) ∈ R2 × [0, 1]n | ∀Γ ∈ G : Γ is (λ, µ, α)-smooth} is convex.

The same holds when instead, G is a class of utility maximization games, each
equipped with a sum-bounded social welfare function.

Proof. We proof the claim for cost minimization games. For the case of utility max-
imization games, the proof is analogous. Pick an arbitrary game Γ = (n,Σ, d) ∈ G.
It suffices to show that SΓ = {(λ, µ, α) ∈ R2 × [0, 1]n | G is (λ, µ, α)-smooth} is
convex, because the intersection of any collection of convex sets is convex.

Let (λ1, µ1, α
1), (λ2, µ2, α

2) ∈ SΓ be two elements in SΓ, and pick an arbitrary
number γ ∈ [0, 1]. For all pairs s, s∗ ∈ Σ of strategy profiles,

γ
∑
i∈[n]

(ci(s
∗
i , s−i) + α1

i (c−i(s
∗
i , s−i)− c−i(s)))

+ (1− γ)
∑
i∈[n]

(ci(s
∗
i , s−i) + α2

i (c−i(s
∗
i , s−i)− c−i(s)))

≤ γ(λ1C(s∗) + µ1C(s)) + (1− γ)(λ2C(s∗) + µ2C(s)).
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By rewriting both sides of the above inequality, we obtain∑
i∈[n]

(ci(s
∗
i , s−i) + (γα1

i + (1− γ)α2
i )(c−i(s

∗
i , s−i)− c−i(s)))

≤ (γλ1 + (1− γ)λ2)C(s∗) + (γµ1 + (1− γ)µ2)C(s).

We conclude that Γ is (γ(λ1, µ1, α
1) + (1− γ)(λ2, µ2, α

2))-smooth. Therefore, SΓ is
convex.

A natural question to ask now is whether the robust price of anarchy is also a convex
function of α. This turns out not to be the case. For instance, the robust price of anarchy
of the class of uniformly α-altruistic congestion games with respect to the sum-of-
costs social cost function is 5+4α̌

2+α̌ (see Section 4.6), which is a non-convex function.
However, we can prove a somewhat weaker statement. For a subset S ⊆ Rn, we call
a function f : S → R quasi-convex iff f(γx + (1 − γ)y) ≤ max{f(x), f(y)} for all
γ ∈ [0, 1].

Theorem 103. Let n ∈ N≥1 and let G be a class of cost minimization games with
player set [n], each game equipped with a sum-bounded social cost function. Then
RPoAG is a quasi-convex function on its domain, [0, 1]n.

The same holds when instead, G is a class of utility maximization games, each
equipped with a sum-bounded social welfare function.

Proof. We proof the claim for cost minimization games. For the case of utility maxi-
mization games, the proof is analogous. Let (Γ, C) ∈ G, where Γ is a game and C is a
social cost function for Γ. We show that for any α1, α2 ∈ Rn and γ ∈ [0, 1],

RPoAΓ(γα1 + (1− γ)α2) ≤ max{RPoAΓ(α1),RPoAΓ(α2)}.

Let (ε1, ε2, . . .) be a decreasing sequence of positive real numbers that tends to 0.
Moreover, let

((λ1,1, µ1,1, α
1), (λ1,2, µ1,2, α

1), . . .)

and
((λ2,1, µ2,1, α

2), (λ2,2, µ2,2, α
2), . . .)

be sequences of elements in SΓ (where SΓ is as defined in the proof of Proposition
102) such that

RPoAΓ(α1) + εj =
λ1,k

1− µ1,j

and
RPoAΓ(α2) + εj =

λ2,k

1−µ2,j
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for all k ∈ N≥1. By Proposition 102, we know that for all k ∈ N≥1,∑
i∈[n]

(ci(s
∗
i , s−i) + (γα1

i + (1− γ)α2
i )(c−i(s

∗
i , s−i)− c−i(s)))

≤ γ(λ1,kC(s∗) + µ1,kC(s)) + (1− γ)(λ2,kC(s∗) + µ2,kC(s))

≤ max{λ1,kC(s∗) + µ1,kC(s), λ2,kC(s∗) + µ2,kC(s)}.

Hence,

RPoAΓ(γα1 + (1− γ)α2) ≤ max

{
λ1,k

1− µ1,k
,

λ2,k

1− µ2,k

}
≤ max{RPoA(α1),RPoA(α2)}+ εk,

for all k ∈ N≥0. By taking the limit as k goes to infinity, we conclude RPoAΓ(γα1 +
(1− γ)α2) ≤ max{RPoA(α1),RPoA(α2)}, which proves the claim.

The quasi-convexity of RPoAG implies:

Corollary 104. Let n ∈ N≥1 and let G be a class of cost minimization games with
player set [n], each game equipped with a sum-bounded social cost function. The
points α ∈ [0, 1]n that minimize RPoAG on the domain [0, 1]n form a convex set. The
set of points α ∈ [0, 1]n that maximize RPoAG on the domain [0, 1]n includes at least
one point in {0, 1}n.

The same holds when instead, G is a class of utility maximization games, each
equipped with a sum-bounded social welfare function.

4.9 Conclusions
One might not expect that there are games in which the price of anarchy is greater
than 1 when α = 1. This phenomenon is a lot less surprising when approached from
a local search point-of-view, as this is only equivalent to saying that there exist local
optima in the objective function C with respect to the neighborhood set obtained by
taking all strategies obtained by single-player deviations from a given strategy profile
s. Nevertheless, it still seems to us rather surprising that the price of anarchy can
get worse when the altruism levels α get closer to 1. This phenomenon has been
observed before, by Caragiannis et al. [2010]. The fact that the price of anarchy does
not necessarily get worse in all cases is exemplified by our analysis of the pure price
of anarchy in symmetric singleton congestion games.
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The most immediate research directions include analyzing singleton congestion
games with more general delay functions than linear ones. While the price of anar-
chy of such functions increases (e.g., the price of anarchy for polynomials increases
exponentially in the degree [Awerbuch et al., 2005, Christodoulou and Koutsoupias,
2005a]), this also creates room for potentially larger reductions in the price of anar-
chy as a consequence of altruism. Similarly, the characterization of the robust price of
anarchy of altruistic congestion games with more general delay functions (e.g., poly-
nomials) is left for future work.

For games where the smoothness argument cannot give tight bounds, would a re-
fined smoothness argument like local smoothness [Roughgarden and Schoppmann,
2011] work? For symmetric singleton congestion games, this seems unlikely, as the
price of anarchy bounds are already different between pure and mixed Nash equilibria.
It is also worth trying to apply the smoothness argument or its refinements to analyze
the price of anarchy for other dynamics in other classes of altruistic games, for exam-
ple, (altruistic) network vaccination games [Chen et al., 2010], which are known to not
always possess pure Nash equilibria, or to find examples to see why smoothness-based
arguments do not work.

We have seen that the impact of altruism depends on the underlying game. It would
be nice to identify general properties that enable to predict whether a given game suf-
fers from altruism or not. What is it that makes valid utility game invariant to altruism?
Furthermore, what kind of “transformations” (not just altruistic extensions) might be
applied to a strategic game such that the smoothness approach can still be adapted to
give (tight) bounds? More generally, while the existence of pure equilibria has been
shown for singleton and matroid congestion games with player-specific latency func-
tions [Ackermann et al., 2006, Milchtaich, 1996], the price of anarchy (for pure Nash
equilibria or more general equilibrium concepts) has not yet been addressed. Studying
the price of anarchy in such a general setting (in which our setting with altruism can be
embedded) by either smoothness-based techniques or other methods, is undoubtedly
intriguing.
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Chapter 5

Inefficiency of Games with
Social Context*

We study in this chapter a variant of the altruism framework introduced in the previous
chapter, where we can conveniently model arbitrary altruistic social structures, causing
players to direct their altruistic behavior in a refined player-specific way (depending,
for example, on friendships that exist among the players). Instead of a single altruism
coefficient αi for each player i of a game, we now associate an altruism coefficient
αi,i′ to each ordered pair of players (i, i′) in the game, reflecting to what extent player
i cares about the direct cost or direct utility of player j. For this altruism model, we
will focus on establishing upper bounds on the coarse price of anarchy of altruistic
extensions of four classes of full information games:

• linear congestion games,

• singleton linear congestion games in which all facilities have identical delay
functions,

• minsum machine scheduling games,

• generalized second price auctions.

For a definition of the first two classes of games, see Section 1.3.1.10. Minsum machine
scheduling games and generalized second price auctions are defined in Section 5.3.1

*A part of the contents of this chapter has been published as Anagnostopoulos et al. [2013].
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Like in the previous chapter, an extension of the smoothness notion of Roughgarden
[2009] will again be the main tool for obtaining most of our bounds.

The material from Chapter 1 that is necessary for understanding this chapter con-
sists of Section 1.3 up to Section 1.3.1.5, and Section 1.3.1.7 up to Section 1.3.1.10,
with emphasis on Sections 1.3.1.9 and 1.3.1.10.

We first define formally the altruism model we will work with.

Definition 105 (Altruistic social context). Given a game Γ with player set [n], an al-
truistic social context for Γ is an n× n matrix α ∈ (Rn≥0)n.

Definition 106 (Altruistic extension of a game for altruistic social context). Let Γ =
(n,Σ, c) be a game and let α be an altruistic social context for Γ. The α-altruistic
extension of Γ is defined as the strategic game Γα = (n,Σ, cα), where for all i ∈ [n]
and s ∈ Σ,

cαi (s) =
∑
i′∈[n]

αi,i′ci′(s). (5.1)

In case Γ is a cost minimization game, ci is called the selfish cost function, and cαi is
called the perceived cost function. In case Γ is a utility maximization game (n,Σ, u),
ui is called the selfish utility function, and cαi is called the perceived utility function.
Thus, the perceived cost or perceived utility that player i experiences is a non-negative
linear combination of its selfish cost or selfish utility, and the selfish costs or selfish
utilities of the other players.

We note some essential differences between the present altruism model and the al-
truism model of the previous chapter (Definitions 74 and 4): In the previous chapter,
convex combinations are considered, while here we take linear combinations. More-
over, we do not need to define an altruistic extension with respect to a given social cost
or welfare function, as we only consider linear combinations of the selfish costs of the
players.

It is possible to extend the above definition into one where negative numbers are
allowed in α. One could regard such a negative entry αi,i′ , i, i′ ∈ [n] as player i having
a spiteful attitude towards player i′. Our main focus however is on altruistic behavior,
and we leave spiteful behavior unexplored in this chapter.1

This altruism model has a natural interpretation in terms of social networks: One
could suppose that the players in [n] are identified with the nodes of a complete directed
graph G = (N,A). The weight of an edge (i, i′) ∈ A is equal to αi,i′ , specifying the
extent to which player i cares about the cost or utility of player i′.

1However, we will investigate spiteful player behavior in Chapter 6, for the class of procurement auctions.
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Just as in the previous chapter we will study the price of anarchy of some classes of
altruistic extensions of games. This will in all cases be done with respect to the sum-
of-costs social cost function and sum-of-utilities social welfare function (i.e., (1.4) and
(1.3.1.8) in Chapter 1).

Remark 107. In this chapter, the social cost function and social welfare function for
the altruistic extensions of the games Γ we consider will always be the sum-of-costs
social cost function and sum-of-utilities social welfare function of Γ. Therefore in this
chapter, contrary to the previous chapter, we sometimes omit mentioning explicitly this
social cost function and social welfare function in the discussions and the statements
of our results.

Note nonetheless that we only make this assumption for the particular classes of
games we consider. The more general results that we present in Section 5.3.2 hold
indeed for arbitrary social cost functions and social welfare functions.

We distinguish between unrestricted and restricted altruistic social contexts.

Definition 108 (Restricted altruistic social context). A restricted altruistic social con-
text α for a game Γ = (n,Σ, c) is an altruistic social context for Γ where αi,i > 0 and
αi,i′ ≤ αi,i for all i, i′ ∈ [n]. An unrestricted altruistic social context α for a game Γ
is simply an altruistic social context for Γ.

For the class of unrestricted social contexts α, for most interesting classes of games
one can prove trivially unboundedness of the price of anarchy of the α-altruistic ex-
tension of any game, just by setting αi,i′ = 0 for all players i, i′, because this causes
every strategy profile to be an equilibrium. Also, with the additional property that
αi,i′ > 0, for all classes of games we consider there exist easy examples that show
unboundedness of the price of anarchy.

For this reason we often make the assumption that the altruistic social context is a
restricted altruistic social context. In a restricted altruistic social context, every player
cares for itself at least as much as for any other player, which still captures a broad
set of scenarios that can be considered realistic. In the case of a restricted altruistic
social context α, note that for the sake of our analysis of the price of anarchy, we can
normalize α without loss of generality such that αi,i = 1 for every player i.2

Our findings show that the increase in the price of anarchy is modest for congestion
games and minsum scheduling games, whereas it is drastic for generalized second price
auctions.

2To see this, note that, by dividing all αi,i′ by αi,i > 0, the set of equilibria and the social cost and
social welfare of any strategy profile remain the same.
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5.1 Background
In (algorithmic) game theory literature, considerable attention has been given to more
general settings in which the players do not necessarily behave entirely selfishly, but
may alternatively exhibit spiteful or altruistic behavior; see, for instance, Brandt et al.
[2007], Buehler et al. [2011], Caragiannis et al. [2010], Chen and Kempe [2008], Chen
et al. [2011a,b], Elias et al. [2010], Hoefer and Skopalik [2009b,a, 2012], Bilò et al.
[2011a]. Studying such alternative behavior in games is motivated by the observation
that altruism and spite are phenomena that frequently occur in real life (see, for ex-
ample, Fehr and Schmidt [2006]). Consequently, it is desirable to incorporate such
alternative behavior in game-theoretical analyses.

Previous work on the price of anarchy for spiteful and altruistic games has focused
on simple models of spite and altruism, where a spite or altruism level αi is associated
to each player i denoting the extent to which its perceived cost is influenced by a
nonspecific other player. In a series of papers [Buehler et al., 2011, Caragiannis et al.,
2010, Chen et al., 2011a,b] as well as the previous chapter, it has been observed that
altruistic behavior can actually be harmful in the sense that the price of anarchy may
increase as players become more altruistic. This observation serves as a starting point
for the investigations conducted in this chapter. The main question that we address here
is: How severe can this effect be if one considers more refined models of altruism that
capture complex social relationships between the players?

There are several other works that propose models of altruism and spite [Brandt
et al., 2007, Buehler et al., 2011, Caragiannis et al., 2010, Chen and Kempe, 2008, Elias
et al., 2010, Hoefer and Skopalik, 2009b,a, 2012]. All these models are special cases
of the one studied here. The model studied in the previous chapter is a special case of
the present model as well, in case the choice of social welfare function and social cost
function is the sum-of-utilities social welfare function and the sum-of-costs social cost
function. The inefficiency of equilibria in the presence of altruistic or spiteful behavior
was studied for various games in Buehler et al. [2011], Caragiannis et al. [2010], Chen
and Kempe [2008], Elias et al. [2010].

Related to the work discussed here is the work by Bilò et al. [2011a], where altruism
is studied for the class of congestion games, for the case where the perceived cost of a
player is the minimum, maximum, or sum of the immediate cost of its neighbors. Bilò
et al. [2011a] establishes, among other results, an upper bound of 17/3 on the pure
price of anarchy of linear congestion games for a special case of the setting that we
study here.

Related but different from our setting, is the concept of graphical congestion games
[Bilò et al., 2011b, Fotakis et al., 2009]. In such games, the cost and the strategy set of
a player depends only on a subset of the players.
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5.2 Contributions and Outline
Using the smoothness extension that we propose in Section 5.3, we prove upper bounds
on the price of anarchy for altruistic extensions of the classes of games mentioned
above.

The perspective adopted in this chapter is slighly different from that of the previous
chapter: We adopt here a worst-case point of view by trying to answer the question of
how bad the price of anarchy can be over a large set of altruistic extensions, while in
the previous chapter we were concerned with giving bounds on the price of anarchy as
a function of the altruism levels.

We show in all cases that for unrestricted altruistic social contexts α, the pure price
of anarchy of the α-altruistic extension of the game is unbounded, even if α > 0. We
therefore derive our upper bounds under the assumption that the altruistic social context
is restricted, conform Definition 108. Under this assumption, we derive the following
upper bounds on the coarse price of anarchy:

• A bound of 7 for altruistic linear congestion games (Section 5.4).

• A bound of ϕ3 ≈ 4.2361 for the special case of singleton linear congestion
games with identical delay functions for all facilities, where ϕ = (1 +

√
5)/2

denotes the golden ratio (Section 5.5). We use a novel proof approach to estab-
lish this bound, because following the proof template that we use for the other
upper bounds turns out to be too weak. Instead, we use a more refined amor-
tized argument, based on distributing “budget” in a sophisticated way among the
facilities.

• A bound of 4 + 2
√

3 ≈ 7.4641 and 12 + 8
√

2 ≈ 23.3137 for altruistic min-
sum machine scheduling games with related and unrelated machines, respec-
tively (Section 5.6).

• A bound of 2(n + 1) for altruistic generalized second price auctions, where n
is the number of players (Section 5.7). We additionally provide a family of
examples of GSP auctions for which a smoothness proof cannot give an upper
bound on the price of anarchy that is better than n/2. This stands in contrast with
the small constant price of anarchy that is known for the purely selfish setting,
which is achieved through smoothness ([Caragiannis et al., 2011]).
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5.3 Preliminaries
We define in this section the classes of games studied in this chapter that are not already
defined in Chapter 1, and we give our smoothness extension for games with altruistic
social contexts.

5.3.1 Minsum Scheduling Games and Generalized Second Price
Auctions

In a minsum scheduling game there is a set of jobs to be completed on a set of machines,
and each job has a certain given processing time on each machine. Each job takes the
role of a player that has to pick a machine to run itself on, and it wants to minimize its
completion time. A machine executes its set of jobs in order of increasing processing
time, breaking ties according to a given deterministic tie-breaking rule.

Definition 109 (Minsum machine scheduling game). A minsum machine scheduling
game is a cost minimization game Γ = (n,Σ, c) for which there exists a number m ∈
N>0 of machines, processing times pi,j ∈ R≥0 for all i ∈ [n], j ∈ [m], and a strict
total order �j on [n] for all j ∈ [m] with the properties that:

• i ≺j i′ or i′ ≺j i for all i, i′ ∈ [n], j ∈ [m].

• If i ≺j i′, then pi,j ≤ pi′,j , for all i, i′ ∈ [n], j ∈ [m].

It holds that Σi = [m] for all i ∈ [n], and ci(s) =
∑
i′∈[n]:si′=j,i

′�ji pi′,j . When,
in a strategy profile s ∈ Σ, it holds for two players i, i′ ∈ [n] that si = si′ and
i ≺si i′, we say that i is scheduled before i′ under s and i′ is scheduled after i under s.
A minsum scheduling game can therefore be represented as a quadruple (n,m, p,�)
where p ∈ (Rn≥0)n and �= (�1, . . . ,�n). In the context of Γ, the set of players [n]
is alternatively referred to as the set of jobs, and �j is called the tie-breaking rule of
machine j.

A minsum scheduling game with related machines is a minsum scheduling game
(n,m, p,�) such that there is a given speed aj ∈ R>0 for each machine j ∈ [m], and
a given length wi ∈ R≥0 for each job i ∈ [n], such that pi,j = wi/aj .

A minsum scheduling game with unrelated machines is simply defined as a minsum
scheduling game.

Generalized second price auctions are games motivated by online advertising. The
players in this game are advertisers that want to place their advertisement on a web
page. However, there are only a limited number of slots available on the web page that
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the advertisers can place their advertisements in, and some slots are more visible than
other slots, and are thus more desirable to the advertisers. A prominent example of a
generalized second price auction is the auction mechanism used in Google AdWords.

Definition 110 (Generalized second price auction). A generalized second price auction
is a utility maximization game with infinite strategy sets Γ = (n,Σ, u), where for each
player there is a valuation vi ∈ R≥0 such that Σi = [0, vi]. The utility functions u are
defined as follows.

There are m ∈ N≥1 slots, and [m] is called the set of slots. For each slot j ∈
[m], there is an associated click-through rate βj ∈ [0, 1], where βj ≥ βj′ for j′ ∈
[m], j′ > j. Moreover, there is a total order � on [n] called the tie-breaking rule. For
a strategy profile s we denote by r(s) the ranking of the players under s: r(s) is the
m-dimensional vector such that for all i ∈ [n], j ∈ [m] it holds that rj(s) = i iff
|{i′ ∈ [n] \ {i} | si′ > si or si′ = si, i

′ ≺ i}| = j − 1. A player i ∈ [n] is said to
win slot j ∈ [m] under s ∈ Σ iff rj(s) = i. The valuation of player i ∈ [n] for a slot
j ∈ [m] is given by βjvi. The price paid by player i who wins slot j under strategy
profile s ∈ Σ is given by βjsrj+1(s) (where βj = 0 if j > m). For player i ∈ [n] and
strategy profile s ∈ Σ, the utility ui(s) is defined as the valuation that i has for the slot
that it has won under s, minus the price i has to pay under s.

A generalized second price auction can thus be represented as a tuple (n,m, v,
β,�), where v = (v1, . . . , vn) and β = (β1, . . . , βm).

5.3.2 Smoothness and a Proof Template
We define our smoothness notion for games with altruistic social context as follows.

Definition 111 ((λ, µ, α)-smoothness for games with altruistic social context). Let
Γ = (n,Σ, c) be a cost minimization game, let C be a social cost function for Γ, and
let α ∈ (Rn)n be an altruistic social context. Further, let s∗ ∈ Σ be a strategy profile
that minimizes C. Γ is (λ, µ, α)-smooth iff there exists a strategy profile s̄ ∈ Σ such
that for every strategy profile s ∈ Σ it holds that∑

i∈[n]

∑
i′∈[n]

αi,i′(ci′(s̄i, s−i)− ci′(s)) ≤ λC(s∗) + (µ− 1)C(s). (5.2)

When instead, Γ is a utility maximization game (n,Σ, u), U is a social welfare
function for Γ, and s∗ ∈ Σ is a strategy profile maximizing U , then Γ is (λ, µ, α)-
smooth iff there exists a strategy profile s̄ ∈ Σ such that for every strategy profile
s ∈ Σ it holds that∑

i∈[n]

∑
i′∈[n]

αi,i′(ui′(s̄i, s−i)− ui′(s)) ≥ λU(s∗)− (µ+ 1)U(s). (5.3)
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Just like the smoothness extension presented in Chapter 4, we prove some ana-
logues of results from Roughgarden [2009]. The following theorem shows that (λ, µ, α)-
smoothness implies a bound on the coarse price of anarchy of α-altruistic games.

Theorem 112. Let Γ be a cost minimization game, letC be a social cost function for Γ,
and let α ∈ (Rn≥0)n be an altruistic social context for Γ. If Γ is (λ, µ, α)-smooth with
respect to C for some values λ, µ ∈ R with µ < 1, then the coarse price of anarchy of
Γα with respect to C is at most λ/(1− µ).

If instead, Γ is a utility maximization game, U is a social welfare function for Γ,
and Γ is (λ, µ, α)-smooth with respect to U for some values λ, µ ∈ R with µ > −1,
then the coarse price of anarchy of Γα with respect to C is at most (1 + µ)/λ.

Proof. We prove this for the case of cost minimization games. For utility maximization
games, the proof is analogous.

Let σ be a coarse equilibrium of Γα, let s̄ be a strategy profile for which (5.2) holds,
and let s∗ ∈ Σ be an strategy profile. The coarse equilibrium condition implies that for
every player i ∈ [n]:∑

i′∈[n]

αi,i′Es∼σ[ci′(s̄i, s−i)]−
∑
i′∈[n]

αi,i′Es∼σ[ci′(s)] ≥ 0.

By summing over all players and using linearity of expectation, we obtain

Es∼σ[C(s)] ≤ Es∼σ[C(s)] + Es∼σ

∑
i∈[n]

∑
i′∈[n]

αi,i′(ci′(s̄i, s−i)− ci′(s))

 .
Now we use the smoothness property (5.2) and obtain

Es∼σ[C(s)] ≤ Es∼σ[C(s)]+Es∼σ[λC(s∗)+(µ−1)C(s)] = λC(s∗)+µEs∼σ[C(s)].

Since µ < 1, this implies that the coarse price of anarchy is at most λ/(1− µ).

Observe that in the purely selfish setting (i.e., when αi,i = 1 and αi,i′ = 0 for
every i, i′ ∈ [n], i 6= j), our smoothness notion is more permissive than the one in
Roughgarden [2009] where (5.2) is required to hold for any arbitrary strategy profile
s∗ and with s̄ = s∗. Also in Roughgarden [2009], the analogue of Theorem 112 is
shown under the additional assumption that the social welfare function or social cost
function is sum-bounded. Here, we managed to get rid of this assumption.

The smoothness condition also proves useful in the context of no-regret sequences
and the price of total anarchy, introduced by Blum et al. [2008] (see Section 1.3.1.4).
The following proposition is the analogue of Proposition 80 for games with altruistic
social contexts.
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Proposition 113. Let Γ = (n,Σ, c) be a cost minimization game, let α ∈ (Rn)n be
an altruistic social context for Γ, and suppose Γ is (λ, µ, α)-smooth, for some values
λ, µ ∈ R. Let s∗ ∈ Σ be a strategy profile minimizing a social cost function C for
Γ, and let (s1, s2, . . . ) be a vanishing regret sequence of strategy profiles in Σ, with
respect to the α-altruistic extension Γα, with respect to C. This sequence then satisfies
that factor by which the average social cost deviates from the optimum social cost,
converges to at most λ/(1− µ). I.e.,

lim
T→∞

1

T

∑
t∈[T ]

C(st) ≤ λ

1− µ
C(s∗).

If Γ is instead a profit maximization game (n,Σ, u), and U is a social welfare
function for Γ, and (s1, s2, . . .) is a vanishing regret sequence of strategy profiles in Σ
with respect to the α-altruistic extension Γα, then

lim
T→∞

1

T

∑
t∈[T ]

U(st) ≥ 1 + µ

λ
U(s∗).

Proof. We prove the claim for cost minimization games. For profit maximization
games, the proof is analogous.

The (λ, µ, α)-smoothness condition (5.2) is equivalent to

C(st) ≤ λ

1− µ
C(s∗) +

1

1− µ
∑
i∈[n]

(cαi (st)− cαi (s∗i , s
t
−i)), (5.4)

by the definitions of cαi , i ∈ [n]. The vanishing regret property of (s1, s2, . . .) implies
that for all i ∈ [n],

lim
T→∞

1

T

∑
t∈[T ]

(cαi (st)− cαi (s∗i , s
t
−i))

≤ lim
T→∞

1

T
max

0,
∑
t∈[T ]

(cαi (st)− cαi (s′i, s
t
−i))

∣∣∣∣∣∣ s′i ∈ Σi


= 0.

Combining this with (5.4) proves the claim:

lim
T→∞

1

T

∑
t∈[T ]

C(st)
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≤ lim
T→∞

1

T

∑
t∈[T ]

 λ

1− µ
C(s∗) +

1

1− µ
∑
i∈[n]

(cαi (st)− cαi (s∗i , s
t
−i))


≤

 λ

1− µ
C(s∗) + lim

T→∞

1

1− µ
∑
i∈[n]

∑
t∈[T ]

(cαi (st)− cαi (s∗i , s
t
−i))


=

λ

1− µ
C(s∗).

A proof template for upper bounding the coarse price of anarchy through smooth-
ness. A template we use for two of our proofs below, is the following: Suppose that
a cost minimization game Γ = (n,Σ, c) is known to be (λ1, µ1)-smooth with respect
to a sum-bounded social cost function C for Γ, in the classical sense, for some values
λ1, µ1 ∈ R (i.e., it is (λ, µ, α)-smooth with respect to C for αi,i = 1 and αi,i′ = 0 for
all i, i′ ∈ [n], i 6= i′). This means that for all strategy profiles s ∈ Σ, there is a strategy
profile s̄ ∈ Σ such that ∑

i∈[n]

ci(s̄i, s−i) ≤ λ1C(s∗) + µ1C(s), (5.5)

where s∗ ∈ Σ minimizes C. In order to establish (λ1 + λ2, µ1 + µ2, α)-smoothness
of Γ with respect to C, for some values λ2, µ2 ∈ R and some altruistic social context
α ∈ (Rn≥0)n, by our definition of smoothness it suffices to prove that for s̄ it holds that∑

i∈[n]

∑
i′∈[n]\{i}

αi,i′(ci′(s̄i, s−i)− ci′(s)) ≤ λ2C(s∗) + µ2C(s). (5.6)

Suppose instead that Γ is a utility maximization game (n,Σ, u) and U is a sum-
bounded social welfare function for Γ. Now, if Γ is (λ1, µ1)-smooth with respect to U
in the classical sense, for some values λ1, µ1 ∈ R, then this means that for all strategy
profiles s ∈ Σ, there is a strategy profile s̄ ∈ Σ such that∑

i∈[n]

ui(s̄i, s−i) ≥ λ1U(s∗)− µ1U(s), (5.7)

where s∗ ∈ Σ maximizes U . In order to establish (λ1 + λ2, µ1 + µ2, α)-smoothness
of Γ with respect to U , for some values λ2, µ2 ∈ R and some altruistic social context
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α ∈ (Rn≥0)n, by our definition of smoothness it suffices to prove that for s̄ it holds that∑
i∈[n]

∑
i′∈[n]\{i}

αi,i′(ui′(s̄i, s−i)− ui′(s)) ≥ λ2U(s∗)− µ2U(s). (5.8)

5.4 Linear Congestion Games
The following example shows that for unrestricted altruistic social contexts α, the price
of anarchy of the class of α-altruistic extensions of linear congestion games is un-
bounded, even when α 6= 0.

Example 114. Consider a linear congestion game (n,m,Σ, d) with n = 2, andm = 4.
Let the delay functions be defined by d1(k) = d3(k) = k and d2(k) = d4(k) =
Mk for all k ∈ [n], with M ∈ R≥0. The strategy sets are Σ1 = {{1, 2}, {3}},
Σ2 = {{3, 4}, {1}}. Suppose furthermore that α is given by α1,1 = α2,2 = 0 and
α1,2 = α2,1 = 1.

Observe that in the α-altruistic extension of this game, the strategy profile ({1, 2},
{3, 4}) is a pure equilibrium with social cost 2K + 2. The optimal social cost is 2,
and is attained by the strategy profile ({3}, {1}). The price of anarchy in this game is
therefore K + 1, and K can be taken arbitrarily large, so the price of anarchy of the
class of α-altruistic extensions of linear congestion games is unbounded, where α is an
unrestricted altruistic social context.

We therefore prove in this section an upper bound on the coarse price of anarchy in
case the altruistic social context is restricted.

Theorem 115. Let Γ = (n,Σ, c) be linear congestion game, and let α ∈ (Rn≥0)n be a
restricted altruistic social context. Γ is (7/3, 2/3, α)-smooth.

We need the following lemma for the proof of Theorem 115.

Lemma 116. For every two integers x, y ∈ N

(x+ 1)y + xy ≤ 7

3
y2 +

2

3
x2 (5.9)

Proof. We write x as (y + z), where z ∈ Z. Substituting this into (5.9) results in

((y + z) + 1)y + (y + z)y ≤ 7

3
y2 +

2

3
(y + z)2, (5.10)

which can be rewritten as
2

3
yz + y − y2 ≤ 2

3
z2. (5.11)
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When z ≤ 0, (5.11) is easily seen to hold, since the first term of the left hand side is
non-positive, the second and third terms together are non-positive (taking into account
that y is non-negative), and the right hand side is non-negative.

When z > 0 and y ≤ z, (5.11) holds because

2

3
yz + y − y2 ≤ 2

3
yz ≤ 2

3
z2.

Lastly, when z > 0 and y > z, (5.11) holds because

2

3
yz + y − y2 <

2

3
y2 + y − y2 = y − 1

3
y2.

When y ≥ 3, the latter expression is non-positive and thus not exceeds 2
3z

2. For the
values of (y, z) not yet covered in this case analysis (i.e., (y, z) ∈ {(1, 1), (2, 1)}, it
can be checked by hand that (5.11) holds.

Proof of Theorem 115. Let Γ = (n,Σ, c) be a linear congestion game, let s, s∗ ∈ Σ be
such that s∗ minimizes C. By Lemma 89, we may assume without loss of generality
that dj(k) = k for all j ∈ [m]. We show that (5.2) holds for (λ2, µ2) = (7/3, 2/3).
We remind the reader that we write Pj(s) to denote the set of players choosing facility
j ∈ [m] under strategy profile s ∈ Σ.

Observe that ci(s∗i , s−i) ≤
∑
j∈s∗i

(|Pj(s)| + 1). Taking the sum over all players,
we obtain∑

i∈[n]

(ci(s
∗
i , s−i)− ci(s)) ≤

∑
i∈[n]

∑
j∈s∗i

(|Pj(s)|+ 1)− C(s) (5.12)

=
∑
j∈[m]

|Pj(s∗)|(|Pj(s)|+ 1)− C(s). (5.13)

Let i ∈ [n]. Note that |Pj(s∗, s−i)| = |Pj(s)|+ 1 for j ∈ s∗i \ si, |Pj(s∗, s−i)| =
|Pj(s∗, s−i| − 1 for j ∈ si \ s∗i and |Pj(s∗, s−i)| = |Pj(s)| if j ∈ s∗i ∩ si. Using these
relations, we obtain∑

i′∈[n]\{i}

αi,i′(ci′(s
∗
i , s−i)− ci′(s))

=
∑

i′∈[n]\{i}

 ∑
j∈si′∩(s∗i \si)

αi,i′ −
∑

j∈si′∩(si\s∗i )

αi,i′


=

∑
j∈s∗i \si

∑
i′∈[n]\{i}:j∈si′

αi,i′ −
∑

j∈si\s∗i

∑
i′∈[n]\{i}:j∈si′

αi,i′ .
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Summing over all players and exploiting that in the restricted case 0 ≤ αi,i′ ≤ 1
for all i, i′ ∈ [n], i 6= i′, we can bound

∑
i∈[n]

 ∑
j∈s∗i \si

∑
i′∈[n]\{i}:j∈si′

αi,i′ −
∑

j∈si\s∗i

∑
i′∈[n]\{i}:j∈si′

αi,i′


≤
∑
i∈[n]

∑
j∈s∗i

∑
i′∈[n]:j∈si′

1

=
∑
j∈[m]

|Pj(s)||Pj(s∗)|. (5.14)

Combining (5.13) and (5.14) and using Lemma 116, we conclude that∑
i,i′∈[n]

αi,i′(ci′(s
∗
i , s−i)− ci′(s)) ≤

7

3
C(s∗) + (

2

3
− 1)C(s),

as desired.

Applying Theorem 112, we obtain:

Corollary 117. The coarse price of anarchy the class of α-altruistic extensions of
singleton linear congestion games, for restricted altruistic social contexts α, is at most
7.

5.5 Singleton Linear Congestion Games with Identical
Delay Functions

We derive a better smoothness result for singleton linear congestion games in which all
facilities have identical delay functions.

Theorem 118. Let Γ = (n,Σ, c) be a singleton congestion game in which all facilities
have identical delay functions and let α ∈ (Rn≥0)n be a restricted altruistic social
context for Γ. Γ is (ϕ2, 1/ϕ2, α)-smooth, where ϕ = (1 +

√
5)/2 is the golden ratio.

In most smoothness-based proofs for congestion games, one first massages the
smoothness condition to derive an equivalent condition summing over all facilities (in-
stead of players), after which one establishes smoothness by reasoning for each facility
separately. If we follow this approach here naively, we again obtain an upper bound of
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7. In order to improve this bound, we use an amortized argument here to derive our
improved bound.

For the proof of Theorem 118, we need the following lemma.

Lemma 119. Let ϕ = 1+
√

5
2 be the golden ratio. For every two integers x, y ∈ N≥0,

2xy − ϕx+ ϕ2y ≤ 1
ϕ2x

2 + ϕ2y2.

Proof. It is easy to check that the claim holds if x = 0 or y = 0. Let x ≥ 1 and y ≥ 1.
Recall that 1 + ϕ = ϕ2. We have

ϕ2y2 − 2xy +
1

ϕ2
x2 + ϕx− ϕ2y =

(
ϕy − 1

ϕ
x

)2

+ ϕx− (1 + ϕ)y

≥ 2ϕy − 2

ϕ
x− 1 + ϕx− (1 + ϕ)y

= (ϕ− 1)y +

(
ϕ− 2

ϕ

)
x− 1

=
1

ϕ
y +

(
1− 1

ϕ

)
x− 1

≥ 0,

where the first inequality holds because z2 ≥ 2z − 1 for every z ∈ R and the last
inequality holds because x ≥ 1 and y ≥ 1.

Proof of Theorem 118. Let λ = ϕ2 and let µ = 1/ϕ2. Let s∗ ∈ Σ be a strategy profile
minimizing C. We assume that αi,i = 1 without loss of generality. To satisfy the
smoothness condition (5.2) it therefore suffices to show that

∑
i∈[n]

ci(s∗i , s−i) +
∑

i′∈[n]\{i}

αi,i′(ci′(s
∗
i , s−i)− ci(s))

 ≤ λC(s∗) + µC(s).

We rewrite the left hand side of the above inequality as follows.

∑
i∈[n]

ci(s∗i , s−i) +
∑

i′∈[n]\{i}

αi,i′(ci′(s
∗
i , s−i)− ci′(s))


=
∑
i∈[n]

1 +
∑

i′∈[n]\{i}

|s∗i ∩ si′ |+
∑

i∈[n]\{i}

αi,i′ |s∗i ∩ si′ | − αi,i′ |si ∩ si′ |


(5.15)
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= n+
∑
i∈[n]

∑
i′∈[n]\{i}

((1 + αi,i′)|s∗i ∩ si′ | − αi,i′ |si ∩ si′ |) (5.16)

Note that

C(s) =
∑
i∈[n]

∑
i′∈[n]

|si ∩ sj |+
∑
i∈[n]

|si| =
∑
i∈[n]

∑
i′∈[n]

|si ∩ sj |+ n,

and C(s∗) can be expressed similarly.
Thus, the smoothness condition is equivalent to∑

i∈[n]

∑
i′∈[n]\{i}

(λ|s∗i ∩ s∗i′ |+ (µ+ αi,i′)|si ∩ si′ | − (1 + αi,i′)|s∗i ∩ si′ |)

+ (λ+ µ− 1)n

≥ 0. (5.17)

To prove this inequality we first derive, for j ∈ [m],

λ|{(i, i′) | i, i′ ∈ [n], i 6= i′, s∗i = s∗i′ = j}|
+ (µ+ αi,i′)|{(i, i′) | i, i′ ∈ [n], i 6= i′, si = si′ = j}|
− (1 + αi,i′)|{(i, i′) | i, i′ ∈ [n], i 6= i′, si = s∗i′ = j}|
+ (λ+ µ− 1)|{i | si = {j}}|

≥ λ|{(i, i′) | i, i′ ∈ [n], i 6= i′, s∗i = s∗i′ = j}|
+ µ|{(i, i′) | i, i′ ∈ [n], i 6= i′, si = si′ = j}|
− 2|{(i, i′) | i, i′ ∈ [n], i 6= i′, si = s∗i′ = j}|
+ (λ+ µ− 1)|{i | si = {j}}|

≥ 2λ
|Pj(s∗)|(|Pj(s∗)| − 1)

2
+ 2µ

|Pj(s)|(|Pj(s)| − 1)

2
− 2|Pj(s)||Pj(s∗)|

+ (λ+ µ− 1)|Pj(s)|
= λ|Pj(s∗)|2 + µ|Pj(s)|2 − 2|Pj(s)|Pj(s∗)|+ (λ− 1)|Pj(s)|
≥ 0.

Where the last inequality follows from Lemma 119 and the observation thatϕ2−1 = ϕ.
Summing over j ∈ [m], we obtain∑

j∈[m]

(λ|{(i, i′) | i, i′ ∈ [n], i 6= i′, s∗i = s∗i′ = j}|
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+ (µ+ αi,i′)|{(i, i′) | i, i′ ∈ [n], i 6= i′, si = si′ = j}|
− (1 + αi,i′)|{(i, i′) | i, i′ ∈ [n], i 6= i′, si = s∗i′ = j}|
+(λ+ µ− 1)|{i | si = {j}}|)

≥ 0.

The left hand side of the above inequality is equal to the left hand side of (5.17). This
proves that (5.17) holds.

Applying Theorem 112, we obtain:

Corollary 120. The coarse price of anarchy of the class of α-altruistic extensions of
singleton linear congestion games in which all facilities have identical delay functions,
for restricted altruistic social contexts α, is at most ϕ3 ≈ 4.2361.

5.6 Minsum Machine Scheduling
Cole et al. [2011] show that minsum scheduling games with unrelated machines (with-
out altruism) are (2, 1/2)-smooth, resulting in a coarse price of anarchy of at most 4.3

Hoeksma and Uetz [2012] prove that minsum machine scheduling games with related
machines (without altruism) are (2, 0)-smooth, leading to the conclusion that the coarse
price of anarchy is at most 2.

The following example shows that for unrestricted social contexts α > 0, the pure
price of anarchy of α-altruistic extensions of minsum machine scheduling games with
related machines is unbounded.

Example 121. Fix a number M ∈ R>0 arbitrarily, and consider the minsum machine
scheduling game with related machines Γ = (n,m, a, w,�), with n = m = 2. The
speeds are given by a1 = M,a2 = 1. The job lengths are given by w1 = w2 = 1.
Suppose that the altruistic social context is as follows: α1,1 = α2,2 = α2,1 = 0,
α1,2 = 1. Then the strategy profile (1, 2) is a pure equilibrium. The social cost of this
equilibrium is M + 1. When M ≥ 2, it is a social optimum to schedule both jobs on
machine 2, and this schedule achieves a social cost of 3. Therefore, for M ≥ 2, the
pure price of anarchy of the α-altruistic extension of Γ is M + 1/3. Because M can be
picked arbitrarily large, this shows that the pure price of anarchy is unbounded.

3More precisely, this is shown to hold for the more general case when the social cost is an arbitrary non-
negative linear combination of the player’s cost. From a scheduling game instance described by Correa and
Queyranne [2012], it follows that this bound is tight, i.e., that the coarse price of anarchy is actually exactly
4.
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We prove constant upper bounds on the coarse price of anarchy for α-altruistic
extensions of minsum scheduling games, when α is a restricted altruistic social context.

Theorem 122. Let Γ = (n,m, p,�) be a minsum machine scheduling game, let α ∈
(Rn≥0)n be a restricted altruistic social context for Γ, and let x ∈ R>0. Γ is (2 +
x, 1/2 + 1/x, α)-smooth if Γ is a minsum scheduling game with unrelated machines.
Γ is (2 + x, 1/x, α)-smooth if Γ is a minsum scheduling game with related machines.

Proof. Let Σ be the set of strategy profiles of Γ. For i ∈ [n], j ∈ [m], s ∈ Σ, we define
the value N(i, j, s) = |{i′ | i ≺j i′, si′ = j}|. Note that the social cost of a strategy
profile s ∈ Σ can then be written as

C(s) =
∑
j∈[m]

∑
i:si=j

(N(i, j, s) + 1)pi,j .

We use the proof template described in Section 5.3.2. In Hoeksma and Uetz [2012]
it is proved that the base game for the case of related machines is (2, 0)-smooth, and
from the proof of Theorem 3.2 in Cole et al. [2011], it follows that the base game for
the case of unrelated machines is (2, 1/2)-smooth. Thus, let s∗ ∈ Σ be an arbitrary
optimal schedule and let s ∈ Σ be an arbitrary schedule. It suffices to show that∑

i∈[n]

∑
i′∈[n]\{i}

αi,i′(ci′(s
∗
i , s−i)− ci′(s)) ≤ xC(s∗) +

C(s)

x

for all x > 0.
Let P1 = {(i, i′) | s∗i = si′ , s

∗
i 6= si, i ≺s∗i i

′}, and let P2 = {(i, i′) | si = si′ , s
∗
i 6=

si′ , i ≺si i′}. Note that for a pair of players (i, i′) that is not in P1 ∪ P2, we have
ci′(s

∗
i , s−i)− ci′(s) = 0, and for (i, i′) ∈ P2 it holds that αi,i′(ci′(s∗i , s−i)− ci′(s)) ≤

0. Therefore:∑
i∈[n]

∑
i′∈[n]\{i}

αi,i′(ci′(s
∗
i , s−i)− ci′(s)) =

∑
(i,i′)∈P1∪P2

αi,i′(ci′(s
∗
i , s−i)− ci′(s))

≤
∑

(i,i′)∈P1

αi,i′(ci′(s
∗
i , s−i)− ci′(s)) ≤

∑
(i,i′)∈P1

(ci′(s
∗
i , s−i)− ci′(s))

=
∑

(i,i′)∈P1

pi,s∗i .

We now rewrite this last expression into a summation over the machines. We ob-
tain:∑
i∈[n]

∑
i′∈[n]\{i}

αi,i′(ci′(s
∗
i , s−i)− ci′(s)) ≤

∑
j∈[m]

∑
(i,i′)∈P1:s∗i=j

pi,j
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=
∑
j∈[m]

∑
i∈[n]:s∗i=j

∑
i′∈[n]:(i,i′)∈P1

pi,j

=
∑
j∈[m]

∑
i∈[n]:s∗i=j,

si 6=j

∑
i′:Si′=j,i≺si i′

pi,j

≤
∑
j∈[m]

∑
i∈[n]:s∗i=j,

si 6=j

N(i, j, s)pi,j

≤
∑
j∈[m]

∑
i∈[n]:s∗i=j,

si 6=j

(xN(i, j, s∗) + x− 1 +N(i, j, s)− xN(i, j, s∗)− x+ 1)pi,j

≤
∑
j∈[m]

∑
i∈[n]:s∗i=j

(x(N(i, j, s∗) + 1)− 1)pi,j

+
∑
j∈[m]

∑
i∈[n]:s∗i=j,

si 6=j

(N(i, j, s)− xN(i, j, s∗)− x+ 1)pi,j

≤
∑
j∈[m]

∑
i∈[n]:s∗i=j

(x(N(i, j, s∗) + 1)− 1)pi,j

+
∑
j∈[m]

∑
i∈[n]:s∗i=j,
si 6=j,

N(i,j,s)>xN(i,j,s∗)+x−1

dN(i, j, s)− xN(i, j, s∗)− x+ 1epi,j

≤
∑
j∈[m]

∑
i∈[n]:s∗i=j

(x(N(i, j, s∗) + 1)− 1)pi,j

+
∑
j∈[m]

∑
i∈[n]:s∗i=j,
si 6=j,

N(i,j,s)>xN(i,j,s∗)+x−1

dN(i, j, s)− xN(i, j, s∗)− x+ 1epi,j .

Consider a player i ∈ [n] and machine j ∈ [m] such that it holds that s∗i = j,
si 6= j, and N(i, j, s) > xN(i, j, s∗) + x − 1. Let S(i, j) be the set consisting of the
dN(i, j, s)−xN(i, j, s∗)−xe players i′ ∈ [n] with smallest processing time on j such
that i′ �j i and si′ = j. Note that S(i, j) is well defined in the sense that this number of
players with these properties exist, because N(i, j, s) > xN(i, j, s∗) + x − 1 implies
dN(i, j, s) − xN(i, j, s∗) − xe ≥ 0, and because there exist N(i, j, s) ≥ |S(i, j)|
players i′ ∈ [n] such that i′ �j i and si′ = j. Note that for every player i′ ∈ S(i, i′),
it holds that N(i′, j, s) ≥ N(i, j, s)− |S(i, j)| > xN(i, j, s∗) + x− 1. We use this to
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upper bound the above as follows:∑
i∈[n]

∑
i′∈[n]\{i}

αi,i′(ci′(s
∗
i , s−i)− ci′(s))

≤
∑
j∈[m]

∑
i∈[n]:s∗i=j

(x(N(i, j, s∗) + 1)− 1)pi,j

+
∑
j∈[m]

∑
i∈[n]:s∗i=j,
si 6=j,

N(i,j,s)>xN(i,j,s∗)+x−1

pi,j +
∑

i′∈S(i,j)

pi,j



≤ xC(s∗) +
∑
j∈[m]

∑
i′∈[n]:si′=j

∑
i∈[n]:s∗i=j
si 6=j
i≺ji′,

N(i′,j,s)>xN(i,j,s∗)+x−1

pi,j

≤ xC(s∗) +
∑
j∈[m]

∑
i′∈[n]:si′=j

∑
i∈[n]:s∗i=j
si 6=j
i≺ji′,

N(i′,j,s)>xN(i,j,s∗)+x−1

pi′,j .

The next step in the derivation is made by observing that for each job i′ ∈ [n] and
each machine j ∈ [m] such that si′ = j, there are at most d(N(i′, j, s) − x + 1)/xe
players i ∈ [n] such that i ≺j i′, s∗i = j, si 6= j and N(i′, j, s) > xN(i, j, s∗) + x −
1. To see this, assume for contradiction that there are more than d(N(i′, j, s) − x +
1)/xe jobs i ≺j i′ such that s∗i = j, si 6= j and N(i′, j, s) > xN(i, j, s∗) + x − 1.
Let i ∈ [n] be the (d(N(i′, j, s) − x + 1)/xe + 1)-th largest player, with respect
to processing time on j, for which these three properties hold. Then, there are at least
(d(N(i′, j, s)−x+1)/xe+1) players scheduled on machine j that have these properties
and that are scheduled after i under s∗. Therefore, we have that xN(i, j, s∗) +x− 1 ≥
xd(N(i′, j, s) − x + 1)/xe + x − 1 ≥ N(i′, j, s), which is a contradiction. Through
this observation, we obtain:∑

i∈[n]

∑
i′∈[n]\{i}

αi,i′(ci′(s
∗
i , s−i)− ci′(s))

≤ xC(s∗) +
∑
j∈[m]

∑
i′∈[n]:si′=j

⌈
N(i′, j, s)− x+ 1

x

⌉
pi′,k

≤ xC(s∗) +
∑
j∈[m]

∑
i′∈[n]:si′=j

1

x
(N(i′, j, s) + 1)pi′,j
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= xC(s∗) +
C(s)

x
,

where we use for the second inequality the basic fact that dae ≤ a+1 for all a ∈ R.

Corollary 123. The coarse price of anarchy of the class of α-altruistic extensions of
minsum machine scheduling games with unrelated machines, for restricted altruistic
social contexts α, is at most 12 + 8

√
2 ≈ 23.3137. The coarse price of anarchy of

the class of α-altruistic extensions of minsum machine scheduling games with related
machines, for restricted altruistic social contexts α, is at most 4 + 2

√
3 ≈ 7.4641.

Proof. For the first claim, apply Theorem 122 with x = 2 + 2
√

2, and then apply
Theorem 112. For the second claim, apply Theorem 122 with x = 1 +

√
3, and then

apply Theorem 112.

5.7 Generalized Second Price Auctions
As said in Remark 107, we study the price of anarchy in this chapter with respect to the
sum-of-utilities social welfare function (1.4). However, in case of generalized second
price auctions, we consider the auctioneer to be a player in the auction with a single
strategy, of which its utility is the total price charged to the other players. This is a
standard convention when studying the price of anarchy of auction games (see also
the discussion in Section 2.3 of Chapter 2). Therefore, for a generalized second price
auction Γ = (n,m, v, β,�) and strategy profile s of Γ, it holds (asuming m = n
w.l.o.g.) that

U(s) =
∑
j∈[m]

βjvrj(s).

We remark that in our definition of generalized second price auctions (Definition
110) we defined the strategy spaces such that a player cannot play a strategy greater
than its valuation. This is equivalent to the no-overbidding assumption that we adopted
in Chapter 2 for the case of uniform price auctions, and it is a standard assumption in
the setting of generalized second price auctions. We refer to the discussion at the end
of Section 2.3 for a justification of the no-overbidding assumption.

We prove an upper bound of O(n) on the coarse price of anarchy of α-altruistic
extensions of generalized second price auctions if α is a restricted altruistic social con-
text.

Theorem 124. Let Γ = (n,m, v, β,�) be a generalized second price auction, let
α ∈ (Rn)n be a restricted altruistic social context for Γ. Then Γ is (1/2, n, α)-smooth.
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Proof. Let Σ be the set of strategy profiles of Γ, and let s∗, s ∈ Σ. We may assume
w.l.o.g. that m = n by removing slots or by adding dummy slots with click-through
rate 0. By renaming the players, we may moreover assume that for all j ∈ [m], rj(s) =
j.

We apply the proof template of Section 5.3.2. Generalized second price auctions
are known to be (1/2, 1)-smooth [Roughgarden, 2012], so it holds that∑

i∈[n]

ui(s
∗
i , s−i) ≥

1

2
U(s∗)− U(b).

We bound the altruistic part of the smoothness condition as follows.∑
i∈[n]

∑
i′∈[n]\{i}

αi,i′(ui′(s
∗
i , s−i)− ui′(s)) ≥

∑
i∈[n]

∑
i′∈[n]\{i}

αi,i′(−ui′(b))

≥
∑
i∈[n]

∑
i′∈[n]\{i}

αi,i′(−βi′vi′)

≥
∑
i∈[n]

∑
i′∈[n]\{i}

−βi′vi′

≥ −(n− 1)U(b).

Combining these inequalities proves ( 1
2 , n, α)-smoothness.

Theorem 112 now gives us:

Corollary 125. The coarse price of anarchy of the class of α-altruistic extensions of
generalized second price auctions, for restricted altruistic social contexts α, is at most
2n+ 2.

The above smoothness analysis turns out to be asymptotically tight, as the next
example shows.

Example 126. Let m ∈ N>0 be odd, let ε ∈ R>0 be a sufficiently small number, and
let Γ be a generalized second price auction (n,m, v, β,�) with n = m bidders and m
slots. Let βj = 1 for all j ∈ [(m− 1)/2], let βj = ε for all j ∈ [m− 1] \ [(m− 1)/2].
And let βm = ε2. Further, define the player valuations as vi = ε for i ∈ [(m − 3)/2],
vi = 1 for i ∈ [m − 1] \ [(m − 3)/2] and vm = 0. In particular, this implies that
Σm = {0}.

Let Σ be the set of strategy profiles of Γ and let s∗ ∈ Σ be a strategy profile where
every player chooses its valuation as its strategy. In this strategy profile, we have:
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• ri(s∗) ∈ [m] \ {1, . . . , (m− 1/2),m} for i ∈ [(m− 1)/2],

• ri(s∗) ∈ [m− 1] for i ∈ [m− 1] \ [(m− 1)/2],

• rm(s∗) = m.

The total social welfare of s∗ is therefore U(b∗) = (m− 1)/2 + ε+ (m− 3)ε2/2.
s is a strategy profile such that s1 > · · · > sm = 0 and s1 < s∗i for every

i ∈ [m − 1]. Note that this implies that si < ε for all i ∈ [n] because a player does
not play a strategy exceeding its valuation. Thus, by choosing ε sufficiently small, we
ensure that the strategies of s become arbitrarily small but induce the order as indicated
above. We have

U(s) =
∑
i∈[n]

βivi = (n− 1)ε+ 1.

If player i ∈ [n]\ [(m−1)/2] changes its strategy from si to s∗i , then r1(s∗i , s−i) =
i, and therefore rj(s∗i , s−i) = rj−1(s) for all j ∈ [i−1]. Observe that player (m−1)/2
(that has valuation v(m−1)/2 = 1) wins slot (m − 1)/2 under s, with β(m−1)/2 = 1,
but wins slot (m+ 1)/2 under (s∗i , s−i), with β(m+1)/2 = ε.

We consider the left-hand side of the smoothness condition 5.3.∑
i∈[n]

∑
i′∈[n]

αi,i′(ui′(s
∗
i , s−i)− ui′(s)).

We bound each term in the above summation separately. Let ∆i,i′ be the term corre-
sponding to players i, i′ ∈ [n], i.e.,

∆i,i′ = αi,i′(ui′(s
∗
i , s−i)− ui′(s)). (5.18)

Note that if i′ or i is n, then ∆i,i′ = 0. For i′, i ∈ [n − 1], we distinguish four cases
depending on the position of i′ ∈ [n] with respect to i ∈ [n]:

Case i′ > i: The deviation of i does not affect player i′ and thus ∆i,i′ = 0.

Case i′ = i: Player i wins slot 1 under (s∗i , s−i), and pays s1. Thus

∆i,i = αi,i(β1(vi − s1)− βi(vi − si+1)).

Case i′ = i− 1: We have ri′(s) = ri′+1(s∗i , s
∗
−i) = i′, and i′ pays si′+2 under

(s∗i , s−i), so

∆i,i′ = αi,i′(βi′+1(vi′ − si′+2)− βj(vi′ − si′+1)).
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Case i′ < i− 1: We have ri′(s) = ri′+1(s∗i , s
∗
−i) = i′, and i′ pays si′+1 (as under s).

Thus

∆i,i′ = αi,i′(βi′+1(vi′ − si′+1)− βi′(vi′ − si′+1)

= αi,i′(βi′+1 − β′i)(vi′ − si′+1).

Choosing ε sufficiently small we can make sure that the total contribution of the pay-
ments in each of the above four cases is negligible.

We consider the restricted social context, so without loss of generality we assume
that αi,i = 1 for i ∈ [n]. Recall that β1 = 1. Ignoring the effect of the payments
(which we just argued is negligible if we make ε small enough), the total contribution
to the left-hand side of the smoothness definition is

∑
i∈[n−1]

αi,i(β1vi − βivi) +
∑

i′∈[i−1]

αi,i′(βi′+1 − βi′)vi′


=

∑
i∈[n−1]

(1− βi)vi +
∑

i∈[n−1]

∑
i′∈[i−1]

αi,i′(βi′+1 − βi′)vi′ .

Note that βi′+1 − βi′ = 0 for all i′ 6= [n − 2] \ {(m − 1)/2} and β(m+1)/2 −
β(m−1)/2 = ε− 1. The above expression thus simplifies to∑

i∈[n−1]\[(m−1)/2]

(1− ε)vi

+
∑

i∈[n−1]\[(m−1)/2]

αi,(m−1)/2(β(m+1)/2 − β(m−1)/2)v(m−1)/2

=
m− 1

2
(1− ε)− (1− ε)

∑
i∈[n−1]\[(m−1)/2]

αi,(m−1)/2

= (1− ε)

m− 1

2
−

∑
i∈[n−1]\[(m−1)/2]

αi,(m−1)/2

 .

By setting αi,(m−1)/2 = 1 for every i ∈ [n−1], the above contribution is equal to zero.
To show (λ, µ, α)-smoothness, we need to lower bound the latter expression by

λU(s∗)− (µ+ 1)U(s). That is, λ and µ need to satisfy

(1− ε)

m− 1

2
−

∑
i∈[n−1]\[(m−1)/2]

αi,(m−1)/2
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= 0

≥ λ
(
m− 1

2
+ ε+

m− 3

2
ε2)

)
− (µ+ 1)((n− 1)ε+ 1),

which implies (letting ε→ 0)

µ+ 1 ≥ λm− 1

2
.

This provides an asymptotic lower bound of

1 + µ

λ
≥ m− 1

2
=
n− 1

2

on the best possible coarse price of anarchy upper bound achievable by our smoothness
framework.



Chapter 6

Efficiency of Equilibria in
Procurement Auctions with
Spiteful Players*

In this chapter, we shift our focus from altruistic behavior to spiteful behavior. The
necessary preliminary knowledge from Chapter 1 consists of Section 1.3 up to 1.3.1.1,
and Sections 1.3.1.5, 1.3.1.8, and 1.3.1.11.

We study a model of spite, applied to procurement auctions (also known as reverse
auctions). These form a well-established class of games. An auctioneer would like to
purchase an item or service from exactly one of the players (also called sellers), each
of which can supply or perform it equally well. Different players may have different
costs to provide the item or service. They will submit bids to the auctioneer, which
may misrepresent their true valuations. The set of possible bids that a player may
submit, forms its strategy set. Based on the bids, the auctioneer selects a winner and a
payment to the winner, which must be at least the winner’s bid. The two most common
mechanisms are the first price procurement auctions and the second price procurement
auctions. In both, the winner is the player with the lowest bid. In a first price auction,
the player is paid exactly its bid, while in a second price auction, the player is paid
the second-lowest bid, i.e., the bid of the cheapest competitor. The utility of a player is
defined as the payment it receives from the auctioneer, minus its valuation for providing
the item or service. Our study is carried out for a full information model, for both first

*This chapter is based on unpublished work with Po-An Chen and David Kempe
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price and second price procurement auctions.
As a result of spite, players that lose the auction might derive negative utility when

another player wins. Such spite will alter the choice of strategy of a player.
Our interest is in the loss in social welfare as a consequence of spite, and we there-

fore study a variation of the price of anarchy of procurement auctions with spiteful
players, called the price of spite (defined in Section 6.3). We generalize the class of
procurement auctions slightly: for each player we introduce a penalty multiplier, which
is a positive real number. A player’s effective bid in the auction is then its submitted
bid multiplied by its penalty multiplier. The player with the lowest effective bid is the
winner of the auction. However, in a first price generalized procurement auction, we
still pay the winner a price that its equal to its submitted bid, rather than its effective
bid. Likewise, for a second price auction, we pay the winner a price equal to the highest
bid that it could have submitted in order to still win the auction. Thus, first price and
second price generalized procurement auctions (without spite) are formally defined as
follows.

Definition 127 (First price and second price generalized procurement auctions). A first
price generalized procurement auction is a game Γ = (n,Σ, u) where Σi = R≥0 for
all i ∈ [n]. The strategy profiles in Σi, i ∈ [n] are alternatively called bid vectors.
The utility functions u are defined as follows. There is a tie-breaking rule � which
is a strict total order on n, a penalty multiplier µi ∈ R≥0 and a cost or valuation
vi ∈ R≥0 for each player i ∈ [n]. For a bid vector s ∈ Σ, the winner of Γ under
s, w(s), is defined as the player i ∈ [n] such that for all i′ ∈ [n] \ {i} it holds that
µivi < µi′vi′ or µivi = µi′vi′ , i ≺ i′. For s ∈ Σ, i ∈ [n],

ui(s) =

{
si − vi if i = w(s)

0 otherwise .

A second price generalized procurement auction is a game (n,Σ, c) where Σi =
R≥0 for all i ∈ [n]. The strategy profiles in Σi, i ∈ [n] are alternatively called bid
vectors. The utility functions u are defined as follows. There is a tie-breaking rule �
which is a strict total order on n, a penalty multiplier µi ∈ R≥0 and a cost or valuation
vi ∈ R≥0 for each player i ∈ [n]. For s ∈ Σ, the winner of Γ under s, w(s), is defined
in the same way as for first price procurement auctions. The runner-up of Γ under s,
r(s), is defined as the player i ∈ [n] \ {w(s)} such that for all i′ ∈ [n] \ {i, w(s)} it
holds that µivi < µi′vi′ or µivi = µi′vi′ , i ≺ i′. For s ∈ Σ, i ∈ [n],

ui(s) =

{
µr(s)sr(s)

µi
− vi if i = w(s)

0 otherwise .
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A first price or second price generalized procurement auction Γ can therefore be rep-
resented as a quadruple (n, v, µ,�), where v = (v1, . . . , vn) are the valuations and
µ = (µ1, . . . , µn) are the penalty multipliers.

We study for such auctions the question of how to set the penalty multipliers in
order to minimize the price of spite of the auction, given the spite levels of the players.
This can be regarded as a mechanism design problem in a restricted domain. However,
unlike regular mechanism design problems, we study this problem in a full information
setting, and we are not concerned with the notion of truthfulness, which is usual in
traditional mechanism design.1

The solution concepts we are interested in, in this chapter, are ε-equilibria, and
limit equilibria. The latter solution concept we will define later on in this chapter. ε-
equilibria are strategy profiles for which no player can improve its utility by more than
ε by switching to a different strategy. They are formally defined as follows.

Definition 128 (ε-equilibrium). Let Γ = (n,Σ, u) be a full information utility maxi-
mization game and let ε ∈ R≥0. An ε-equilibrium is defined as a strategy profile s ∈ Σ
such that for all s′ ∈ Σ it holds that for all i ∈ [n],

ui(s
′
i, s−i)− ui(s) ≤ ε.

The set of ε equilibria of Γ is denoted by ε-PEΓ. The subscript will sometimes dropped
in case no confusion can arise.

For two spiteful players, we provide necessary and sufficient conditions for a strat-
egy profile being an ε-equilibrium when ε ∈ R>0 is small enough, and we quantify the
extent to which the spite of the players impact the quality of the equilibria, by deriving
the price of spite for ε-equilibria when ε → 0. We find expressions for the penalty
multipliers that minimize the divergence rate of the price of spite.

For procurement auctions with more than two spiteful players, we characterize all
limit equilibria, give a polynomial time algorithm that computes them all, and derive
the price of spite.

6.1 Background
Auctions are an area with a huge body of work, spanning decades of research [Krishna,
2002]. Yet, only a much smaller amount of work considers auctions embedded in a
larger economic or social context. Typically, the analysis of auctions assumes that any

1However, we will study such a problem in Chapter 7. See Section 7.3 for a definition of truthfulness.
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participant that does not win in an auction, and does not pay or get paid, will have zero
utility. In reality, an outcome wherein a competitor wins could have significant impact
on a player. The competitor’s profits may lead to a significant future advantage, or an
individual may simply resent a competitor and therefore assign negative value to the
outcome of that competitor’s winning. Such perceptions — whether they be motivated
economically or socially — create what is known as negative externalities.

When studying auctions, one often makes the assumption that the player does not
bid higher than its valuation (when buying an item) or does not bid lower than its
valuation (when selling an item) (see e.g. the generalized second price auction studied
in Chapter 5 and the uniform price auction studied in Chapter 2). In the presence
of negative externalities, such an assumption is no longer justified: If losing in the
auction leads to a negative utility for a player, then a smaller negative utility would be
preferable if such an outcome can be obtained by overbidding or underbidding.

A point at which we depart from the standard auction model is the introduction
of spite: For each player i we introduce a spite level αi that captures how strongly
affected i is by another player winning the auction. The model of spite that we use has
been used in several prior works [Brandt et al., 2007, Brandt and Weiß, 2002, Maasland
and Onderstal, 2007, Morgan et al., 2003, Vetsikas and Jennings, 2007]. Besides the
social interpretation of the spite levels of the players, spite can be motivated from an
economic perspective as well, in which case spite level of a player may be interpreted
as the degree to which losing the auction causes a future economic disadvantage to the
player.

We study procurement auctions with competitive externalities in a full information
setting, wherein all players know each others’ true valuations (see, e.g., Brandt and
Weiß [2002]). While incomplete information settings have been more widely studied,
they suffer — among others — from the drawback that a player would not even be able
to evaluate its own utility, since it does not know another player’s valuation.

Auctions with spite among players have been studied before [Brandt et al., 2007,
Brandt and Weiß, 2002, Maasland and Onderstal, 2007, Morgan et al., 2003, Vetsikas
and Jennings, 2007]. Among these works, the paper by Brandt and Weiß [2002] studies
min-max equilibria for complete information two player auctions, both of which have
spite level 1

2 . This is an exception to the remainder of these works, where it is assumed
that there is incomplete information, and that the valuations are drawn randomly from
some distribution. All these papers are concerned with the case of uniform spite, where
the spite levels of all players are equal. Uniform spite is interesting as an analysis of
the effects of general distrust or future competition between players, but does not take
into account the effects of asymmetry among spiteful players on individual behavior.2

2Special cases of non-uniform spite with Bayesian priors were considered in Chapter 7 of Chen [2011].
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Morgan et al. [2003] and Brandt et al. [2007] focus on Bayes-Nash equilibria of
first price and second price auctions with uniform spite. The results in these two papers
differ mostly in the precise model of the utility of the winner. Vetsikas and Jennings
[2007] extend this work to multi-item auctions.

The notion of spite and altruism as defined here broadly falls into the class of
allocation externalities in auctions: the utility of a player depends not exclusively on
its own allocation, but also on the allocations of other players. There is a large amount
of literature on various types of allocation externalities (see, e.g., Jehiel et al. [1999],
Brocas [2003]). In specific scenarios, externalities in sponsored search auctions have
also been considered [Kempe and Mahdian, 2008, Fotakis et al., 2011].

In [Fiat et al., 2012], “externality-resistant mechanisms” are designed when the
spite levels are all below a very small constant, to achieve an approximately equal
utility for each spiteful player. The present chapter aims at exploring the effects on the
social welfare under a full spiteful range (from selfishness to extreme spitefulness).

Several papers have analyzed the impact of spiteful and altruistic behavior in other
game-theoretic settings. In the context of non-atomic congestion games, Chen and
Kempe [2008] show that when all players are at least β-altruistic, then the price of
anarchy is bounded by 1/β. In the context of network inoculation, Moscibroda et al.
[2006] study the effect of Byzantine malicious players. In Chen et al. [2010], altruism
to the whole society is considered, where pure equilibria may not exist anymore, so a
bound on a measure similar to the price of anarchy for a specific type of dynamics is
given.

6.2 Contributions and Outline
Our first result is a characterization of the ε-equilibria. More specifically, for two play-
ers, we explicitly characterize all ε-pure equilibria for any ε > 0 in Section 6.4. In the
same section, we derive exact expressions on the price of spite for the limit equilibria
of a given procurement auction with two spiteful players. Limit equilibria are defined
formally below. Roughly, they are the limit points of the set of ε-equilibria, as ε→ 0.

In the auctions we study, each player’s bid is multiplied by its penalty multiplier,
and the winner is the player with the lowest such modified bid. The multipliers are
supposed to mitigate the negative effects of competition, and will be chosen by the
auctioneer with knowledge of the spite levels. The mechanism design problem we at-
tempt to solve is to choose the penalty multipliers so as to minimize the worst-case
price of spite over all possible valuation vectors. As the price of spite can grow un-
boundedly as the valuations grow unboundedly at different rates, our goal — stated
more precisely — is to find penalty multipliers that minimize the rate of growth of the
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price of spite as the valuations diverge to infinity. For procurement auctions with two
players, we derive expressions for the optimal penalty multipliers (also presented in
Section 6.4).

For the general case, i.e., more than two players, we give in Section 6.5 a complete
characterization of the set of limit equilibria of a given procurement auction, and we
show that limit equilibria always exist. We moreover show that the set of limit equilib-
ria of an auction can be compactly represented as a polynomial number of quadruples
of numbers. This result implies that one can compute a limit equilibrium (and there-
fore an ε-equilibrium, for any ε ∈ R>0) in polynomial time. Lastly, we provide precise
expressions for the price of spite of an auction, which are computable in polynomial
time.

Finally, in Section 6.6 we discuss some potentially interesting future research di-
rections.

6.3 Preliminaries
We model spiteful behavior by associating a spite level αi ∈ (−1, 0] with each player
i, and assuming that player i’s perceived utility is a combination of 1 + αi times its
direct utility and αi times the utility of the other players. Tuning the parameters αi
allows smooth interpolation between purely spiteful and purely selfish behavior. Note
that this model of spite resembles the altruism model of Chapter 4, but is not entirely
the spiteful analogue of it. This model can however be seen as a special case of the
model in Chapter 5 when negative altruism is allowed.

For generalized procurement auctions, we therefore define their spiteful extension
as follows.

Definition 129 (Spiteful extension of first price and second price generalized procure-
ment auctions). Let Γ = (n, v, µ,�) be a generalized procurement auction, and let
α ∈ (−1, 0]n. The α-spiteful extension of Γ is the game Γα = (n,Σ, uα) where
Σi = R≥0 for all i ∈ [n], and

uαi (s) =

{
(1 + αi)(si − vi) if i = w(s)

αi(sw(s) − vw(s)) otherwise .
(6.1)

for all s ∈ Σ, i ∈ [n], in case Γ is a first price generalized procurement auction, and

uαi (s) =

{
(1 + αi)

(µr(s)sr(s)
µi

− vi
)

if i = w(s),

αi
(µr(s)sr(s)

µw(s)
− vw(s)

)
otherwise .
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for all s ∈ Σ, i ∈ [n], in case Γ is a second price generalized procurement auction.

Observe that when α = 0, then Γα = Γ for all generalized procurement auctions
Γ. In contrast, when ai → −1 for all i ∈ [n], players are not interested any more in
their own selfish utilities, but only in preventing positive selfish utility of others. We
note that the spite model we use here is a special case of the one used by Brandt et al.
[2007]. A second strongly related model of spite is the one used by Morgan et al.
[2003].

Throughout the chapter, we use the word auction as a shorthand for generalized
procurement auction. Our goal is to understand the loss of social welfare caused by
spiteful behavior of the player. To define this loss formally, we first need to define the
outcomes of auctions. While pure equilibria would be natural candidates for outcomes,
they generally do not exist for the auctions that we study. Instead, we consider ε-
equilibria. We are particularly interested in the ε-equilibria when ε→ 0, which would
suggest studying the limit set of ε-equilibria as ε → 0. However, it is easy to see that
this defines exactly the set of pure equilibria again, which may be empty. Instead, we
define the class of limit equilibria as follows:

Definition 130 (Limit Equilibria). The set of limit equilibria of a game Γ is defined as
LE =

⋂
ε∈R>0

Cl(ε-PEΓ), where Cl(S) denotes the closure of set S, i.e., the union of
S and its limit points.

Remark 131. Standard analysis arguments show that LE is always non-empty. It is
moreover clear that whenever pure equilibria exist, they are also limit equilibria. Limit
equilibria are further motivated by the following two observations. First, for each α-
spiteful extension of an auction Γ = (n, v, µ,�), for all α ∈ (−1, 0]n, the limit equi-
libria are precisely the bid vectors s ∈ Σ such that there exists a tie breaking rule for
the auction under which s is in fact a pure equilibrium.3 Secondly, when s ∈ Σ is
a limit equilibrium, it is not necessarily a pure equilibrium, but it is still possible to
obtain an ε-equilibrium for arbitrarily small ε > 0, by perturbing s appropriately.

We measure the social welfare of a strategy profile of an auction by the sum of
utilities of the players of the auction under that strategy profile, where (as is usual
in the study of auctions) the auctioneer is considered a single-strategy player of the
auction, for which its utility is the negated amount paid to the winning player.

Definition 132 (Social welfare function for spiteful procurement auctions). Let α ∈
(−1, 0]n and let Γα be the α-spiteful extension of an auction Γ. For s ∈ Σ, the social
welfare UΓα(s) of s in the game Γα is given by −sw(s) +

∑
i∈[n] u

α
i (s) for first-price

3Notice the reversal of quantifiers which implies that this characterization does not contradict the fact
that pure equilibria generally do not exist.
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auctions, and by −sr(s) +
∑
i∈[n] u

α
i (s) . The subscript Γα in UΓα will usually be

dropped, in case no confusion can arise.

For auctions without spite, under this definition, the social welfare is equal to the
negated valuation of the winner of the auction. Observe that this approach differs
from what we did in Chapters 4 and 5: here, the spite levels are taken into account in
our social welfare function, whereas in Chapters 4 and 5, the social welfare function
considered is that of the original (spiteless/altruismless) game.

The social welfare function of this chapter thus measures the overall satisfaction of
the players, in contrast to Chapters 4 and 5, where the purpose of the social welfare
function was to provide an objective measure for the quality of each strategy profile
independent of spite and altruism.

As we are interested in quantifying the loss in social welfare of the limit equilibria
as a consequence of spite between players, for the case of limit equilibria we alter
slightly the definitions of the price of anarchy and price of stability that we gave in
Section 1.3.1.8, into the following:

Definition 133 (Worst-case and best-case price of spite). Let α ∈ (−1, 0]n, let LE be
the set of limit equilibria of a given α-spiteful extension Γα of a first price or second
price auction Γ = (n, v, µ,�). Then, the worst-case price of spite of Γα is defined as

sup

{
UΓα(s)

sup{UΓ(s′) | s′ ∈ Σ}

∣∣∣∣ s ∈ LE

}
= sup

{
UΓα(s)

−min{vi | i ∈ [n]}

∣∣∣∣ s ∈ LE

}
.

and the best-case price of spite of Γα is defined as

inf

{
UΓα(s)

sup{UΓ(s′) | s′ ∈ Σ}

∣∣∣∣ s ∈ LE

}
= inf

{
UΓα(s)

−min{vi | i ∈ [n]}

∣∣∣∣ s ∈ LE

}
.

Thus, the price of spite measures the loss in social welfare of the auction compared
to the optimal social welfare that can be attained when the players have no spite.

Our goal is to design auctions minimizing the worst-case and best-case price of
spite. Our approach is to set the penalty multipliers µi so as to minimize these quanti-
ties, which can be considered a mechanism design problem in a limited design space.
Our approach shares some similarities with the work of Archer and Tardos [2002],
Karlin et al. [2005].

6.4 The Two-Player Case
In this section we study first price and second price auctions with two spiteful players.
We begin by deriving necessary and sufficient conditions for a bid vector to be an ε-
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equilibria. This allows us to precisely characterize limit equilibria and optimize the
penalty multipliers.

For (α1, α2) ∈ (−1, 0]2 and ε ∈ R>0, we observe that a vector (s1, s2) ∈ Σ is an
ε-equilibrium of an α-spiteful extension of an auction Γ, if and only if it satisfies the
following three conditions, where we assume for notational convenience and without
loss of generality that player 1 is the winner under (s1, s2):

1. Player 1 cannot improve its utility by more than ε by changing its bid into some-
thing that is lower than µ2s2/µ1 (in which case player 1 would still win). In case
Γ is a second price auction, this condition is true by definition. In case Γ is a first
price auction, it is equivalent to s1 ≥ µ2s2/µ1 − ε.

2. Player 1 cannot improve its utility by more than ε by changing its bid into some-
thing that is higher than µ2s2/µ1 (and thus losing to player 2). This condition is
equivalent to s1 − v1 ≥ α1(s2 − v2) − ε in case Γ is a first price auction, and
µ2s2/µ1 − v1 ≥ α1(s2 − v2)− ε in case Γ is a second price auction.

3. Player 2 cannot improve by more than ε by changing its bid into something that
is lower than µ1s1/µ2 (and thus becoming the winner of the auction). This
condition is equivalent to µ1s1/µ2 − v2 ≤ α2(s1 − v1) + ε in case Γ is a first
price auction and µ1s1/µ2 − v2 ≤ α2(µ2s2/µ1 − v1) + ε in case Γ is a second
price auctions.

Observe that in the above conditions, µ1 and µ2 occur only as part of the ratios µ1/µ2

and µ2/µ1. Thus, for ease of notation, we will henceforth assume that µ1 = 1, and
write µ = µ2.

For convenience, we define two constants, s̃1,2 and s̃2,1, that serve as “threshold”
values in the results that follow:

s̃1,2 =
(1 + α1)v1 − α1v2

(1 + α1)µ− α1
, s̃2,1 =

(1 + α2)v2 − α2v1

(1 + α2)/µ− α2
.

For two spiteful players, for any ε ∈ R>0 we first establish sufficient conditions for a
bid vector (s1, s2) to be an ε-equilibrium.

Theorem 134 (ε-equilibria, sufficient conditions). Let ε ∈ R>0, let α ∈ (−1, 0]n and
let Γα be a spiteful extension of an auction Γ = (n, v, µ,�).

1. If µs̃1,2 ≤ s̃2,1, then define ε′ = ε/(1 + α1) if Γ is a first price auction, and
ε′ = ε/(−α2) if Γ is a second price auction.

A bid vector (s1, s2) ∈ Σ is an ε-equilibrium of Γα if
s1 ∈ [µs2 − ε′, µs2) ∩ (−∞, s̃2,1] and µs2 ∈ [µs̃1,2,∞) (so player 1 wins).
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2. If s̃2,1 ≤ µs̃1,2, then define ε′ = εµ/(1 + α2) if Γ is a first price auction, and
ε′ = εµ/(−α1) if Γ is a second price auction.

A bid vector (s1, s2) ∈ Σ is an ε-equilibrium of Γα if
s1 ∈ (µs2, µs2 + ε′] ∩ [s̃2,1,∞) and µs2 ∈ (−∞, µs̃1,2] (so player 2 wins).

Proof. The two cases are symmetric, so we prove only the first one. Let (s1, s2) ∈ Σ
be a bid vector satisfying s1 ∈ [µs2− ε′, µs2)∩ (−∞, s̃2,1] and µs2 ∈ [µs̃1,2,∞). We
will prove that it is an ε-equilibrium. Consider the effects for player 1 of changing its
bid to some other value s′1. If s′1 < s1, then for the second price auction, the utilities
of the players do not change. For the first price auction, player 1 still wins, but obtains
smaller utility. Thus, player 1 cannot improve by lowering its bid. Raising its bid to any
value s′1 ≤ µs2 will not change the utilities in a second price auction, and will increase
the utility in a first price auction by at most (1 + α1)ε′ = ε, because s1 ≥ µs2 − ε′ by
assumption.

If s′1 > µs2, then player 1 would cease to win. If Γ is a second price auction, the
new utility is α1(s′1/µ−v2) ≤ α1(s2−v2), whereas it was previously (1+α1)(µs2−
v1). If Γ is a first price auction, its new utility would be α1(s2−v2), whereas previously
it was (1 + α1)(s1 − v1) ≥ (1 + α1)(µs2 − ε′ − v1) = (1 + α1)(µs2 − v1) − ε. In
both cases, the change is thus at most

−s2(µ+ α1µ− α1) + (1 + α1)v1 − α1v2 + ε = (µ+ α1µ− α1)(−s2 + µs̃1,2) + ε.

The first factor is non-negative because α1 ≥ −1, and the second factor is non-positive
by assumption on the bids. Thus, player 1 cannot improve its utility by more than ε by
changing its bid.

Now consider player 2, changing its bid to some other value s′2. If s′2 > s2, then
player 1 still wins, and obtains at least the same utility. If s′2 ≥ s1/µ, then s2 − s′2 ≤
ε′/µ by assumption, so the payment to player 1 decreases by at most µε′/µ = ε′, and
the utility of player 2 thus increases by at most −α2ε

′ = ε.
If s′2 < s1/µ, then player 2 would win the auction. If Γ is a second price auction,

its new utility is (1 + α2)(s1/µ − v2), whereas it was previously α2(µs2 − v1) ≥
α2(s1 + ε′ − v1) = α2(s1 − v1)− ε. If Γ is a first price auction, its new utility would
be (1 + α2)(s′2 − v2) ≤ (1 + α2)(s1/µ− v2), whereas previously, it was α2(s1 − v1)
In both cases, the change is thus at most

s1

µ
(1 + α2 − µα2)− ((1 + α2)v2 − α2v1) + ε = (1 + α2 − µα2)

(s1

µ
− s̃2,1

µ

)
+ ε.

The first factor is non-negative because α2 ≥ −1, and the second factor is non-positive
by assumption on the bids. Thus, player 2 also cannot improve its utility by more than
ε by changing its bid. So the bids are an ε-equilibrium.
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From the theorem above, existence of ε-equilibria follows immediately, for all ε ∈
R>0.

Likewise, we are able to derive a set of necessary conditions for a bid vector to be
an ε-equilibrium, when ε ∈ R>0 is small enough. These conditions are slightly weaker,
but in the limit, i.e., when ε→ 0, the sets coincide.

Theorem 135 (ε-equilibria necessary conditions). Let α ∈ (−1, 0]n and let Γα be a
spiteful extension of an auction Γ = (n, v, µ,�). For a sufficiently small choice of
ε ∈ R>0, the following holds.

1. If µs̃1,2 ≤ s̃2,1, then let ε′ = ε/(1 + α1) if Γ is a first price auction, and let ε′ =
ε/(−α2) if Γ is a second price auction. Further, define ε− = ε/(1 +α1−α1/µ)
and ε+ = ε/(1/µ+ α2/µ− α2).

If (s1, s2) is an ε-equilibrium of Γα, then s1 ∈ [µs2− ε′, µs2]∩ (−∞, s̃2,1 + ε+]
and µs2 ∈ [µs̃1,2 − ε−,∞).

2. If s̃2,1 ≤ µs̃1,2, then let ε′ = εµ/(1 + α2) if Γ is a first price auction, and let
ε′ = εµ/(−α1) if Γ is a second price auction. Further, define ε− = ε/(1/µ +
α2/µ− α2) and ε+ = ε/(1 + α1 − α1/µ).

If (s1, s2) is an ε-equilibrium of Γα, then s1 ∈ [µs2, µs2 + ε′] ∩ [s̃2,1 − ε−,∞)
and µs2 ∈ (−∞, µs̃1,2 + ε+].

Proof. Because the cases are symmetric, we will only prove the first case. Assume
µs̃1,2 ≤ s̃2,1, and let (s1, s2) ∈ Σ be an ε-equilibrium of Γα. We first show that player
1 is the winner, both in case Γ is a first price auction and in case Γ is a second price
auction. To derive a contradiction, assume that s1 > µs2, i.e., that player 2 wins the
auction.

If Γ is a first price auction, and player 1 changes its bid to below µs2, then its utility
changes from α1(s2 − v2) to at most (1 +α1)(µs2 − v1). The change in utility is thus
at most

(1 + α1)(µs2 − v1)− α1(s2 − v2) =

(
1 + α1 −

α1

µ

)
(µs2 − µs̃1,2).

For ε small enough (ε ≤ s̃2,1−µs̃1,2/2(1+α1−α1/µ)), we then get that s̃2,1−µs2 ≥
(s̃2,1 − µs̃1,2)/2. However, if player 2 changes its bid to something more than s1/µ,
its utility changes by

α2(s1 − v1)− (1 + α2)(s2 − v2) =
1

µ
(1 + α2 − µα2)(s̃2,1 − µs2)− α2(µs2 − s1)
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=
1

µ
(1 + α2)(s̃2,1 − µs2)− α2(s̃2,1 − s1).

Therefore, for s1 ≤ s̃2,1, and ε small enough (ε ≤ ((1 + α2)/µ)(s̃2,1 − µs̃1,2)/2), the
increase in utility exceeds ε. Finally, if s1 > s̃2,1, then player 2 could change its bid
to s̃2,1/µ. Its utility then changes by ((1 + α2)/µ)(s̃2,1 − µs2), which is again greater
than ε, for ε sufficiently small. This is a contradiction, so we conclude that player 1 is
the winner.

If Γ is a second price auction, and player 1 changes its bid to just below µs2,
its utility changes from α1(s1/µ − v2) ≤ α1(s2 − v2) to (1 + α1)(µs2 − v1). As
before, in an ε-equilibrium, with ε sufficiently small, this implies that s̃2,1 − µs2 ≥
(s̃2,1 − µs̃1,2)/2. If player 1 changes its bid to just above µs2, its utility changes by
−α1(s1/µ− s2). Unless s1/µ− s2 is small (say, s1/µ− s2 ≤ (s̃2,1 − µs̃1,2)/(4µ)),
for ε small enough, this quantity will be larger than ε. Thus, it must be that s̃2,1− s1 ≥
(s̃2,1−µs̃1,2)/4. Now, if player 2 changes its bid to just above s1/µ, its utility changes
by

α2(s1 − v1)− (1 + α2)

(
s1

µ
− v2

)
=

1

µ
(1 + α2 − µα2)(s̃2,1 − s1),

which will be at least ε when ε is sufficiently small. A contradiction. Thus, we have
shown that for both first price and second price auctions, at ε-equilibria (for ε ∈ R>0

small enough), we have s1 ≤ µs2 (so player 1 wins).
Next, assume that δ = µs2 − s1 > ε′. In case Γ is a first price auction, player 1

could increase its bid by δ, and its utility by (1 +α1)δ > (1 +α1)ε′ = ε. In case Γ is a
second price auction, player 2 could decrease its bid by δ/µ, thus increasing its utility
by −α2δ > −α2ε

′ = ε. Thus, we have proved that s1 ≥ µs2 − ε′.
Finally, if µs2 < µs̃1,2 − ε−, then by changing its bid to just above µs2, player

1 could ensure that player 2 wins, and obtain utility α1(s2 − v2), as opposed to the
previous (1 +α1)(s1− v1) when Γ is a first price auction, or (1 +α1)(µs2− v1) when
Γ is a second price auction. A similar calculation to the ones above (using for the first
price auction that s2 ≥ s1/µ) then shows that the change in utility of player 1 is at least

(1 + α1 − α1/µ)(µs̃1,2 − µs2) ≥ (1 + α1 − α1/µ)ε−

= ε,

contradicting that the bids were at ε-equilibrium.
Similarly, if s1 > s̃2,1 + ε+, then by changing its bid to just below s1/µ, player 2

could ensure to win, and obtain utility (1 + α2)(s1/µ − v2), instead of α2(s1 − v1)
(when Γ is a first price auction) or α2(s2µ − v1) (when Γ is a second price auction).
Again, a similar calculation (using s1 ≤ µs2 for the second price auction) gives that
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the change in utility of player 2 is at least(
1

µ
+
α2

µ
− α2

)
(s1 − µs̃1,2) ≥

(
1

µ
+
α2

µ
− α2

)
ε+

= ε,

again contradicting the assumption that (s1, s2) is an ε-equilibrium of Γα. This com-
pletes the proof.

Consider an auction Γ = (2, v, µ,�) of two players and spite vector α ∈ (−1, 0]2.
For any ε ∈ R>0, let Aε be the set of bid vectors satisfying the sufficient conditions of
Theorem 134, and let Bε be the set of bid vectors satisfying the necessary conditions
of Theorem 135. Because Aε ⊆ ε-PE ⊆ Bε, by Theorems 134 and 135, we also have
Cl(Aε) ⊆ Cl(Nε) ⊆ Cl(Bε). Thus,

⋂
ε∈R>0

Cl(Aε) ⊆ L(c) ⊆
⋂
ε>0 Cl(Bε). But⋂

ε∈R>0

Cl(Aε) =
⋂

ε∈R>0

Cl(Bε)

= {(s1, s2) | s1 = µs2 ∈ [min{s̃2,1, µs̃1,2},max{s̃2,1, µs̃1,2}]},

both for first price and second price auctions. Thus, we have derived the following
corollary:

Corollary 136. Let α ∈ (−1, 0]2 and let Γ = (2, v, µ,�] be a first price or second
price auction. Then it holds that the limit equilibria of the α-spiteful extension of Γ are
{(s1, s2) | s1 = µs2 ∈ [min{s̃2,1, µs̃1,2},max{s̃2,1, µs̃1,2}]}.

Conveniently, the fact that the limit equilibria are the same for both first price and
second price auctions allows us to treat them jointly from now on (as we see that at
a limit equilibrium, the social welfare of the first price auction is equal to the social
welfare of the second price auction). We use Corollary 136 to bound the worst-case
price of spite and best-case price of spite of both auction formats.

Theorem 137. Let α ∈ (−1, 0]2 and let Γ = (2, v, µ,�) be a first price or second
price auction.

1. If µs̃1,2 ≤ s̃2,1, then the best-case price of spite of Γα is

1

min{v1, v2}

(
v1 +

α1(α1 + α2)(µv2 − v1)

µ(1 + α1)− α1

)
,

and the worst-case price of spite or Γα is

1

min{v1, v2}

(
v1 −

(α1 + α2)(1 + α2)(µv2 − v1)

(1 + α2)− µα2

)
.
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2. If s̃2,1 ≤ µs̃1,2, then the best-case price of spite of Γα is

1

min{v1, v2}

(
v2 +

(α1 + α2)α2(v1 − µv2)

(1 + α2)− µα2

)
,

and the worst-case price of spite or Γα is

1

min{v1, v2}

(
v2 −

(α1 + α2)(1 + α1)(v1 − µv2)

µ(1 + α1)− α1

)
.

Proof. We prove the first claim for first price auctions. Similar reasoning applies for
the other three cases.

The social welfare of an outcome is the sum of all utilities, including the auction-
eer’s. The optimal social welfare is calculated for players without spite. As argued in
Section 5.3, without spite, the optimal social welfare is −min{v1, v2}.

All limit equilibria satisfy s1 = µs2. The auctioneer’s utility is thus −s1. The
utility of player 1 (the winner) is (1 +α1)(s1− v1), while player 2’s utility is α2(s1−
v1). Thus, the total utility is −v1 + (α1 + α2)(s1 − v1). Because α1 + α2 ≤ 0, the
welfare is maximized when s1 is as small as possible, i.e., when s1 = µs̃1,2. The
welfare is minimized when s1 is as large as possible, i.e., s1 = s̃2,1. Substituting these
two bids and simplifying now gives the claimed bound.

Our next goal is to use Theorem 137 to choose the value of µminimizing the worst-
case price of spite or best-case price of spite. If both the spite vector α and valuation
vector v are known, this question is neither interesting nor meaningful: a simple cal-
culation shows that the auctioneer sets µ to either 0 or ∞, thus predetermining the
winner. We therefore consider the question of how to optimize the price of spite using
only knowledge of the spite levels α, so as to minimize the best-case and worst-case
price of spite over all valuation vectors.

An immediate problem with this goal is that as v2/v1 → ∞ or v1/v2 → ∞, both
the best-case and worst-case price of spite will diverge to infinity regardless of the
choice of µ. This is not surprising: in the presence of spite, the losing player’s utility
will become more negative as the winning player’s valuation increases. Therefore, we
state our goal more precisely as minimizing the rate of divergence of the worst-case
price of spite and best-case price of spite as a function of max(v1/v2, v2/v1). This
motivates the following definitions.

Definition 138. Let ρ ∈ R>0. We define the set Cρ as{
(v1, v2) ∈ R2

≥0

∣∣∣∣ max

{
v1

v2
,
v2

v1

}
≤ ρ
}
.
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Let α ∈ (−1, 0]2. For µ ∈ R2
≥0 and ρ ∈ R>0, denote by BPoSα(ρ, µ) and

WPoSα(ρ, µ) the maximum best-case and worst-case price of spite among the α-
spiteful extensions of the auctions {(2, v, µ,�) | v ∈ Cρ}. The penalty multipli-
ers µBα (ρ) and µWα (ρ) are then defined as argµ min{BPoSα(ρ, µ) | µ ∈ R≥0} and
argµ min{WPoSα(ρ, µ) | µ ∈ R≥0}, respectively.

Using the above definition, we can characterize the optimal choice of µ, as a func-
tion of the spite levels α, as follows.

Theorem 139. Let α ∈ (−1, 0]2. If α1 + α2 ≥ −1,

lim
ρ→∞

µBα (ρ) =
α1 − α2 +

√
(α1 − α2)2 + 4α2

1α
2
2

2α1α2
,

and

lim
ρ→∞

µWα (ρ) =
α1 − α2 +

√
(α1 − α2)2 + 4(1− α2)2(1− α1)2

2(1− α1)(1− α2)
.

If α1 + α2 < −1,

lim
ρ→∞

µBα (ρ) =

√
α2(1 + α1)

α1(1 + α2)
,

and

lim
ρ→∞

µWα (ρ) =

√
α2(1 + α1)

α1(1 + α2)
.

Proof. We will prove the claim for µBα (ρ) when α1 + α2 ≥ −1. The other three cases
are handled analogously.

Fix µ ∈ R≥0. Let Γ = (n, v, µ,�) be an auction such that v2/v1 = ρ, and ρ is
sufficiently large, so that v1 ≤ µv2.

By straightforward manipulations, the condition µs̃1,2 ≤ s̃2,1 is equivalent to (1 +
α1 + α2)(v1 − µv2) ≤ 0. Since we are in the case that α1 + α2 ≥ −1, this means
that µs̃1,2 ≤ s̃2,1 is equivalent to v1 ≤ µv2 (so the player with smaller scaled valuation
wins).

Therefore, µs̃1,2 ≤ s̃2,1 holds, and the first case of Theorem 137 applies. Hence,
the best-case price of spite of the α-spiteful extension of Γ is 1 + α1(α1+α2)(µρ−1)

µ+µα1−α1
.

Suppose on the other hand that Γ = (n, v, µ,�) is an auction such that v1/v2 = ρ,
and ρ is sufficiently large, so that v1 > µv2. By reasoning similar to the above, we
conclude that µs̃1,2 > s̃2,1 holds, and the second case of Theorem 137 applies, and the
best-case price of spite of the α-spiteful extension of Γ is 1 + α1(α1+α2)(µρ−1)

µ+µα1−α1
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This expression is decreasing in µ, while the expression in the case v2/v1 = ρ is
increasing in µ. Thus, the optimal value µBρ (α) must be the value of µ where the two
expressions are equal. Solving the resulting quadratic equation and letting ρ → ∞
proves the claim.

A fairly straightforward calculation shows that in all cases, the optimum penalty
multiplier µBρ (α) for player 2 is increasing in |α2| and decreasing in |α1|. Thus, players
with higher spite levels are penalized by the auction in the sense that their payments
are lower.

6.5 Auctions with n Bidders
In this section we extend some of our results to auctions with more than two players.
The structure of the set of ε-equilibria in an auction with n players, n > 2, is in
general more complex than in the two player case, and therefore we are not able to give
reasonably matching sets of necessary and sufficient conditions, as we did for the two
player case. However, it turns out that we are still able to show that limit equilibria
exist for any α-spiteful extension of any first price and second price auction with any
number n of players, and any spite vector α ∈ (−1, 0]n. We will even see that it is
possible to compute the set of all limit equilibria in polynomial time.

It turns out that the number of limit equilibria in a first price and second price is
always infinite. Nevertheless, we will see that the structure of the set of limit equilibria
is reasonably simple: In an α-spiteful extension of an auction Γ = (n, v, µ,�), with
α ∈ (−1, 0]n, the set of limit equilibria is a union of at most n2 sets, with the property
that these sets are described by quadruples (w, r, a, b) that consist of two playersw, r ∈
[n] and two real numbers a, b ∈ R≥0, a ≤ b. An equilibrium in such a set is one
in which w and r both have the same scaled bid (i.e., µwsw = µrsr), r bids any
value sr ∈ [a, b], and every remaining player i bids at least (µr/µi)sr. We present a
polynomial time algorithm that outputs all these quadruples.

In the exposition that follows, the values s̃i,j (for every pair of players i, j ∈
[n], i 6= j) generalize the roles of s̃1,2 and s̃2,1 that we defined for the two player
case:

s̃i,j =
(1 + αi)vi − αivj

(1 + αi)(µj/µi)− αi
.

For the special case of two players, we observed that for a sufficiently small choice
of ε > 0, there is a unique winner among the set of ε-equilibria (except for the case
that µs̃1,2 = s̃2,1). This property does not necessarily hold anymore in three player
auctions, as the following example shows.
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Example 140. Consider the α-spiteful extension of the auction (3, v, µ,≺) in which
µ1 = µ2 = µ3 = 1, and v1 = 1.5, v2 = 1, v3 = 4, and α1 = −0.1, α2 = −0.6, α3 =
−0.8. It is not hard to verify that the values s̃i,j are all distinct, and that the bid vec-
tors s = (s1 = 1.3, s2 = 1.3, s3 = 2) and s′ = (s′1 = 3, s′2 = 1.6, s′3 = 1.6) are
limit equilibria. With a tie-breaking rule that prefers the higher-numbered players, the
winner is player 2 in the former limit equilibrium (with uα1 (s) = −0.03, uα2 (s) =
0.12, uα3 (s) = −0.24), and the winner is player 3 in the latter equilibrium (with
uα1 (s′) = −0.24, uα2 (s′) = 1.44, uα3 (s′) = −0.48).

We now give our characterization of limit equilibria of auctions with n players. For
two numbers a, b ∈ R, we use the notation [a, b] to denote the usual closed interval of
reals if a ≤ b. If a > b, then [a, b] denotes the empty set.

Theorem 141. Suppose that Γα is an α-altruistic extension of an auction Γ = (n, v,
µ,�), for α ∈ (−1, 0]n. The set of limit equilibria of Γα (irrespective of whether Γ is
a first price or second price auction) is non-empty and is given by

LE =
⋃

(w,r)∈[n]2:w 6=r

LEw,r, (6.2)

where LEw,r denotes the set of limit equilibria for player pair (w, r) ∈ [n]2, w 6= r,
with the property that in every limit equilibrium of LEw,r player w is a player with the
lowest scaled bid, and r is a player with the lowest scaled bid among the set of players
in [n]\{w}. This set is given by:

LEw,s =
{

(s1, . . . , sn)
∣∣∣ (6.3)

sw =
µr
µw

sr, (6.4)

sr ∈
[
s̃w,r, min

i∈[n]\{w}
s̃i,w

µw
µr

]
, (6.5)

∀i ∈ [n]\{w, r} : si ≥
µr
µi
br

}
. (6.6)

In words, (6.4) is the requirement that the scaled bid of w is equal to the second-
lowest scaled bid. Equation (6.5) is the requirement that the scaled bid of r is in some
specific interval that is determined by the values s̃i,j , where (i, j) ∈ [n]2, i 6= j, which
may be an empty interval (but is, according to the theorem, not empty for at least one
of the sets LE i,j , (i, j) ∈ [n]2). Equation (6.6) is the requirement that the scaled bids
of all remaining players are at least the scaled bid of player r.
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Proof of Theorem 141. Fix ε, let w, r ∈ [n] be two arbitrary players and suppose that
(s1, . . . , sn) is an ε-equilibrium of Γα in which w wins (so w has the lowest scaled
bid) and r is a player not equal to w, with a lowest scaled bid among the players in
[n] \ {w}, so µwsw ≤ µrsr ≤ µisi for i ∈ [n]\{w, r}. No player can improve its
utility by more than ε by changing its strategy. This is equivalent to saying that the
following constraints are satisfied: (i) w can not improve its utility by more than ε by
changing its scaled bid to a bid of at least µrsr, thereby becoming the player with the
second lowest scaled bid and letting r become the winner, (ii) no player i ∈ [n] \ {w}
can improve its utility by more than ε by setting its scaled bid to a bid if at least µwsw,
(iii) no player i ∈ [n] \ {w} can improve by more than ε by changing its scaled bid to
just below µwsw.

These constraints can be formulated as a set of strict and non-strict inequalities
both for first price and second price auctions (the strictness of such an inequality being
determined by the tie-breaking rule), so the set of ε-equilibria (in which player w wins
and player r is a player with the lowest scaled bid among players [n]\{w}) is an inter-
section of a finite number of open and closed halfspaces. The closure of this set is then
the polyhedron obtained by making all strict inequalities of this system non-strict. For
second price auctions, the resulting inequalities are as follows:

αw(sr − vr)− (1 + αw)
(µrsr
µw
− vw

)
≤ ε, (6.7)

∀i ∈ [n]\{w} : αi(sw − vw)− αi
(µrsr
µw
− vw

)
≤ ε, (6.8)

∀i ∈ [n]\{w} : (1 + αi)
(µwsw

µi
− vi

)
− αi

(µrsr
µw
− vw

)
≤ ε, (6.9)

∀i ∈ [n]\{w, r} : µrsr ≤ µisi, (6.10)
µwsw ≤ µrsr. (6.11)

By setting ε to 0, we obtain the polyhedron of limit equilibria in whichw has the lowest
scaled bid and r is a player with lowest scaled bid among the players [n]\{w}. We show
next that this polyhedron is equivalent to LEwr, by rewriting the system (6.7–6.11) for
ε = 0 into the equivalent system (6.3–6.6): Divide (6.8) by αi (which is a negative
number), to obtain that sw ≥ (µr/µw)sr, and combine this with (6.11) to obtain (6.4).
Replace sr with (µr/µw)sr in (6.9). Rewriting (6.9) and (6.7) into the constraints

sr ≥ s̃w,r, ∀i ∈ [n]\{w} : sr ≤
µw
µr
s̃i,w, (6.12)

is then straightforward. It is now obvious that (6.12) is equivalent to (6.5). Finally,
(6.10) corresponds to (6.6). We conclude that the set of limit equilibria of a second
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price auction is given by (6.2). For a first price auction, we arrive at exactly the same
set of constraints when we use similar reasoning. We omit this here.

It remains to be shown that LE is not empty. Suppose for contradiction that LE is
empty. Let ` : [n] → [n] be any mapping such that, for i ∈ [n], `(i) is a player in the
set argi′ mini′∈[n] s̃i′,i. From (6.5) and the assumption that LE = ∅ we derive that for
all pairs of players (i, i′) it holds that

s̃i,i′ > s̃`(i),i(µi/µi′). (6.13)

Now pick an arbitrary player i ∈ [n] and consider the procedure of iteratively gen-
erating the sequence of players `(i), `2(i), `3(i), . . ., where `k(i), k ∈ N denotes the
repeated composition of ` with itself, k times, on i. Stop this procedure at the first
iteration k ∈ N where a player `k(p) is encountered that has already been generated,
at iteration j ∈ N, j < k say. So, `j(i) = `k(i). As there is only a finite number
of n players, this procedure certainly terminates. From (6.13) we obtain the following
sequence of strict inequalities, giving rise to a contradiction:

s̃`j+1(p),`j(p) > s̃`j+2(p),`j+1(p)

µ`j+1(p)

µ`j(p)

> s̃`j+3(p),`j+2(p)

µ`j+2(p)

µ`j+1(p)

µ`j+1(p)

µ`j(p)
> · · ·
> s̃`k+1(p),`k(p)

µ`k(p) · · ·µ`j+1(p)

µ`k−1(p) · · ·µ`j(p)
= s̃`j+1(p),`j(p).

So we conclude that our assumption that LE = ∅ was incorrect.

An immediate corollary of Theorem 141 is that the number of limit equilibria is
infinite: the set of limit equilibria is non-empty and a union of sets that are either
empty or are of infinite cardinality.

By using expressions (6.2–6.6), we can straightforwardly output the set of limit
equilibria in a compact and efficient way:

Corollary 142. There is a polynomial time algorithm that takes as input a descrip-
tion of a first price or second price auction Γ = (n, v, µ,�), and a spite vector
α ∈ (−1, 0]n, and outputs the set of limit equilibria LE of the α-spiteful extension
of Γ represented as a list of quadruples ((w1, r1, a1, b1), . . . , (wq, rq, aq, bq)), q ≤ n2,
where ai ≤ bi for i ∈ [q]. This list represents LE in the sense that

LE =
⋃
i∈[q]

{
(s1, . . . , sn)

∣∣∣
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µwi
µri

swi = sri , sri ∈ [ai, bi], (∀j ∈ [n]\{wi, ri})
(
sj ≥

µr
µj
sr
)}
.

Theorem 141 immediately gives us expressions for the worst-case price of spite
and best-case price of spite of both first price auctions and second price auctions.

Corollary 143. Let Γ = (n, v, µ,�) be a first price or second price auction, and let
α ∈ (−1, 0]n.

• For any two players w, r ∈ [n], w 6= r, let

Bw,r =
1

min{vi | i ∈ [n]}

(
vw +

(vrµr/µw − vw)αw
∑
i∈[n] αi

(1 + αw)µr/µw − αw

)
.

The best-case price of spite of the α-spiteful extension of Γ is

min

{
Bw,r

∣∣∣∣ (w, r) ∈ [n]2, w 6= r, s̃w,r ≤ min
i∈[n]

s̃i,wµw
µr

}
.

• For any two players w, t ∈ [n], w 6= t, let

Bw,t =
1

min{vi | i ∈ [n]}

(
vw +

(1 + αt)(vwµw/µt − vt)
∑
j∈[n] αj

(1 + αt)µw/µt − αt

)
.

The worst-case price of spite of the α-spiteful extension of Γ is

max
{
Ww,t

∣∣∣ (w, t) ∈ [n]2, w 6= t,

∃r ∈ [n]\{w} : s̃w,r ≤ s̃t,w
µw
µr
,

∀i ∈ [n]\{w} : s̃i,w ≥ s̃t,w
}
.

The above corollary follows from Theorem 141 by applying similar reasoning as
in proof of Theorem 137.

6.6 Future Work
The most pressing question that remains to be answered is probably that of how to
set the penalty multipliers so as to minimize the price of spite in general n-player
procurement auctions.
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Another obvious research direction would be to do the same type of analysis in case
there are altruistic players, or a mixed population of altruistic and spiteful players. Yet
another interesting research direction would be to examine the same type of questions,
but focus on the revenue of the auction instead of the social welfare.

Finally, it would also make sense to go beyond single-item auctions and consider
spite or altruism for more complex auctions, e.g., path auctions or “hiring-a-team auc-
tions”. Other promising auction games to analyze are keyword auctions [Liang and Qi,
2007], as well as other various combinatorial settings.
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Chapter 7

Finding Social Optima in
Congestion Games with
Externalities*

We continue our study of behavior induced by externalities between the players. In this
chapter we are concerned with the computational problem of finding a strategy profile
that optimizes the social welfare, for a generalization of the class of symmetric single-
ton congestion games in which it is possible for the players to express their externalities
in a refined way. As for the preliminary knowledge discussed in the introduction chap-
ter, the reader is advised to be familiar with Section 1.3 up to Section 1.3.1.1, Section
1.3.1.7, Section 1.3.1.10, and Section 1.3.1.11.

The difference between regular congestion games and the congestion games con-
sidered in this chapter, is that in this latter class of symmetric singleton congestion
games, players maximize their utility instead of minimize their costs. Moreover, ev-
ery player expresses for each facility and each sufficiently small set of other players,
a value that represents how much the player values being on the facility together with
the set of players. Formally, our games of interest are defined as follows.

Definition 144 (Symmetric singleton congestion games with r-externalities). A sym-
metric singleton congestion game with r-externalities, for r ∈ N>0, is a utility maxi-
mization game (n,Σ, u), for which there is an m ∈ N>0 such that Σi = [m], and the
utility functions u are defined as follows. For all i ∈ [n], j ∈ [m], and P ⊆ [n] \ {i},

*A part of the contents of this chapter has been published as De Keijzer and Schäfer [2012].
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|P | ≤ r, there is a number vi,P,j ∈ Q, such that for every strategy profile s ∈ Σ and
player i ∈ [n],

ui(s) =
∑

P⊆[n]\{i}:|P |≤r,
(∀i′∈P :si′=si)

vi,P,si .

Therefore, a symmetric singleton congestion game with r-externalities can be repre-
sented as a triple (n,m, v), where v is the vector containing all values vi,P,j . For
the case that r = 1 we will abuse notation and write vi,i′,j instead of vi,{i},j for
i, i′ ∈ [n], j ∈ [m]. Also, for notational convenience we will sometimes write vi,i,j to
denote vi,∅,j for i ∈ [n], j ∈ [m].

The elements of [m] are called the facilities. When P ⊆ [n] the value vi,P,j is
called the externality that player i ∈ [n] has for player set P on facility j ∈ [m].
Note that vi,∅,j represents the intrinsic utility that player i ∈ [n] obtains from facility
j ∈ [m]. When the values v are unrestricted, we speak of a congestion game with
mixed externalities. When v are non-negative, we speak of non-negative externalities.

Our focus will initially be on symmetric singleton congestion games with 1-externalities,
and most of our results deal with the case of non-negative externalities. We first adopt
a purely computational perspective rather than a game-theoretic perspective, and we
consider the problem of optimizing the social welfare. Our social welfare function of
choice here is the regular sum-of-utilities function (1.4). In particular, we prove that
finding the optimal strategy profile is NP-hard even for very special cases, and focus
on approximation algorithms. We then derive, for r = 1 a 2-approximation algorithm
that works by rounding an optimal solution of a natural LP formulation of the problem.
This rounding procedure is nontrivial because it needs to take care of the dependencies
between the players resulting from the pairwise externalities. We also show that this
is essentially the best possible rounding algorithm (with respect to the approximation
factor) by showing that the integrality gap of the LP is close to 2. Adaptations of our
rounding algorithm enable us to derive approximation algorithms for several general-
izations of the problem. Most notably, we obtain an (r+1)-approximation for the class
of symmetric singleton congestion games with r-externalities. Further, for r = 2 we
derive a 2-approximation for the non-symmetric case, i.e., where the strategy sets of
the players are not necessarily all equal. Moreover, we obtain a 3/2-approximation al-
gorithm when these sets are of size 2, i.e., each player has access to only two facilities.

Remark 145. As all games considered in this chapter are symmetric singleton con-
gestion games with r-externalities, we will for convenience abbreviate this to simply
congestion games with r-externalities. Secondly, when we talk in this chapter about
the social welfare of a strategy profile for a congestion game, we always refer to the
sum-of-utilities social welfare (1.4).
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The second problem we consider is an algorithmic mechanism design problem: we
consider a setting where a central authority assigns the players to the facilities. The
valuations and externalities of the players are considered private in this setting, and
they have to be reported to the central authority by the players themselves. This may
cause the players to misreport their valuations out of self-interest. We are interested in
resolving the question of how to find (in polynomial time) an allocation of the players to
the facilities, taking into account that the players may be misreporting their valuation.

7.1 Background
Ever since their introduction in 1973, congestion games have been the subject of inten-
sive research in game theory and, more recently, in algorithmic game theory. Most of
these studies adopt a distributed viewpoint and focus on issues like the existence and
inefficiency of equilibria, and the computational complexity of finding such equilibria,
etc. (see, e.g., Nisan et al. [2007] for an overview). Much less attention has been given
to the study of congestion games from a centralized viewpoint.

Studying these congestion games from a centralized viewpoint is important in sit-
uations where a centralized authority has influence over the players in the game. Also,
adopting a centralized perspective may help in acquiring insights about the decentral-
ized setting: if it is hard to find an (approximate) optimum or near-optimum in the
centralized case where all the players are completely coordinated, it certainly will be
hard for the players to reach such a solution in the decentralized case, where besides
lack of coordinated computation, additional issues related to selfishness and stability
arise. Lastly, we believe that studying this optimization problem is interesting for its
own sake, as it can be seen as a generalization of various fundamental optimization
problems.

We know of only two related articles [Blumrosen and Dobzinski, 2006, Chakrabarty
et al., 2005] that study player-specific congestion games from an optimization perspec-
tive. Both works assume that the players are anonymous [Blumrosen and Dobzinski,
2006] in the sense that the utility function of a player only depends on the number of
players using the chosen facility, but not on the identities of these players.

The assumption that all players are anonymous is overly simplistic in many situa-
tions. Therefore, our congestion games variant extends the player-specific congestion
game model of Milchtaich [1996] to incorporate non-anonymous players.

There are various other papers that study congestion games with negative or non-
negative externalities. For example, negative externalities are studied in routing [Rough-
garden, 2005], scheduling and load balancing [Awerbuch et al., 1995]. Non-negative
externalities are studied in the context of cost sharing [Feigenbaum et al., 2001], facil-
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ity location [Anshelevich et al., 2008] and negotiations [Conitzer and Sandholm, 2004,
2005].

Meyers and Schulz [2012] studied the complexity of finding a minimum cost so-
lution in congestion games (according to Rosenthal’s classical congestion game model
[Rosenthal, 1973]). They study several variants of the problem and prove NP-hardness
results, as well as inapproximability results for some cases and polynomial time com-
putability results for some other cases.

Chakrabarty et al. [2005] were the first to study player-specific congestion games
from a centralized optimization perspective. The authors study the cost-minimization
variant of the problem where each player has a non-negative and non-decreasing cost
function associated with each facility.1 They show that computing an assignment of
minimum total cost is NP-hard. The authors also derive some positive results for cer-
tain special cases of the problem (see Chakrabarty et al. [2005] for details).

Most related to the work discussed in this chapter is Blumrosen and Dobzinski
[2006]. They study the problem of welfare maximization in player-specific congestion
games with non-negative utility functions. Among other results, they give NP-hardness
and inapproximability results for non-negative and negative externalities. They also
provide a randomized 18-approximation algorithm for arbitrary (non-negative) utility
functions.

For r = 1, the problem of computing a welfare maximizing allocation of players to
facilities for our variant of congestion games can also be interpreted as the following
graph coloring problem: We are given a complete undirected graph on vertex set [n],
and we are given a set of colors [m]. Every edge (i, i′) (including self-loops) has a
weight wi,i′,e = vi,i′,e + vi′,i,e for each color e ∈ [m]. The goal is to assign a color to
every node such that the total weight of all monochromatic edges, i.e., edges of which
both endpoints have the same color, is maximized. The weight of a monochromatic
edge (i, i′) is defined as wi,i′,e, where e is the color of the endpoints. The minimization
variant of this problem with identical weights wi,i′,e = wi,i′ for all e ∈ [m] and
every edge (i, i′) is also known as the generalized graph coloring problem [Kolen and
Lenstra, 1995], graph k-partitioning [Kann et al., 1997], and k-min cluster [Sahni and
Gonzalez, 1976].

Auctions with r-Restricted Complements
Strongly related to the class of congestion games we study here, and especially the
mechanism design problem we consider, is the class of auctions with r-restricted com-

1Equivalently, the utility functions are assumed to be non-positive and non-increasing.
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plements. These are games that have been studied in Abraham et al. [2012], in a mech-
anism design context.

In such auctions, there is a set of bidders [m] and a set of items [n] (we switch the
roles of n andm here for reasons that will later become clear). Each player i ∈ [m] has
a non-negative rational valuation wi,S ∈ R for every subset S ⊆ [n] of at most r items.
We denote the vector of all such valuations by w. The players report their valuations to
an auction mechanism, and the auction mechanism subsequently decides which items
to give to each bidder. There is only one copy of each item, and an item cannot be
split: it is allocated to a player entirely or not at all. Secondly, a price is charged by
the auction to each player. Suppose that a player i ∈ [n] gets allocated by the auction
the set of items Si ⊆ [n] and gets charged a price of pi. The utility of player i is then
defined as

∑
S⊆Si wi,S − pi. In determining the social welfare of a given outcome of

the auction (i.e., an allocation of the items to the players), we use the sum-of-utilities
social welfare function (1.4), with the auctioneer considered as a single-strategy player
for which its utility is the total amount of money paid by the other player (as is usual
in auction games). Note that this means that the social welfare is therefore determined
by the allocation of the items to the players, and not by the prices charged.

It can be seen that the problem of finding a social welfare maximizing strategy pro-
file for congestion games with r-restricted complements, is equivalent to the problem
of finding a social welfare maximizing allocation for congestion games with (r − 1)-
externalities: given a congestion game with r-externalities Γ = (n,m, v), we can
construct an auction Γ′ with (r + 1)-restricted complements on bidders [m], items [n],
and valuations wi,S =

∑
j∈S vj,S\{j},i for all i ∈ [m], j ∈ [n], S ⊆ [n], |S| ≤ r. It is

then straightforward to see that the social welfare for Γ of a given strategy profile s ∈ Σ
equals the social welfare for Γ′ of s, when s is considered as an allocation of the items
[n] to the players [m], in the obvious way. Similarly, auctions with r-restricted comple-
ments can be converted to congestion games with (r − 1)-externalities. It follows that
any (randomized) approximation algorithm for the welfare maximization problem for
auctions with r-restricted complements implies an approximation algorithm with the
same approximation guarantee for the welfare maximization problem for congestion
games with (r − 1)-externalities, and vice versa.

7.2 Contributions and Outline
We consider in Section 7.4 the welfare maximization problem for the case of mixed 1-
externalities and show that it is strongly NP-hard and n1−ε-inapproximable for every
ε > 0, even for m = 2 facilities. We also give a polynomial-time algorithm that solves
the problem when the number of players is constant.
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In light of this inapproximability result, we then focus in Section 7.5 on the prob-
lem of computing an optimal assignment for generalized congestion games with non-
negative 1-externalities. We derive a polynomial time algorithm that solves this case
for m = 2 facilities. We show that the problem gets strongly NP-hard for m ≥ 3
facilities and therefore focus on approximation algorithms.

Thereto, we first study in Section 7.6 the polytope of the relaxation of a LP that
will turn out to be useful in developing approximation algorithms for the problem. We
give a characterization of the vertices of this polytope.

We derive in Section 7.7 a deterministic polynomial time 2-approximation algo-
rithm for the case of non-negative 1-externalities with an arbitrary number of facilities.
This algorithm computes an optimal solution to a natural LP relaxation of the problem
and then iteratively rounds this solution to an integer solution, thereby losing at most a
factor 2 in the value of the social welfare. We also show that the integrality gap of the
underlying LP is close to 2 and therefore we suspect that the approximation factor of
our algorithm is the best rounding algorithm possible.

The rounding procedure is non-trivial because it needs to take care of the dependen-
cies between the players, resulting from the pairwise non-negative externalities. The
key of our analysis is a probabilistic argument showing that these dependencies can
always be resolved in each iteration such that the social welfare does not decrease by
too much. We believe that this approach might be applicable to similar problems and
is therefore of independent interest.

Our approach is flexible enough to extend the algorithm to more general settings.
We do this in Section 7.9. One such generalization is to the non-symmetric version
where the strategy sets of the players are not necessarily the same. We show that our
2-approximation algorithm can be adapted to the case where the facilities available to
each player are restricted. We also obtain an improved 3/2-approximation algorithm
when every player is restricted to two facilities. The proof of the 3/2-approximation
factor crucially exploits a characterization of the extreme point solutions of the LP
relaxation. We also extend our rounding algorithm to the case of r-externalities, and
derive an (r + 1)-approximation algorithm.

We also settle a question left open by Blumrosen and Dobzinski [2006]. The au-
thors showed that an optimal assignment can be computed efficiently for symmetric
singleton congestion games with 1-externalities Γ = (n,m, v) in case vi,i′,j = vi,i′′,j
and vi,i,j = 0 for all i, i′, i′′ ∈ [n], i 6= i′, i 6= i′′ and j ∈ [m], can be com-
puted efficiently. We show that this problem becomes NP-hard when the constraint
vi,i,j = 0, i ∈ [n], j ∈ [m] is dropped.

Lastly, in Section 7.10, we consider the problem of obtaining a truthful mechanism
for our social welfare optimization problem, that runs in polynomial time and attains
a good approximation factor. It requires some technical preliminary knowledge about
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mechanism design to state accurately our contribution towards solving this problem, so
we refer to Section 7.3 for a more precise explanation of our contribution.

As for the relation of this work to auctions with r-restricted complements [Abraham
et al., 2012], we note the following. As said in the previous section, all of our results
on the welfare maximization problem for congestion games with r-externalities can be
translated in a direct fashion to auctions with r-restricted complements. Independently
in Abraham et al. [2012], a randomized r-approximation algorithm is given for the
social welfare maximization for auctions with r-restricted complements. This random-
ized algorithm is also applicable to the congestion games with (r − 1)-externalities).
Interestingly, despite that the research of [Abraham et al., 2012] and the research dis-
cussed in this chapter has been carried out independently, the (r + 1)-approximation
algorithm presented in this chapter, for congestion games with r-externalities, turns
out to be essentially a derandomization of the algorithm in Abraham et al. [2012].
Besides this approximation algorithm for the welfare maximization problem, Abra-
ham et al. [2012] also provide some mechanism design related results, and propose a
truthful (1 + ε)-approximation algorithm for a special type of auction with r-restricted
complements, as well as a truthful mechanism for the general case that achieves an
O(logrm)-approximation guarantee. These results can be translated and used in a di-
rect manner, so that they apply to our congestion games studied here. Likewise, it is
also straightforward to translate our mechanism design result of Section 7.10 to the
setting of auctions with r-restricted complements.

7.3 Preliminaries on Mechanism Design
The result we present in Section 7.10 requires some preliminary knowledge on mech-
anism design. We present these preliminaries in this section.

Formally, an abstract mechanism design setting is a triple F = (n, V, S) where [n]
is a set of players, S is a set of outcomes, and V = (V1, . . . , Vn), where Vi is called
the type set of player i, for i ∈ [n]. A type set Vi consists of functions from S to R≥0.
The functions in Vi are called types. A deterministic (direct revelation) mechanism is
a function from V = ×i∈[n]Vi to S × Rn. Given a type profile v ∈ V , (M(v))1 is
referred to as the outcome of the mechanism (w.r.t. v), and (M(v))i+1 is referred to as
player i’s payment (w.r.t. v). A mechanism together with a type profile v ∈ V induces
a utility maximization game with players [n], where player i’s strategy set is Vi, and its
utility given a strategy profile v̂ ∈ V is defined as ui(v̂) = vi((M(v̂))1)− (M(v̂))i+1.
A randomized mechanism is a probability distribution over deterministic mechanisms.
Just as for deterministic mechanisms, a randomized mechanismM together with a type
profile v ∈ V induces a game with players [n], where player i’s strategy set is Vi, and its
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utility given a strategy profile v̂ ∈ V is defined as ui(v̂) = E[vi(M(v̂)1)−M(v̂)i+1].
A randomized mechanism M may satisfy various desirable properties, some of

which we list below.

• M is called truthful (also called incentive compatible or strategy-proof ) in ex-
pectation if for all v ∈ V , vi is a dominant strategy for player i ∈ [n] in the game
induced by (M,v). This means that for every type profile v̂ ∈ V , it holds that
E[ui(v̂)] ≤ E[ui(vi, v̂−i)].

• M satisfies universally non-negative payments if for every deterministic mecha-
nism M ′ in its support, the image of M ′ is a subset of S × Rn≥0.

• M satisfies universal individual rationality if for every deterministic mechanism
M ′ in its support, ui(v) is nonnegative in game (M ′, v) for all v ∈ V .

• Let f : S × V → R≥0 be a function. M is said to approximate f to factor k if it
holds that E[f(M(v)1, v)] ≥ max{f(s, v) | s ∈ S}/k for all v ∈ V .

We refer to a set of mechanism design settings as a mechanism design problem. A
task that is often dealt with in the research area of (algorithmic) mechanism design,
is for a given mechanism design problem, to define for each of its mechanism design
settings a mechanism that satisfies the four properties above, and at the same time
optimizes a given social welfare function, or at least approximates it up to some good
factor. Given that we have satisfactory mechanisms for a mechanism design problem
of the type just described, we additionally require to be able to compute the outcome
of these mechanisms within time polynomial in the size of some natural representation
of the mechanism design setting.

More precisely: we would like to have a randomized algorithm A for our mecha-
nism design problemF that takes as input a mechanism design setting F = (n, V, S) ∈
F (where V = (V1, . . . , Vn)) and a reported type v̂i ∈ Vi for all i ∈ [n], such that A
outputs an allocation and a payment for each player. A is required to run in expected
polynomial time, and A is required to have the property that for every mechanism de-
sign setting (n, V, S) ∈ F that it can receive as input, it holds that the distribution
of the output of A is the distribution of the output of a randomized mechanism that
satisfies truthfulness in expectation, universally non-negative payments, universal indi-
vidual rationality, and approximates the social welfare to an as good as possible factor.
Because we look at mechanisms from the algorithmic perspective in this chapter, we
will abuse terminology and sometimes interchange the concept of an algorithm with
that of a mechanism.

In our case, we are facing congestion games with r-externalities, so the mechanism
design problems we deal with constitute all mechanism design settings (n, V, S) for
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which there is a congestion game with r-externalities Γ = (n,m, v) such that S is the
set of strategy profiles of Γ. The type set Vi consists of the vectors of externalities in R
that player i ∈ [n] may have and report. Therefore, we are in essence interested in an
algorithm/mechanism that runs in expected polynomial time and satisfies truthfulness
in expectation, universal non-negative payments, universal individual rationality, and
approximates the social welfare up to a good factor.

In [Abraham et al., 2012], for auctions with r-restricted complements an algo-
rithm was proposed that satisfies all requirements, achieving an approximation factor
of O(logrm). This mechanism is easily adapted to the case of congestion games with
(r − 1)-externalities.

We present in Section 7.10 in this chapter a truthful (r + 2)-approximation al-
gorithm for congestion games with non-negative r-externalities. While this is a big
improvement over the O(logrm) algorithm of [Abraham et al., 2012], it should be
noted that this improvement is due to that we take an additional liberty in the set of
solutions that the mechanism is allowed to output: our mechanism requires the ability
to output a solution in which some of the externalities are disabled. This means that
the mechanism is able to allocate a set of players on the same facility, and set some of
their externalities to 0. It can be interpreted as preventing some subsets of players to
interact with each other, even if they are on the same facility. This prevents them from
acquiring the benefits they would normally obtain from being together on the same
facility.

7.4 Mixed 1-Externalities
We start off by studying the problem of optimizing the social welfare in congestion
with mixed 1-externalities. It turns out that this problem is highly inapproximable,
even for 2 facilities. Consider the following optimization problem:

Name: MAX-2FAC-CG-MIX-1EXT
Input: A description of a congestion game with mixed 1-externalities Γ = (n,m, v).
Objective: Find a strategy profile s ∈ Σ for Γ, that maximizes the social welfare U(s).

The following result shows that it is impossible to find for this problem within polyno-
mial time a strategy profile that attains a social welfare that is within a constant factor
of the optimal social welfare.

Theorem 146. MAX-2FAC-CG-MIX-EXT is strongly NP-hard and is not approximable
to within a factor of n1−ε in polynomial time, for all ε > 0, assuming that P 6= NP.
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Proof. We give a polynomial time approximation preserving reduction from the strongly
NP-hard optimization problem MAXCLIQUE.

Name: MAXCLIQUE
Input: A description of a graph G = (V,E).
Objective: Find a clique in G with the maximum number of vertices among all cliques
of G.

It is known that if P 6= NP, there does not exist an algorithm that approximates MAX-
CLIQUE within a factor of n1−ε for any ε > 0 [Håstad, 1999, Zuckerman, 2007]. Given
an instance G = (V,E) of MAXCLIQUE, assume without loss of generality that V =
[n]. We construct the congestion game with mixed 1-externalities f(G) = (n,m, v)
(i.e., an instance of MAX-2FAC-CG-MIX-EXT) as follows: Set

• vi,i,1 = 1 for all i ∈ V ,

• vi,i′,1 = −2|V | for all i, i′ ∈ V such that i 6= i′ and {i, i′} 6∈ E,

• vi,i′,2 = 0 for all i, i′ ∈ V .

Let C ⊆ V be a clique of G. Then there is a strategy profile for f(G) that attains a
social welfare of |C|: Let the players in C choose facility 1 as their strategy and let
all other players choose facility 2 as their strategy. On the other hand, let s ∈ Σ be a
strategy profile of f(G) that attains a social welfare of U(s) ≥ 0, then there is a clique
of size U(s) in G: For two vertices i, i′ for which si = si′ = 1 the edge {i, i′} is in E,
otherwise U(s) would be negative because vi,i′,1 is −2|V |. The set of vertices i such
that si = 1 is therefore a clique in G.

We conclude that there is a one to one correspondence between cliques of G and
strategy profiles that attain a non-negative social welfare in the congestion game f(G),
and the social welfare of a strategy profile corresponding to a clique C is equal to |C|.
It follows that f is an approximation factor preserving reduction from MAXCLIQUE to
MAX-2FAC-CG-MIX-EXT.

The above result shows inapproximability when we fix the number of facilities.
When we instead fix the number of players, it turns out to be rather easy to derive a
polynomial time algorithm, as the next result shows.

Proposition 147. The problem of computing the optimal strategy profile in a conges-
tion game with mixed 1-externalities and a fixed number of players, can be solved in
polynomial time.



7.5. NON-NEGATIVE 1-EXTERNALITIES 173

Proof. Suppose that we are given a congestion game with mixed 1-externalities Γ,
and a partition P of the player set. Let ΓP be the game obtained from Γ by setting
vi,i′,j = 0 for all i, i′′ ∈ [n], j ∈ [m] for which it holds that i and i′ are in distinct sets
of P (and otherwise vi,i′,j remains unaltered). Now consider the following problem
p(P): find the strategy profile of ΓP that maximizes the social welfare, among the
strategy profiles of ΓP for which it holds that for all sets P ∈ P , the players in P are
allocated to the same facility. It is clear that this problem can be solved in polynomial
time: just allocate the players in a set P ∈ P to

argj max

 ∑
i,i′∈P

vi,i′,j | j ∈ [m]

 .

Clearly, there is a partition P of [n] such that the optimal strategy profile and opti-
mal social welfare for Γ is the same as the optimal strategy profile and optimal social
welfare for ΓP . Thus, it suffices to solve the problem p(P) for all partitions P of [n].
This number of partitions is a constant known as the nth Bell number Bn, and this
proves the claim.

7.5 Non-Negative 1-Externalities
Due to the inapproximability result for finding a social welfare maximizing strategy
profile for congestion games with mixed 1-externalities, we will focus on the case that
all externalities are non-negative in the remainder of this chapter. This section focuses
on optimizing the social welfare in congestion games with non-negative 1-externalities.
Central to our study of this problem will be the following integer LP for the problem.

Let Γ = (n,m, v). Then the variables of the LP below are interpreted as follows:
Every feasible solution x of the LP corresponds to a strategy profile s(x) ∈ Σ of Γ.
For i, i′ ∈ [n], i 6= i′ and j ∈ [m], the variable xi,j is the (0, 1)-variable that indicates
whether player i is assigned to facility j under s(x), and x{i,i′},j is the (0, 1)-variable
that indicates whether both players i and i′ are assigned to facility j under s(x). There
are thus m(n2 + n)/2 variables in total.

max
∑
j∈[m]

 ∑
i∈[n]\{1}

∑
i′∈[i−1]

(vi,i′,j + vi′,i,j)x{i,i′},j +
∑
i∈[n]

vi,i,jxi,j

 (7.1)

s.t.
∑
j∈[m]

xi,j = 1,∀i ∈ [n] (7.2)
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x{i,i′},j − xi,j ≤ 0, (∀i, i′ ∈ [n]),∀j ∈ [m], (7.3)
x{i,i′},j ∈ {0, 1}, (∀i, i′ ∈ [n]),∀e ∈ [m]. (7.4)

Because we assume that the externalities are all non-negative, it is clear that the optimal
solution of the above LP corresponds to a social welfare optimizing strategy profile of
Γ. The following result stands in stark contrast with Theorem 146.

Theorem 148. Suppose we are given a congestion game Γ with positive externali-
ties, with 2 facilities. Then it is possible to find an optimal strategy profile for Γ in
polynomial time.

Proof. We prove this by showing that the coefficient matrix of (7.1) is totally unimod-
ular, in case m = 2. A matrix is said to be totally unimodular iff all of its square
submatrices have determinant 0, 1 or−1. Let A be a p by q matrix. Then the following
facts are well-known:

1. If A is totally unimodular, then for all b ∈ Zq , the vertices of the polyhedron
{x | Ax ≤ b} are integer vectors.

2. If every column of A has at most two non-zero entries, each non-zero entry is
−1 or 1, and these two values occur at most once per column, then A is totally
unimodular.

3. IfA is totally unimodular, then any matrix obtained fromA by one of the follow-
ing operations is also totally unimodular: 1.) taking the transpose, 2.) swapping
two columns, 3.) deleting a column, 4.) introducing a column that is a copy of
an existing column, 5.) introducing a column that is a zero vector or unit vector,
6.) multiplying a column by −1.

We show that the coefficient matrix for constraints (7.2) and (7.3) is totally uni-
modular. It then follows from point 3 in the above enumeration that the relaxation of
this integer LP also has a totally unimodular coefficient matrix; completing the proof.

Let A be the coefficient matrix obtained from (7.2) and (7.3). Let A′ be the matrix
obtained from A by multiplying for all i, i′ ∈ [n] the column corresponding to variable
x{i,i′},1 by −1, and subsequently taking the transpose. Clearly, A′ satisfies point 2
of the enumeration above, so A′ is totally unimodular. By point 3, and the operations
required to obtain A from A′, it follows that A is totally unimodular as well.

Unfortunately, it turns out that for congestion games with non-negative 1-externalities
with more than 2 facilities, the problem is strongly NP-hard. Consider the following
decision problem:
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Name: 3FAC-CG-NN-EXT
Input: A description of a congestion game with non-negative 1-externalities Γ =
(n, 3, v) with three facilities and a number c ∈ Q.
Question: Is there a strategy profile s ∈ Σ such that the social welfare U(s) ≥ c?

Theorem 149. 3FAC-CG-NN-EXT is strongly NP-complete.

Proof. We give a polynomial time reduction from the exact 3-satisfiability problem
(X3SAT) to an intermediate special case, X3SAT-PRIME, and finally we give a polyno-
mial time reduction X3SAT-PRIME to 3FAC-CG-NN-EXT. Let us first define X3SAT and
X3SAT-PRIME:

Name: X3SAT
Input: Sets X = {x1, . . . , xp}, and C = {C1, . . . , Cq}〉; X is called the set variables
C is called the set of clauses. A clause Cj ∈ C is a vector of three literals. A literal is
a variable or a negation of a variable (written ¬xi, for xi ∈ X).
Question: Is there an exact truth assignment? This means: does there exist a partition
of X in two sets, T and F , such that for each clause Cj ∈ C, precisely one literal of Cj
is set to true, i.e., exactly one literal in Cj is in the set T ∪ {¬xi | xi ∈ F}?

X3SAT-PRIME is defined in exactly the same way as X3SAT, except that now the
input satisfies three additional properties:

Property 1: each literal occurs in at least one clause.

Property 2: for all xi ∈ X , and for all k ∈ [3], the set {` | ∃Cj ∈ C : ` ∈ (Cj)k} does
not contain both xi and ¬xi. In words: If a literal occurs in the kth position of a
clause, then its negation does not occur in the kth position of any clause.

Property 3: for all xi ∈ X , the sets {k | ∃Cj ∈ C : xi ∈ (Cj)k} and {k | ∃Cj ∈ C :
¬xi ∈ (Cj)k)} both have cardinality 1. In words: if a literal occurs on the kth
position of a clause, then that literal does not appear on position j of any other
clause, for j ∈ [3]\{k}.

We are given a X3SAT instance I = (X = {x1, . . . , xp}, C = {C1, . . . , Cq}). A
polynomial time reduction to X3SAT-PRIME then works as follows:

Suppose that I violates Property 1: there is an i ∈ [p] such that xi or ¬xi does not
occur in any clause. Assume without loss of generality that ¬xi does not occur, and
that xi occurs at position 1 of some clause. We then introduce two variables d1, d2,
and the clauses (xi,¬xi, d1), (d2,¬d1, d1), (d2,¬d2, d1). It is not hard to see that the
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resulting instance is equivalent to I , but has 1 less variable that violates Property 1.
Also note that this process does not introduce any variables that violate properties 2
and 3. We can repeat this process until there are no literals left that violate Property 1.

Suppose now that I satisfies Property 1, but not Property 2: there exists a vari-
able xi that is in position k of some clause, and its negation ¬xi is on the same po-
sition of another clause. We assume without loss of generality that k = 1. Then
we replace all occurrences of ¬xi on the first position of a clause by negations of
a new variable: ¬x′i. We then introduce new variables d1, . . . , d5 and the clauses
(xi, d1, d2), (d3, d1, x

′
i), (d4,¬d4, d2), (d3, d5,¬d5). Note that by the last two clauses

that we added, d3 and d2 are false, in any exact truth assignment. The first clause added
then forces d1 to take the opposite value of xi, and the second clause therefore forces
x′i to take the same value as xi. So this new instance is equivalent to I , but with one
less (variable,position)-pair that violates Property 2. Note that this procedure does not
introduce any variables that violate Property 3. The procedure does however introduce
some variables that violate Property 1, but this problem can be solved by re-running
the above procedure for removing variables that violate Property 1.

Lastly, suppose that our instance I satisfies Properties 1 and 2, but not Property 3.
Then there is a variable xi such that either xi or ¬xi occurs at more than 1 position
among the clauses. Assume without loss of generality that literal xi occurs at positions
1 and 2. We introduce a new variable x′i, and replace all occurrences of xi on the second
position of a clause, with x′i. We also introduce the variables d1 and d2. and add the
clauses (xi,¬xi, d1), (d2,¬d2, d1). Note that in this new instance, under any exact
truth assignment, di will be false, due to the second newly added clause. Therefore,
the first newly added clause makes sure that xi will take on the same value as x′i.
This new instance is thus equivalent to I , and in this new instance there is one less
(literal,position,position)-pair that violates Property 3. This procedure does introduce
some variables that do not satisfy Properties 1 and 2. But one can run the first two
procedures to remedy this problem.

We conclude that it is possible to convert an X3SAT instance to an equivalent
X3SAT-PRIME instance in polynomial time, using the three procedures described above.

Next, we reduce an instance I = (X = {x1, . . . , xp}, C = {C1, . . . , Cq}) of
X3SAT-PRIME to an instance f(I) = (n, 3, v) of 3FAC-CG-NN-EXT, as follows. We
set n = q + p. Clause Cj corresponds to player j and variable i corresponds to player
q + i, in a sense that will be explained later. For i ∈ [p], let ki and k¬i be the numbers
such that xi occurs in position ki of the clauses, and ¬xi occurs in position k¬i of the
clauses, and moreover, defineM = q+p+1. We set values vi,i′,j to 0 for all i, i′ ∈ [n],
j ∈ [3], except for the following ones:

• For all i ∈ [p], the values vq+i,q+i,ki and vq+i,q+i,k¬i are set to M .
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• For all i ∈ [p], j ∈ [q] such that literal xi occurs in Cj , the value vq+i,j,ki is set
to 1.

• For all i ∈ [p], j ∈ [q] such that literal xi occurs in Cj , the value vq+i,j,k¬i is set
to 1.

• Let ` be a literal, and define #` as the number of clauses in C in which ` occurs.
For all k ∈ [3] and j1, j2 ∈ [q] such that the same literal ` occurs in both Cj1 and
Cj2 , the value vj1,j2,k is set to 1/(#`)2. In other words, the total amount of 1 is
divided equally among all values vj1,j2,k such that ` occurs in both Cj1 and Cj2 ,
for each literal `.

Finally, the value c is set to qM + q + p.
There is a correspondence g from exact truth assignments for I to strategy profiles

of f(I): Let A be an exact truth assignment for I . If a literal xi is true under A, this
corresponds in g(A) to player q + i choosing facility ki and player j choosing facility
ki as well, for all j ∈ [q] such that literal xi occurs in Cj . Likewise, if the literal ¬xi is
true under A, this corresponds in g(A) to player q + i choosing facility k¬i and player
j choosing facility k¬i as well, for all j ∈ [q] such that literal ¬xi occurs in Cj .

It follows by construction that if A is an exact truth assignment for I , then g(A) is
a strategy profile for f(I) that attains a social welfare of exactly qM + q+p. Note that
in defining the correspondence g, and concluding that g(A) attains a social welfare of
qM + q + p when A is an exact truth assignment, it is indeed essential that I satisfies
Properties 1 to 3 above.

It remains to be shown that there is a strategy for f(I) that attains a social welfare
of at least qM + p + q only if there is an exact truth assignment for I . First observe
that if a player q + i, i ∈ [p], chooses a facility other than ki or k¬i, then at most q − 1
players will contributeM to the social welfare, hence the social welfare will not exceed
qM + q + p, because of the large magnitude of M . So we may assume that all players
q + i, i ∈ [p] choose either ki or k¬i as their strategy. By construction, the maximum
additional contribution to the social welfare that player q + i can contribute, is equal
to the total number of players j ∈ [q] that choose the same facility as player q + i
such that xi or ¬xi occurs in Cj . From this we conclude that the total contribution to
the social welfare from the players [n]\[q] is at most qM + q. The maximum possible
contribution to the social welfare by the players j ∈ [q] is clearly at most q, and by
construction this is attained iff for all j ∈ [q], the chosen strategy kj of player j is also
chosen by all players j′ such that Cj′ and Cj both have the same literal on position
k. So the maximum possible social welfare is qM + q + p, and can only be attained
by a strategy profile s that satisfies all the constraints that we just elicited. However,
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these constraints directly imply that s lies in the domain of g, and there is in that case
an exact truth assignment A such that g(A) = s.

It is still possible to approximate the problem within a factor of 2 from the optimal
solution. We will show this in Section 7.7.

7.6 The Polytope of Feasible Fractional Solutions for 1-
Externalities

We denote by P (n,m) the polytope of feasible solutions of the relaxation of the integer
LP (7.1). Denote by d(n,m) the dimension of the points in P (n,m). P (n,m) is not
integral for more than two facilities, but it is still possible to provide an interesting
characterization of the vertices of P (n,m). The material in this section is used in
Sections 7.8 and 7.9.1, but is not used in the 2-approximation algorithm that we discuss
in Section 7.7. In the discussion that follows, the subscripts used for the variables in
the LP (7.1) will again be used here. We identify each such subscript with a different
index in [d(n,m)].

Let x be in P (n,m). For i, i′ ∈ [n], i 6= i′ and j ∈ [m] we call the value x{i,i′},j
loose if it is not equal to xi,j or xi′,j . Then it is clear that x does not have loose values
if it is a vertex of P (n,m).

For j ∈ [m] and w ∈ (0, 1], the segment S(j, w) of x is the set of indices
{(i, j) ∈ [d(n,m)] | xi,j = w} ∪ {({i, i′}, j) ∈ [d(n,m)] | x{i,i′},j = w}. Let
S = {S(j, w) | S(j, w) 6= ∅} denote the set of non-empty segments. Note that |S| is
finite (in fact: |S| ≤ nm).

The segment hypergraph SH(x) of x, is the hypergraph (S, H, `). In this hyper-
graph, each segment in S is a vertex, ` : S → (0, 1] is the vertex labeling where
`(S(x,w)) = w for all S(x,w) ∈ S , and H are the hyperedges {h1, . . . , hn}, where
hi = {S(j, w) ∈ S | xi,i,j = w, j ∈ [m]} for all i ∈ [n].

In words: in the segment hypergraph, the segments are the vertices, each player
corresponds to a hyperedge, and the vertices in this hyperedge are the segments that
the player is assigned to (fractionally or integrally).

Example 150. Consider an instance of a congestion game with non-negative externali-
ties with facility set [3] and player set [3]. Suppose that v(i, i′, j) = 1 when i, i′, j ∈ [3]
are all distinct, and 0 otherwise. Then, in the optimal solution of the LP relaxation of
(7.1), the variables {x{1,2},3, x{1,3},2, x{2,3},1, x1,2, x1,3, x2,1, x2,3, x3,1, x3,2} are set
to 1/2, and the remaining variables are set to 0. There is thus one segment per facility,
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Figure 7.1: Example of a segment hypergraph of the optimal fractional solution of a
congestion game instance with 3 players and 3 facilities.

and each player is assigned to 2 segments. The segment hypergraph is therefore the
graph depicted in Figure 150.

The incidence matrix of a hypergraph (V,H) is defined as the |V | × |H| matrix
where each row corresponds to a vertex of V and each column corresponds to a hyper-
edge of H . For v ∈ V and h ∈ H , the value on the row of v and the column of h is 1
if v ∈ h and 0 otherwise.

We can characterize the vertices of P (n,m) as follows:

Theorem 151. x ∈ P (n,m) is a vertex of P (n,m) if and only if it has no loose values,
and the incidence matrix of SH(x) has (full) rank |S|.

Proof. (⇒) Suppose that x is a vertex of P (n,m). Then, as argued above, x obviously
has no loose values. Let SH(x) = (S, H, `). It is clear that the following system of
equations ∑

S∈h

yS = 1 ∀h ∈ H (7.5)

is satisfied when we set yS := `(S) for all S ∈ S. It suffices to prove that there is no
other solution to (7.5), because from the fact that there is a unique solution, it follows
that the coefficient matrix of the system (7.5) is of (full) rank |S|. This coefficient
matrix is the transpose of the incidence matrix of SH(x), so the incidence matrix has
rank |S|.

To see that the solution y for (7.5) corresponding to `(S) is unique, suppose for
contradiction that there is another solution y′. Now we have that for all h ∈ H ,∑
S∈h yS =

∑
S∈h y

′
S = 1. Next, define the vector z = (zS)S∈S where zS = yS−y′S
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for all S ∈ S. Observe that for all ε > 0, εz is not a zero vector and εz sat-
isfies

∑
S∈h εzS = 0 =

∑
S∈h−εzS for all h ∈ H . Choose ε to be any pos-

itive number smaller than min{yS − yT , yS | S, T ∈ S}. Since all entries in y
are strictly positive y − εz and y + εz are both solutions to (7.5). Moreover, if we
now define the corresponding vertex labelings `′ : S → R and `′′ : S → R as
`′(S) = `(S)+εzS and `′′(S) = `(S)−εzS , then it is straightforward to verify that the
vertex-labeled hypergraphs (S, H, `′) and (S, H, `′′) are the segment hypergraphs of
two points x′, x′′ ∈ P (n,m) such that x′/2+x′′/2 = x. So x is a convex combination
of two points in P (n,m), contradicting the fact that x is a vertex of P (n,m).

(⇐) Let x be a point in P (n,m) that is not a vertex and does not have loose val-
ues. We show that there is another point in P (n,m) with a structurally equal segment
hypergraph (i.e., has a segment hypergraph that differs only from SH(x) in its ver-
tex labeling). This shows that there is more than one solution to (7.5), which implies
that the incidence matrix of SH(x) is not of full rank. Because x is not a vertex of
P (n,m), there exists a non-zero vector z ∈ Rd(n,m) such that x+ z, x− z ∈ P (n,m)
and x + z and x − z only differ from x at positions where x is fractional (i.e., non-
(0, 1)), and such that x + z, x − z is fractional on all positions where x is fractional.
Define ε > 0 as ε = (1/8) min{w | ∃j ∈ [m] | S(e, w) ∈ S} ∪ {|w1 − w2| | ∃j ∈
[m] : S(j, w2), S(j, w1) ∈ S}. In words: ε is the minimum of: 1.) one quarter of
the minimum difference between the value of any pair of segments that is on the same
facility and 2.) the minimum value of a segment.

By convexity of P (n,m), it must be that x + εz, x− εz ∈ P (n,m). Observe that
if two indices are in the same segment of x+ εz, then they are in the same segment of
x− εz, since x− εz = (x+ εz)− 2εz. Also, if two indices are in different segments of
x+ εz, then they are in different segments of x− εz. This follows from the observation
that x + z and x − z differ at each position by a sufficiently small amount ε/4 (if this
difference is large, then problems arise: it could be that two distinct segments of x+ z
become one merged segment in x− z, and vice versa).

We conclude from this that the segment hypergraphs of x + εz and x − εz are
structurally equal (i.e., the hypergraphs differ only in their vertex labeling). Consider
now the point y = x + εz/2 and z′ = z/2. Then x = y − εz′, and y + εz′, y − εz′ ∈
P (n,m). Furthermore, y + εz′ and y − εz′ satisfy the above properties: y + εz′

and y − εz′ only differ from y at positions where y is fractional (i.e., non-(0, 1)), and
y + εz′, y − εz′ is fractional on all positions where y is fractional. By repeating the
argument above, we thus conclude that x = y − εz′ has the same segment hypergraph
as y + εz′.

It remains an open question to characterize combinatorially the class of hyper-
graphs of which the rank of its incidence matrix equals its number of vertices. For
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the special case of graphs, we do have such a characterization:

Theorem 152. The rank of the incidence matrix of a graph G = (V,E) equals |V | if
and only if all of its maximal connected components are non-bipartite.

Proof. (⇒) Suppose that a maximal connected component C = (V ′, E′) of the graph
is bipartite. Consider the system of linear equations∑

v∈e
xv = 1 ∀e ∈ E. (7.6)

This system has an obvious solution x: assign 1/2 to xv for all v ∈ V . Because C is
bipartite, there is another solution x′ to this system: assign 1/2 to xv for all v 6∈ V ′
and assign 1 to xv for all x ∈ V ′ on one side of the bipartition. Because there solution
is not unique, the coefficient matrix of the above system (7.6) is not full rank, hence at
most |V | − 1. This coefficient matrix is the transpose of the incidence matrix of G, so
the rank of the incidence matrix of G is at most |V | − 1.

(⇐) Given that the rank of the incidence matrix of G equals |V |, the system of
linear equations (7.6) has a unique solution. This must be the solution x where xv =
1/2 for all v ∈ V . Let C = (V ′, E′) be a maximal connected component of the graph.
If C is bipartite, we can partition its vertices into V ′1 and V ′2 accordingly. By taking
solution x and changing xv to 1 for v ∈ V ′1 , and changing xv to 0 for v ∈ V ′2 , we now
obtain another solution to (7.6). A contradiction.

7.7 A 2-Approximation Algorithm for 1-Externalities
We now state for congestion games with 1-externalities an algorithm that computes a
strategy profile of which the social welfare lies within a factor 2 of the maximum social
welfare.

Some notation is needed in order to present the algorithm clearly. First, we extend
U to the domain of fractional solutions in the natural way (where a fractional solution
is a feasible solution for LP (7.1). So we will use U , and the term social welfare, to
refer to the value of the objective function of LP (7.1), for the feasible solutions of LP
(7.1).

For a congestion game with 1-externalities with non-negative 1-externalities Γ =
(n,m, v), we define for j ∈ [m] and a ∈ Q the (j, a)-boosted game as the game
obtained from Γ by introducing a copy j′ of facility j that all players value a times
as much as the original facility j. Formally, the (j, a)-boosted game of Γ is the game
Γ′ = (n,m + 1, v) where vi,i′,m+1 = avi,i′,j for all i, i′ ∈ [n]. In the (j, a)-boosted
game, we refer to the introduced facility m+ 1 as the boosted facility.
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The algorithm below, parametrized by a ∈ Q, is a rounding algorithm that takes as
its starting point the fractional optimum solution of the relaxation of LP (7.1) (i.e., the
LP where the constraints (7.4) are replaced by 0 ≤ x{i,i′},j ≤ 1(∀i, i′ ∈ [n],∀e ∈ [m]),
and iteratively picks a facility j ∈ [m] and assigns a set of players to the boosted facility
in the (j, a)-boosted game.

In order to state the algorithm clearly, we fix for each facility j ∈ [m] a strict
total order �j on [m]. The order �j orders the players in any way that respects their
fractional assignment on j, i.e., �e is any order that satisfies i ≺j i′ whenever xi,j <
xi′,j , for all i, i′ ∈ [n]. Using these strict total orders, for j ∈ [m], k ∈ [n] we define
P (j, k) as the player set P ⊆ [n] for which it holds that |P | = k and i ∈ P if i′ ∈ P
and i �j i′. Informally, P (j, k) consists of the k players with the highest fractional
assignments on facility j.

Finally, for a fractional solution x for Γ, we define the (j, a, k)-boosted assignment
obtained from x, for j ∈ [m], a ∈ Q, k ∈ [n], as the fractional solution to the (j, a)-
boosted game where players P (j, k) are assigned integrally to the boosted facility, and
the remaining players are assigned according to x.

The description of our algorithm, BOOST(a), is given in Algorithm 1.
We prove next that if we set a = 2, then BOOST(a) is a 2-approximation algorithm

for our optimization problem.

Theorem 153. Algorithm BOOST(2) is a deterministic polynomial time 2-approximation
algorithm for computing a social welfare maximizing strategy profile for a congestion
game with non-negative 1-externalities.

Proof. If Step 2.1 of our algorithm is valid (i.e., for a feasible solution x′ to LP (7.1),
for Γ′, it is always possible to find in polynomial time a facility j ∈ [m] and a number
k ∈ [n] such that the (j, 2, k)-boosted assignment (obtained from x′) for the (j, 2)-
boosted game (obtained from Γ′)attains a social welfare that is at least the social wel-
fare of x′ for Γ′.), then the algorithm is valid, and polynomial runtime is straightforward
to check: For step 1, solving an LP to optimality can be done in polynomial time using
the ellipsoid method or an interior point method. For Step 2, note that the facility j
that gets picked each time is from the set [m] of original facilities, and not from the
facilities that are introduced to the game during the execution of the algorithm. Each
of these m facilities has at most n players, so at most nm possibilities need to be con-
sidered in Step 2.1. In each iteration of the loop of the algorithm, at least 1 additional
player gets be assigned to a boosted facility, hence removed from [m], so there are at
most n iterations. For Step 3, polynomial runtime is obvious.

Given that Step 2.1 is valid, it is also easy to prove that Algorithm 1 outputs a
solution for which the social welfare is within a factor 1/2 from the optimal social
welfare: Let us inspect the solution x′ at the beginning of Step 3. Every player i ∈ [n]
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Algorithm 1 BOOST(a): An LP rounding algorithm for approximating the so-
cial welfare optimizing strategy profile for a congestion game with non-negative 1-
externalities.

Input: A congestion game with non-negative 1-externalities Γ = (n,m, v).
Output: A strategy profile s ∈ Σ for Γ.
Begin

1. Solve the relaxation of LP (7.1) for congestion game Γ, and let x be the optimal
fractional solution. Let Γ′ = Γ and let x′ = x.

2. Repeat the following until x′ is integral:

2.1. Find a facility j ∈ [m] and a number k ∈ [n] such that the social welfare
of the (j, a, k)-boosted assignment is at least the social welfare of x′.

2.2. Let Γ′′ be the (j, a)-boosted game obtained from Γ′ and let x′′ be the
(j, a, k)-boosted assignment obtained from x′. Subsequently, set x′ :=
x′′ and set Γ′ = Γ′′.

3. For i ∈ [n], let ji be the facility of [m] such that in x′, player i is assigned to a
boosted copy of ji. Let x′′ be the integral solution of LP (7.1) for Γ′ obtained
by assigning i integrally to the original non-boosted facility ji, for all i ∈ [n].
Output the strategy profile for Γ that corresponds to x′′.

End



184 CHAPTER 7. SOCIAL OPTIMA IN CGS WITH EXTERNALITIES

is assigned to a copy j′ of a facility j ∈ [m] for which it holds that vi,i′,j′ = 2vi,i′,j .
Therefore, assigning all players on such facilities j′ to the original facility j, decreases
the social welfare by a factor of at most 2. If we denote by SOL the social welfare
of the strategy profile found by Algorithm 1, and if we denote by OPT the optimum
social welfare, then the fact that Algorithm 1 is a 2-approximation algorithm follows
from the following sequence of inequalities:2

SOL = UΓ(x′′) ≥ 1

2
UΓ′(x

′) ≥ 1

2
UΓ(x) ≥ 1

2
OPT.

Therefore, all that needs to be shown that Step 2.1 of the algorithm can always be
executed. This is implied by the following lemma.

Lemma 154. Suppose that x′ is a feasible solution to LP (7.1) for a congestion game
with non-negative 1-externalities Γ′ = (n,m′, v). Assume that there is a number m ≤
m′ such that for each facility j′ ∈ [m′] \ [m] it holds that x{i,i′},j′ ∈ {0, 1} for all
i, i′ ∈ [n]. Then there is a facility j ∈ [m] and a number k ∈ [n] such that the social
welfare of the (j, 2, k)-boosted assignment (obtained from x′) for the (j, 2)-boosted
game (obtained from Γ′) is at least the social welfare of x′ for Γ′. Moreover, j and k
can be found in polynomial time.

For the proof of Lemma 154, we need the following technical result:

Lemma 155. For n ∈ N≥1, let a1, a2, . . . , an ∈ R≥0, be a non-increasing sequence
of non-negative numbers with a1 non-negative, and let b1, . . . , bn ∈ R. Suppose that∑
i∈[n] aibi ≥ 0. Then, there is a k ∈ [n] such that

∑
i∈[k] bi ≥ 0.

Proof. Let n′ ∈ [n] be the highest index such that an′ > 0. There are two cases: either
there is a k ∈ [n′ − 1] for which the claim holds, or there is not such a k. For the
latter case, we show that the claim must hold for k = n′. It follows from the following
derivation:

0 ≤
∑
i∈[n′]

aibi

= (a1 − a2)
∑
i∈[1]

bi

+(a2 − a3)
∑
i∈[2]

bi

+ · · ·
2The function U is subscripted with the game of which it is the social welfare function.



7.7. A 2-APPROXIMATION ALGORITHM FOR 1-EXTERNALITIES 185

+(an′−1 − an′)
n−1∑

i∈[n−1]

bi

+an′
∑
i∈[n′]

bi

≤ an′
∑
i∈[n′]

bi.

Proof of Lemma 154. It suffices to only show existence of the appropriate j ∈ [m] and
k ∈ [n], as finding them in polynomial time can then simply be done by complete
enumeration of all (j, k)-pairs (because there are only mn such pairs).

For j ∈ [m] and k ∈ [n], let ∆(j, k) denote the amount by which social welfare
increases when comparing the (j, 2, k)-boosted assignment (obtained from x′) for the
(j, 2)-boosted game (obtained from Γ′) to the (j, 2, k − 1)-boosted assignment (ob-
tained from x′) for the (j, k)-boosted game (obtained from Γ′). Let p(j, k) be the
sole player in P (j, k)\P (j, k − 1). We can express ∆(j, k) as ∆+(j, k) −∆−(j, k),
where ∆+(j, k) is the increase in social welfare due to the additional utility on the
boosted facility, and ∆−(j, k) is the loss in utility due to setting the assignment for
player p(j, k) to 0 on all facilities in [m]. For notational convenience, we define for
all i, i′ ∈ [n], j ∈ [m] the value w{i,i′},j = vi,i′,j + vi′,i,j and the value wi,j = vi,i,j .
Then we can write ∆+(j, k) and ∆−(j, k) as follows:

∆+(j, k) = 2wp(j,k),j +
∑

i′∈[n]:i′�jp(j,k)

2w{p(j,k),i′},j ,

∆−(j, k) =
∑
j′∈[m]

xi,j′wp(j,k),j′ +
∑

i′∈[n]:i′≺jp(j,k)

x{p(j,k),i′},j′

 .

Clearly, if we move for some j ∈ [m] and k ∈ [n] the players P (j, k) to the boosted
facility j′ in the (j, 2)-boosted game (obtained from Γ′), then the change in utility is∑
i∈[k] ∆(j, i). We therefore need to show that there is a facility j ∈ [m] and a number

k ∈ [n] such that
∑
i∈[k] ∆(j, i) ≥ 0.

To show this, let σ be the distribution on {∆(j, k) | j ∈ [m], k ∈ [n]} given by

σ(∆(j, k)) =
xp(j,k),j∑

j∈[m],i∈[n] xp(j,i),j
=

xp(j,k),j∑
j∈[m],i∈[n] xi,j

,∀j ∈ [m], k ∈ [n].
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We derive the following bound on the expectation of a random variable with distri-
bution σ:

EX∼σ[X] =
∑

j∈[m],k∈[n]

PrX∼σ[X = ∆(j, k)]∆(j, k)

=
1∑

j∈[m],i∈[n] xi,j

∑
j∈[m],k∈[n]

xp(j,k),j

(
2wp(j,k),j +

∑
i′∈[n]:i′�jp(j,k)

2w{p(j,k),i′},j

−
∑
j′∈[m]

(
xp(j,k),j′wp(j,k),j′ −

∑
i′∈[n]:i′≺jp(j,k)

x{p(j,k),i′},j′w{p(j,k),i′},j′

))

=
1∑

j∈[m],i∈[n] xi,j

 ∑
j∈[m],k∈[n]

2xp(j,k),jwp(j,k),j

+
∑

j∈[m],k∈[n]

∑
i′∈[n]:i′�jp(j,k)

2xp(j,k),jw{p(j,k),i′},j

−
∑

j′∈[m],k∈[n]

∑
j∈[m]

xp(j,k),j

xp(j,k),fwp(j,k),j′

−
∑

j∈[m],k∈[n]

xp(j,k),j

∑
j′∈[m]

 ∑
i′∈[n]:i′≺jp(j,k)

x{p(j,k),i′},j′w{p(j,k),i′},j′


=

1∑
j∈[m],i∈[n] xi,j

 ∑
j∈[m],i∈[n]

2xi,jwi,j +
∑

{i,i′}:i,i′∈[n],i6=i′

∑
j∈[m]

2x{i,i′},jw{i,i′},j

−
∑

j∈[m],i∈[n]

xi,jwi,j −
∑

j∈[m],i∈[n]

xi,j
∑
j′∈[m]

∑
i′∈[n]:i′≺ji

x{i,i′},j′w{i,i′},j′


=

1∑
j∈[m],i∈[n] xi,j

 ∑
j∈[m],i∈[n]

xi,jwi,j +
∑

{i,i′}:i,i′∈[n],i6=i′

∑
j∈[m]

2x{i,i′},jw{i,i′},j

−
∑

{i,i′}:i,i′∈[n],i6=i′

 ∑
j′∈[m]

x{i,i′},j′w{i,i′},j′

∑
j∈[m]

max{xi,j , xi′,j}


(7.7)
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≥ 1∑
j∈[m],i∈[n] xi,j

∑
j∈[m],i∈[n]

xi,jwi,j

≥ 0.

In the above derivation, we make use of the following facts that hold for all j ∈
[m], i, i′ ∈ [n]:

1.
∑
j′∈[m] xi,j′ = 1 (for the fourth equality),

2. xi,j = max{xi,j , xi′,j} if i �j i′ (for the fifth equality),

3.
∑
j′∈[m] max{xi,j′ , xi′,j′} ≤ 2 (for the first inequality).

We can express EX∼σ[X] as the sum of the m termsTj =
∑
k∈[n]

∆(j, k)PrX∼σ[X = ∆(j, k)]

∣∣∣∣∣∣ j ∈ [m]

 .

Because the expectation is non-negative, it holds that Tj is non-negative for at least one
j ∈ [m]. We take this facility j and apply Lemma 155 to Tj (take ∆(j, i) for bi and
PrX∼σ[X = ∆(j, i)] for ai). We conclude that there is a number k ∈ [n] such that∑
i∈[k] ∆(j, k) ≥ 0.

7.8 A Matching Integrality Gap
In this section, we show that the integrality gap of the relaxation of LP (7.1) is very
close to 2. This means that with respect to the integrality gap, the algorithm BOOST(2)
is almost the best possible with respect to the approximation ratio.

In order to show that the integrality gap is close to 2, we describe a sequence of
sequences of increasingly larger examples of congestion games. It can subsequently
be verified computationally that the integrality gap is close to 2 for large instances of
these examples. We believe that the integrality gap of this sequence of examples tends
to 2 in the limit, but so far we lack the analytical tools to prove this.

The construction of our examples is inspired by the insights from Section 7.6. We
fix two parametersm and k, and we consider the k-uniform hypergraph on [m], denoted
G(m, k). We define the instance I(m, k) in such a way that the optimal fractional
solution of I(m, k) hasG(m, k) as its segment hypergraph. This is achieved as follows:
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we let I(m, k) consist of m facilities and
(
m
k

)
players. We identify each player with

a distinct edge of G(m, k). The externality vi,i′,j is set to 1 if the hyperedges i, i′ ∈[(
m
k

)]
both contain facility j ∈ [m], and 0 otherwise. The value vi,i,j is set to 1 if

hyperedge i ∈
[(
m
k

)]
contains facility j ∈ [m].

We define OPTfrac(m, k) as the feasible solution of the relaxation of LP (7.1) cor-
responding to instance I(m, k), where each player is assigned with value 1/k to each
of its facilities (conform the hyperedges in G(m, k)). For each facility j ∈ [m] there
are

k

m

(
m

k

)
=

(
m− 1

k − 1

)
players that have j in their hyperedge, so the social welfare of OPTfrac(m, k) is

m

k

(
m− 1

k − 1

)2

.

We prove below that the social welfare of the optimal integral solutionOPTint(m, k)

for this instance is
∑m−1
`=k−1

(
`

k−1

)2
. Subsequently, evaluating (by computer) the ex-

pression OPTfrac(m, k)/OPTint(m, k) for particular choices of m and k indicates that
the integrality gap approaches 2k−1

k as m gets larger. The largest integrality gap that
we computed explicitly is 1.972013, for m = 5000 and k = 71.

Proposition 156.

OPTint(m, k) =

m−1∑
`=k−1

(
`

k − 1

)2

.

Proof. We claim that the social welfare of
∑m−1
`=k−1

(
`

k−1

)2
is attained by the strategy

profile s(m, k) that results from the following iterative procedure: In the first iteration,
assign to facility m all

(
m−1
k−1

)
players that have facility m in their hyperedge. Because

of the valuations these players have for facility 1, they add(
m− 1

k − 1

)2

(7.8)

to the social welfare. After assigning the first
(
m−1
k−1

)
players to facility m, there are(

m

k

)
−
(
m− 1

k − 1

)
=

(
m− 1

k

)
.
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players left. Each of these remaining players is identified as a distinct hyperedge of
G(m − 1, k). In the second iteration, we assign to facility m − 1 all

(
m−2
k−1

)
players

having m− 1 in their hyperedge. This contributes(
m− 2

k − 1

)2

to the social welfare, and
(
m−2
k

)
players remain, each of which are identified with a

hyperedge inG(m−2, k). In general, in the `th iteration we assign to facilitym−`+1
all
(
m−`
k−1

)
players having m− `+ 1 in their hyperedge. This contributes(

m− `
k − 1

)2

to the social welfare. The total social welfare of s(m, k) is therefore

m−1∑
`=k−1

(
`

k − 1

)
.

We prove, using induction onm, that the utility of s(m, k) is optimal for any choice
of k. Our base case is m = k−1 for which optimality trivially holds. As our induction
hypothesis, assume that optimality holds for m = `, ` ∈ N. We prove that optimality
must also hold for m = `+ 1. Suppose for contradiction that optimality does not hold.
Then, in the optimal solution, no facility j ∈ [m] has all of its

(
m−1
k−1

)
players (i.e., the

players that have j in their hyperedge) assigned to it. Pick an arbitrary facility j, and
note that I(m, k) restricted to all players that do not have facility j in their hyperedge,
is equivalent to the instance I(m − 1, k). By our induction hypothesis, s(m, k) is
optimal for this instance. Therefore, if there is a facility j ∈ [m] in the optimal solution
such that all players that have j in their hyperedge are assigned to j, then the optimal
social welfare is the sum of (

m− 1

k − 1

)2

and the social welfare of s(m, k). In other words, the social welfare would then be

m−1∑
`=k−1

(
`

k − 1

)
, (7.9)

as claimed.
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Suppose therefore that there is no facility j ∈ [m] in the optimal solution such that
all players that have j in their hyperedge are assigned to j. It is clear that no player is
assigned to a facility that is not in its hyperedge. Let j′ ∈ [m] be the facility with most
players assigned to it. There must be a player i ∈ [n] that has j′ in its hyperedge and is
assigned to a facility j′′ ∈ [m] distinct from j′. By reassigning i to j′, the social welfare
can not decrease: j′ is the facility with most players assigned to it, so the increase in
social welfare due to i getting assigned to j′ is at least as much as the decrease in social
welfare due to i leaving j′′. By the same argument, one can assign all players that have
j′ in their hyperedge to j′, without decreasing the social welfare.

7.9 Variations on the Problem
We study in this section the social welfare optimization problem for two generalizations
and one special case of the class of congestion games with non-negative 1-externalities.
Section 7.9.1 concerns the generalization to asymmetric strategy sets, i.e., where the
strategy sets of the players need not all be the same. Section 7.9.2 studies congestion
games with r-externalities, for r > 1. In both cases, we see that it is possible to use
the algorithm of Section 7.7 in order to obtain approximation algorithms for variations
of our main congestion game problem. The special case we study concerns a class of
externalities called affine externalities and is studied in Section 7.9.3.

7.9.1 Asymmetric Strategy Sets
The strategy sets of the players can be restricted without loss of generality. Up to
this point, the set of strategies of each player have been assumed to be the entire
set of facilities in the game. Instead, we can set for each player its to any subset of
facilities. Let us call such a game that falls within this generalization, a asymmet-
ric congestion game with non-negative 1-externalities. Such a game is represented
by the quadruple (n,m, v,Σ), where v is the vector containing the values vi,i′,j for
i, i′ ∈ [n], j ∈ [m] and Σ = ×i∈[n]Σi are the strategy profiles of Γ. This general-
ization can be 2-approximated using an only slightly modified version of BOOST(2):
the only change that needs to be made is that in Step 1 of the algorithm, the algorithm
solves a a relaxation of a modified version of LP (7.1), which we refer to as the asym-
metric version of LP (7.1): This modified LP has the same objective function as (7.1),
and the constraint set consists of all constraints in (7.1), and the additional constraints
that xi,j = 0 for all i ∈ [n], j 6∈ Σi. It can be seen that the rounding procedure that
follows after Step 1 of the algorithm then puts every player i ∈ [n] on a facility j ∈ [m]
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for which xi,j 6= 0, so it produces a feasible integral solution, and the remainder of the
proof of Theorem 153 is still valid.

Corollary 157. There exists a deterministic polynomial time 2-approximation algo-
rithm for computing a social welfare maximizing strategy profile for a congestion game
with non-negative 1-externalities, even when the strategy sets of the players are asym-
metric.

For the special case that each player’s strategy set is of size 2, we can improve the
approximation factor.

Proposition 158. There is a deterministic polynomial time (3/2)-approximation al-
gorithm for computing a social welfare maximizing strategy profile for a congestion
game with non-negative 1-externalities, if the strategy sets are asymmetric and all of
cardinality 2.

Proof. Consider the algorithm BOOST(3/2) with the modification described above
(i.e., in Step 1 of BOOST(3/2), the algorithm solves the relaxation of the asymmet-
ric version of LP (7.1) for input asymmetric congestion game with 1-externalities
Γ = (n,m, v,Σ)). Analogous to the proof of Theorem 153, we conclude that this
modified algorithm is a valid polynomial time (3/2)-approximation algorithm if it is
true that Step 2.1 can always be executed. So it suffices to show that the following
variation of Lemma 154 holds:

Lemma 159. Suppose that x′ is a feasible solution to the asymmetric version of LP
(7.1) for an asymmetric congestion game with non-negative 1-externalities Γ′ = (n,
m′, v,Σ). Assume that there is a number m ≤ m′ such that for each facility j′ ∈
[m′] \ [m] it holds that x{i,i′},j′ ∈ {0, 1} for all i, i′ ∈ [n], and [m] ∩ Σi ≤ 2 for
all i, i′ ∈ [n]. Then there is a facility j ∈ [m] and a number k ∈ [n] such that the
social welfare of the (j, 3/2, k)-boosted assignment (obtained from x′) for the (j, 3/2)-
boosted game (obtained from Γ′) is at least the social welfare of x′ for Γ′. Moreover, j
and k can be found in polynomial time.

The proof of Lemma 159 is completely analogous to the proof of Lemma 154,
substituting the factor of 2 with the factor of 3/2: We define ∆(j, k) as the amount
by which social welfare increases when comparing the (j, 3/2, k)-boosted assignment
obtained from x′ to the (j, 3/2, k − 1)-boosted assignment obtained from x′, and we
show that EX∼σ[X] is non-negative, where σ is defined as in the proof of Lemma
154. Non-negativity of EX∼σ[X] follows by following the derivation as in the proof
of Lemma 154 up to the point (7.7) (appropriately replacing the factor 2 by 3/2 in
doing so), and then proceeding as follows:



192 CHAPTER 7. SOCIAL OPTIMA IN CGS WITH EXTERNALITIES

By the restriction on the strategy sets of the players, it follows that the segment
hypergraph SH(x′) of x′ consists of components that are either isolated vertices (with
a hyperedge of cardinality 1), and graphs. The isolated vertices correspond to segments
to which players are assigned integrally. From Theorems 151 and 152 it follows that all
components of SH(x′) that are graphs are non-bipartite. Because non-bipartite graphs
have odd cycles, the only way the vertices of this component in the segment hypergraph
can be labeled is by assigning all vertices value 1/2. Because all vertices in SH(x′)
are either 1/2 or 1, it must be that x{i,i′},j ∈ {0, 1/2, 1} for all i, i′ ∈ [n], j ∈ [m].
This in turn implies that∑

j∈[m]

max{xi,j , xi′,j} ≤
3

2
∀i, i′ ∈ [n].

Using the above inequality, we can thus bound EX∼σ[X] as follows, continuing from
(7.7):

EX∼σ[X] =
1∑

j∈[m],i∈[n] xi,j

(
1

2

∑
j∈[m],i∈[n]

xi,jvi,j

+
∑

{i,i′},i,i′∈[n],i6=i′

∑
j∈[m]

3

2
x{i,i′},jw{i,i′},j

−
∑

{i,i′},i6=i′

 ∑
j′∈[m]

x{i,i′},j′w{i,i′},j′

( ∑
j∈[m]

max{xi,j , xi′,j}

))

≥ 1∑
j∈[m],i∈[n] xi,j

1

2

∑
j∈[m],i∈[n]

xi,jvi,j

≥ 0.

The proof is completed when we now apply Lemma 155, in the same way as in the
proof of Lemma 154.

Example 150 in Section 7.6 shows that the integrality gap of the modified LP for
strategy sets of size 2, is 3

2 . This matches the approximation ratio of Proposition 158.

7.9.2 Externalities on Bigger Sets of Players
We now consider the problem of finding a social welfare maximizing strategy profile
for a congestion games with non-negative r-externalities, for r ≥ 2. We will show that
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a simple adaptation of the algorithm BOOST(r + 1) returns an (r + 1)-approximate
solution. The only change that needs to be made is that the relaxation of the following
generalization of LP (7.1), which we refer to as the generalized variant of LP (7.1),
is solved in Step 1 of BOOST(r + 1): Suppose we are given a congestion game with
r-externalities Γ = (n,m, v). Every feasible solution x of the generalized variant of
LP (7.1) again corresponds to a strategy profile s(x) of Γ. For each player i ∈ [n] and
facility j ∈ [m], the generalized variant of LP (7.1) the variable xi,j again indicates
whether si(x) = j for i ∈ [n], j ∈ [m]. Moreover, for every facility j ∈ [m] and
set P ⊂ [n], |P | ≤ r + 1, there is a variable xP,e that indicates whether all players in
P are assigned to j. For notational convenience, let wP,j =

∑
i∈P vi,P\{i},j for all

P ⊆ [n], |P | ≤ r + 1, j ∈ [m]. The generalized variant of LP (7.1) reads as follows:

max
∑
j∈[m]

∑
P :P⊆[n],|P |≤r+1

wP,jxP,j (7.10)

s.t.
∑
j∈[m]

xi,j = 1,∀i ∈ [n], (7.11)

xP,j − xi,j ≤ 0, (∀P ⊆ [n] : |P | ≤ r + 1),∀i ∈ P,∀j ∈ [m], (7.12)
xP,j ∈ {0, 1}, (∀P ⊆ [n] : |P | ≤ r + 1),∀j ∈ [m] (7.13)

We prove next that the adapted version of BOOST(r+ 1) is a valid polynomial time
(r + 1)-approximation algorithm.

Proposition 160. There is a deterministic polynomial time (r + 1)-approximation al-
gorithm for computing a social welfare maximizing strategy profile for a congestion
game with non-negative r-externalities.

Proof. Just like the proof of Proposition 158, this proof is very similar to the proof of
Theorem 153. When reasoning analogous to the proof of Theorem 153, we conclude
that the adaptation of BOOST(r + 1) runs in polynomial time and correctly outputs a
(r + 1)-approximate solution if it holds that Step 2.1 of the algorithm can always be
executed. To see that Step 2.1 can always be done, we follow the proof of Lemma 154,
while substituting the factor of 2 with the factor of r + 1: We define ∆(j, k) as the
amount by which social welfare increases when comparing the (j, r + 1, k)-boosted
assignment obtained from x′ to the (j, r+ 1, k− 1)-boosted assignment obtained from
x′, and we show that EX∼σ[X] is non-negative, where σ is defined as in the proof of
Lemma 154. Proving that EX∼σ[X] is non-negative is done following the derivation
in the proof of Lemma 154 up to the point 7.7. We then proceed as follows:
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EX∼σ[X] =
1∑

j∈[m],i∈[n] xi,j

( ∑
j∈[m]

∑
P :P⊆[n],|P |≤r+1

(r + 1)xP,jwP,j

−
∑

P :P⊆[n],|P |≤r+1

( ∑
j′∈[m]

xP,j′wP,j′

)( ∑
j∈[m]

max{xi,j | i ∈ P}

))
.

Now by the observation that∑
j∈[m]

max{xi,j | i ∈ P} ≤ r + 1 ∀P ⊂ [n] : |P | ≤ r + 1,

we conclude EX∼σ[X] ≥ 0. We can thus apply Lemma 155 to EX∼σ[X], which
completes the proof.

7.9.3 A Special Case: Affine Externalities
In this section, we study a very special case of our problem: congestion games with
non-negative affine externalities. These are the congestion games with non-negative 1-
externalities Σ(n,m, v) for which it holds that vi,i′,j = vi,i′′,j for all i, i′, i′′ ∈ [n], i 6=
i′, i 6= i′′, and all j ∈ [m]. I.e., there are numbers ai,j , bi,j ∈ Q≥0 for i ∈ [n], j ∈ [m],
such that ui(s) = ai,si |{i′ | si′ = si}| + bi,si for all s ∈ Σ. We therefore represent
Σ by the quadruple (n,m, a, b), were a is the vector containing the values ai,j , i ∈
[n], j ∈ [m], and b is the vector containing the values bi,j , i ∈ [n], j ∈ [m].

The motivation for studying this special case is that Blumrosen and Dobzinski
[2006] show that if bi,j = 0 for all i ∈ [n], j ∈ [m], then the optimal solution can
be found in polynomial time. Allowing bi,j to be non-zero is thus one of the simplest
generalizations that comes to mind.

The decision version of the social welfare optimization problem, for this class of
games, is defined as follows:

Name: CG-AFF-NN-EXT
Input: A description of a congestion game with non-negative affine externalities Γ =
(n,m, a, b) and a number c ∈ Q.
Question: Is there a strategy profile s ∈ Σ such that the social welfare U(s) ≥ c?

We show that this decision problem is NP-complete. This contrasts with the poly-
nomial time result of Blumrosen and Dobzinski [2006].
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Theorem 161. CG-AFF-NN-EXT is strongly NP-complete.

Proof. Clearly, this problem is in NP. To show strong NP-hardness we describe a
polynomial time reduction from the following problem, which is known to be strongly
NP-complete [Garey and Johnson, 1979]:

Name: TRIANGLE-PARTITION
Input: A description of a graph G = (V,E) where n = |V | is a multiple of 3, and
each v ∈ V occurs in at least one triangle.
Question: Is there a triangle partition forG? I.e., a partition {V1, . . . , Vn/3} of V such
that for all k ∈ [n/3], it holds that |Vk| = 3 and the subgraph of G induced by Vk is a
triangle.

Given an instance G = (V,E) of TRIANGLE-PARTITION, assume without loss of gen-
erality that V = [n]. We construct an instance f(G) = (Γ, c) of AFFINE-CG-NN-EXT.
The reduction works as follows: The player set of Γ is the set of vertices of G, i.e., [n].
For each triangle t in G, we introduce a separate facility jt. This runs in polynomial
time since there are Θ(n3) triples of vertices in total in G, and for each triple we can
easily check whether the triple forms a triangle in G. The coefficients of the utility
functions are defined as follows: ai,jt = 0 and bi,jt = 0 when i ∈ [n] does not occur in
triangle t. Otherwise, ai,jt = ε and bi,jt = 1, where ε ∈ Q>0 is any sufficiently small
rational number. 3 Lastly, we set c = n+ 3nε.

We claim that for Γ there exists a strategy profile with social welfare at least c iff
there exists a triangle partition for G:

First let us assume that for f(G) there exists a strategy profile s ∈ Σ with social
welfare at least c. Then each player i ∈ [n] must choose under s a facility jt for
which bi,jt = 1. It follows that each facility is chosen by at most 3 players. A player
that chooses under s a facility that only 1 or 2 players choose, contributes at most
1 + 2ε to the social welfare. If such a player exists, then the social welfare is at most
(n−1)(1+3ε)+1+2ε, which is not the case. Therefore, under s, every player chooses
a facility with exactly three players assigned to it, and by the direct correspondence
between facilities and triangles, as well as players and vertices, it follows that G has a
triangle partition.

For the other direction, let us assume that there is a triangle partition {V1, . . . , Vn/3}
for G. Let t(k) denote the triangle corresponding to Vk, for k ∈ [n/3]. Then let s be
the strategy profile in which a player i ∈ Vk chooses facility jt(k). It is easily seen that
U(s) = k + 3kε.

3To be precise, it suffices to choose ε as any number a/b less than 1/n2 such that log a and log b are
polynomial in n.
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One could use the algorithm BOOST(2) of Section 7.7 to find a 2-approximate
solution to this affine special case of the problem. However, it is easy to see that
there is a much simpler and faster algorithm possible for this case, that works as fol-
lows: When given as input a congestion game with non-negative affine externalities
Γ = (n,m, a, b), let the strategy profile s ∈ Σ be given by

si = argj max{bi,j | j ∈ [m]}

for all i ∈ [n], and let the strategy profile s′ ∈ Σ be given by

argj max

∑
i′∈[n]

nai′,j | j ∈ [m]


for all i ∈ [n]. Output s if U(s) ≥ U(s′) and output s′ otherwise.

This is a 2-approximation algorithm because it is shown in Proposition 4.3 of Blum-
rosen and Dobzinski [2006] that if bi,j = 0 for all i ∈ [n], e ∈ [m], then the strategy
profile s′ is optimal. It is obvious that if ai,j = 0 for all i ∈ [n], j ∈ [m], then the
strategy profile s is optimal. Therefore, for the case that neither a nor b is necessarily
0, the maximum of U(s) and U(s′) must be within a factor of 2 from the optimal social
welfare.

7.10 Truthful Polynomial Time Mechanisms for Non-
Negative Externalities

In this section, we construct a mechanism for congestion games with non-negative r-
externalities, that is truthful in expectation, runs in polynomial time in expectation,
always charges non-negative payments, and is always individually rational. On the
negative side, the mechanism requires the ability to output a solution in which some of
the externalities are disabled. This means that the mechanism is able to allocate a set of
players P on the same facility j, but set some of the externalities vi,P ′,j , i ∈ P, P ′ ⊆
P \{i} to 0. It can be interpreted as preventing some subsets of players to interact with
each other, preventing them from acquiring the benefits they would normally obtain
from being together on the same facility.

We emphasize that the specification the set S of externalities that is to be disabled is
part of the set of outcomes that the algorithm may generate, and that the approximation
guarantee of the algorithm is still with respect to the optimal outcome, which is clearly
attained when none of the externalities are disabled. In other words, the approximation
guarantee of the algorithm is still with respect to the original optimum, and we do not
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“cheat” by measuring the approximation factor with respect to the optimum solution
attainable with the externalities S disabled.

Formally, the output of the mechanism, for a congestion game Γ = (n,m, v) (when
given as input the vectors of externalities that the players of Γ report), is therefore a pair
(s, t), where s is a strategy profile, and t is a specification of which of the externalities
of v need to be disabled.

We start by describing a randomized (r + 2)-approximation algorithm for the the
problem of maximizing the social welfare. This algorithm does not necessarily output
a strategy profile for the input game, but rather something that we refer to as an ex-
tended strategy profile: In an extended strategy profile, players are allowed to not be
allocated to any facility. A player that is not allocated, receives utility 0. We extend
the domain of the social welfare function U in the natural way to extended strategy
profiles. Moreover, if x is a feasible (0, 1)-solution to LP (7.10), and we obtain x′ from
x by setting xi,j to 0 for any set of players i ∈ P ⊆ [n], j ∈ S ⊆ [m], then note that
x′ is not necessarily a feasible (0, 1)-solution to LP (7.10). We still refer to x′ as an
extended feasible (0, 1)-solution to LP (7.10).

Despite that we already have Algorithm 1 for maximizing the social welfare, we
need this weaker randomized algorithm in order to solve our target mechanism design
problem. The algorithm is again based on rounding the optimal fractional solution to
the relaxation of LP (7.10). Our rounding algorithm has the interesting property that
we can derive an exact polynomial-time computable expression for the expected social
welfare of the solution that it outputs, and for the expected utilities of the players. This
property is crucial for our truthful mechanism to work.

Let x be a extended feasible (0, 1)-solution to LP (7.10) for a congestion game
with r-externalities Γ. We denote by s(x) the extended strategy profile where si = j
iff xi,j = 1, for i ∈ [n], j ∈ [m].

The description of our randomized algorithm is given in Algorithm 2. It is an
adaptation of the randomized algorithm of Abraham et al. [2012]. This adaptation is
necessary in order to get an exact and easy-to-compute expression on the expected
social welfare of the solution that it outputs.

It is clear that Algorithm 2 returns a valid extended strategy profile, as all con-
straints of LP (7.10) are satisfied at the end of the execution of the algorithm.

We proceed with deriving the expected value of the social welfare of the extended
strategy profile output by Algorithm 2.

Lemma 162. Let x′ be the extended (0, 1)-solution to LP (7.10) that Algorithm 2 has
produced at the end of its execution, when given as input a congestion game with
non-negative r-externalities Γ = (n,m, v). Moreover, let x be the optimal fractional
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Algorithm 2 A randomized LP rounding algorithm for approximating the social wel-
fare optimizing strategy profile for a congestion game with non-negative externalities.

Input: A description of a congestion game with with non-negative r-externalities
Γ = (n,m, v).
Output: An extended strategy profile s for Γ.
Begin

1. Solve the relaxation of LP (7.10) for congestion game Γ, and let x be the optimal
fractional solution. Let Γ′ = Γ and let x′ = x.

2. Repeat the following until x′ is integral:

2.1. Select a facility j ∈ [m] and select a number p ∈ [0, 1] uniformly at
random.

2.2. For all i ∈ [n]: if xi,j ≥ p, and facility j has not been selected in
a previous iteration, then round x′i,j to 1 and round x′i,j′ to 0 for all
j′ ∈ [m]\{j}. If xi,j ≥ p and facility j has been selected in a previous
iteration, then round x′i,j′ to 0 for all j′ ∈ [m].

(In both cases, for all P ⊆ [n], |P | ≤ r + 1, round xP,j to 1 if x′i,j = 1
for all i ∈ [P ] and round xP,j to 0 if there exists a player i ∈ P such
that x′i,j = 0.)

3. Output the extended allocation s(x′).
End
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solution to the relaxation of LP (7.10) for Γ. Then:

Pr[x′P,j = 1] =
xP,j

1 +
∑
j′∈[m]\{j}max{xi,j′ | i ∈ P}

,

for all j ∈ [m], P ⊆ [n], |P | ≤ r + 1.

Proof. We use a similar style of notation as in Langberg et al. [2006] (where a similar
algorithm is analyzed for a similar problem): For a set of players P ⊆ [n] a facility
j ∈ [m], and an iteration k ∈ N>0 of the loop of Algorithm 2, we use P →

k
j to denote

the event that j gets selected and all of the players in P get rounded in iteration k. We
use ∗ 6→

<k
j to denote the event that j does not get selected in an iteration before k.

Likewise, we use P 6→
<k
∗ to denote the event that for all j ∈ [m], i ∈ P , x′i,j does not

get rounded in an iteration before k.

Pr[x′P,j = 1] =

∞∑
k=1

Pr

[
P →

k
j ∩ ∗ 6→

<k
j ∩

⋂
i∈P
{j} 6→

<k
∗

]

=

∞∑
k=1

Pr

[
P →

k
j

∣∣∣∣ ∗ 6→
<k

j ∩
⋂
i∈P
{i} 6→

<k
∗

]
Pr

[
∗ 6→
<k

j ∩
⋂
i∈P
{i} 6→

<k
∗

]

=
1

m
min{xi,j | i ∈ P}

∞∑
k=1

Pr

[
∗ 6→
<k

j ∩
⋂
i∈P
{i} 6→

<k
∗

]

=
xP,i
m

∞∑
k=1

Pr

[
∗ 6→
k
j ∩

⋂
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k
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⋂
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·Pr

[
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⋂
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[
∗ →
k
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∗
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1− 1
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1 +
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j′∈[m]\{j}

max{xi,j′ | i ∈ P}
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·Pr

[
∗ 6→
<k−1

j ∩
⋂
i∈P
{i} 6→

<k−1
∗

]

=
xP,j
m

∞∑
k=1

1− 1

n

1 +
∑

j′∈[m]\{j}

max{xi,j′ | i ∈ P}

k−1

=
xP,j

1 +
∑
j′∈[m]\{j}max{xi,j′ | i ∈ P}

.

The seventh equality in the above derivation follows by inductively applying to
Pr[∗ 6→

<k−1
j ∩

⋂
i∈P {i} 6→

<k−1
∗] the same as we did to Pr[∗ 6→

<k
j ∩

⋂
i∈P {i} 6→

<k
∗]

(conform to the steps taken in the third to the sixth equality).

Lemma 163. Let x′ be the extended (0, 1)-solution to LP (7.10) that Algorithm 2 has
produced at the end of its execution, when given as input a congestion game with non-
negative r-externalities Γ = (n,m, v). Moreover, let x be the optimal fractional solu-
tion to the relaxation of LP (7.10) for Γ. Then, the expected social welfare E[U(s(x′))]
of the extended strategy profile that Algorithm 2 outputs, can be expressed as follows.

E[U(s(x′))] =
∑

(P,j):j∈[m],
P⊆[n],
|P |≤r+1

xP,jwP,j
1 +

∑
j′∈[m]\{j}max{xi,j′ | i ∈ P}

,

where wP,j =
∑
i∈P vi,P\{i},j , for P ⊆ [n], |P | ≤ r + 1 and i ∈ P .

Proof. By linearity of expectation,

E[U(s(x′))] =
∑

(P,j):j∈[m],
P⊆[n],
|P |≤r+1

wP,jE[x′P,j ] =
∑

(P,j):j∈[m],
P⊆[n],
|P |≤r+1

wP,jPr[x′P,j = 1].

The claim then follows from Lemma 162.

Likewise, we obtain from Lemma 162 exact expressions on the expected utilities
of the players.

Corollary 164. Let x′ be the (0, 1)-solution to LP (7.10) that Algorithm 2 has produced
at the end of its execution, when given as input a congestion game with r-externalities
Γ = (n,m, v). Moreover, let x be the optimal fractional solution to the relaxation
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of LP (7.10) for Γ. Then, the expected utility E[ui(s(x
′))] of a player i ∈ [n], of the

extended strategy profile that Algorithm 2 outputs, can be expressed as follows.

E[ui(s(x
′))] =

∑
j∈[m]

∑
P⊆[n]\{i}:|P |≤r

xP∪{i},jvi,P,j

1 +
∑
j′∈[m]\{j}max{xj′,i′ | i′ ∈ P ∪ {i}}

.

Lastly, we bound the approximation ratio of this rounding procedure. The following
important observation follows from the fact that for all P ⊆ [n], |P | ≤ r + 1, it holds
that

∑
i∈P

∑
j∈[m] xP,j = r for any feasible solution x of the relaxation of LP (7.10)

of any congestion game with r-externalities Γ.

Proposition 165. Let Γ = (n,m, v) be a congestion game with non-negative r-
externalities and let x be a feasible solution to the relaxation of LP (7.10) of Γ. Then,

1 +
∑

j′∈[m]:j′ 6=j

max{xi,j | i ∈ P} ≤ r + 2

for all j ∈ [m] and P ⊆ [n], |P | ≤ r + 1.

It follows from this observation that:

Corollary 166. Algorithm 2 is a randomized (r + 2)-approximation algorithm for
computing a social welfare maximizing strategy profile for a congestion game with
non-negative r-externalities, that runs in expected polynomial time.

In the above corollary, the expected polynomial runtime holds because the con-
straints (7.11) ensure that during any round of the algorithm, there is at least one pair
(i, j), i ∈ [n], j ∈ [m], such that xi,j ≥ 1/n. This implies that in each iteration, for
all i ∈ [n], if the variables xi,j , j ∈ [m] are not rounded to values in {0, 1} yet, they
get rounded with probability at least 1/n2. So it takes in expectation not more than
a polynomial number of iterations before all of the relevant variables are rounded to
(0, 1)-values.

Next, consider Algorithm 3, which uses Algorithm 2 as a subroutine.
In the theorems that follow, the social welfare function U and utility functions u,

have been extended in the obvious way to pairs (s, t), where s is a strategy profile and
t a specification of disabled externalities.

Theorem 167. Let (s, t) be as generated by Algorithm 3, at the end of its execu-
tion, when given as input a congestion game with non-negative r-externalities Γ =
(n,m, v). Moreover, let x be the optimal fractional solution to the relaxation of LP
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Algorithm 3 A polynomial-time mechanism that approximates the maximum social
welfare of a congestion game with r-externalities to within a factor of r + 2.

Input: A description of a congestion game with with non-negative r-externalities
Γ = (n,m, v).
Output: A strategy profile s for Γ, together with a specification t of which external-
ities are disabled.
Begin

1. Let x be the optimal fractional solution to the relaxation of LP (7.10) of Γ. Let t
be such that no externality is disabled according to t.

2. For all i ∈ [n], for all P ⊆ [n] \ {i}, |P | ≤ r, for all j ∈ [m], disable externality
vi,P,j with probability

1 +
∑
j′∈[m]\{j}max{xj′,i′ | i′ ∈ P ∪ {i}}

r + 2
,

i.e., update t on externality vi,P,j with the above probability.

3. Run Algorithm 2 on Γ. Let s be the extended strategy profile output by Algo-
rithm 2.

4. Let Pu be the set of players that are not allocated to any facility under s. Allocate
the players of Pu to an arbitrary facility. Update t such that all externalities of
players in Pu are disabled according to t.

5. Output (s, t).
End
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(7.10) for Γ. Then:

E[ui(s, t)] =
∑

(P,j):j∈[m],
P⊆[n]\{i},
|P |≤r

vi,P,jxP∪{i},j

r + 2

for i ∈ [n], and
E[U(s, t)] =

∑
(P,j):j∈[m],
P⊆[n],
|P |≤r+1

xP,jwP,j
r + 2

=
xw

r + 2
.

Proof. Let x′ be the extended feasible (0, 1)-solution to LP (7.10) that Algorithm 2
has produced at the end of its execution (within the execution of Algorithm 3. We
combine Lemma 162 with the fact that for i ∈ [n], j ∈ [m], P ⊆ [n] \ {i}, |P | ≤ r
each externality vi,P,si is disabled under t with probability

pi,P,j =
1 +

∑
j′∈[m]\{j}max{xj′,i′ | i′ ∈ P ∪ {i}}

r + 2
.

By linearity of expectation, the following holds for all i ∈ [n] just after Algorithm 3
has executed step 3.

E[ui(s, t)] =
∑

(P,j):j∈[m],
P⊆[n]\{i},
|P |≤r

vi,P,jE[x′P∪{i},j ]pi,P,j

=
∑

(P,j):j∈[m],
P⊆[n]\{i},
|P |≤r

vi,P,jPr[x′P∪{i},j = 1]pi,P,j

=
∑

(P,j):j∈[m],
P⊆[n]\{i},
|P |≤r

vi,P,jxP∪{i},j

r + 2
,

where the last equality follows from Lemma 162. By taking the sum over the players
utilities, we obtain that just after Algorithm 3 has executed step 3,

E[U(s, t)] =
∑

(P,j):j∈[m],
P⊆[n],
|P |≤r+1

xP,jwP,j
r + 2

=
xw

r + 2
.
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In step 4, the social welfare and utilities of the players are clearly not affected. This
proves the claim.

Due to Theorem 167, we arrive at our desired mechanism.

Theorem 168. There exists a randomized mechanism that approximates within a fac-
tor (r + 2) the maximum social welfare for a congestion game with non-negative r-
externalities Γ = (n,m, v), for the extended range of solutions (s, t), where s ∈ Σ is a
strategy profile of Γ and t is a specification of disabled externalities. This mechanism
runs in expected polynomial time, and satisfies truthfulness in expectation, universal
individual rationality, and universally non-negative payments.

Proof. Algorithm 3 has the property that it is maximum-in-distributional-range (MIDR)
with respect to U and the set of possible valuations that may be reported by the players.
The MIDR property means that among the set of output distributions that the algorithm
may produce (when considering the set of all possible valuations that the players may
report), it always selects the distribution that maximizes the social welfare U in expec-
tation. This fact follows from Theorem 167: on input Γ = (n,m, v) the expected social
welfare of the allocation that is output, is the social welfare of the fractional feasible
solution x of the relaxation of LP (7.10) of Γ, scaled down by a constant factor of r+2.
Because x is the fractional solution that attains the maximum social welfare among all
fractional solutions, it follows that Algorithm 3 is MIDR. It is well-known [Dobzinski
and Dughmi, 2009] that for MIDR algorithms, there exists a payment rule that turns the
algorithm into a mechanism that satisfies individual rationality in expectation, univer-
sally non-negative payments, and truthfulness in expectation. The payment rule used
for this is a well known one, called Clarke’s pivot rule (see e.g. Nisan et al. [2007]): it
charges a player i ∈ [n] the value

∑
i′∈[n]\{i}E[ui′(s

′, t′)] −
∑
i′∈[n]\{i}E[ui′(s, t)],

where (s′, t′) is the output of Algorithm 3 if player i would not be present.
We can compute

∑
i′∈[n]\{i}E[ui′(s, t)] in polynomial time through Theorem 167.

We can compute
∑
i′∈[n]\{i}E[ui′(s

′, t′)] in polynomial time by Theorem 167 in com-
bination with solving the relaxation of LP (7.10) for the game Γ′ obtained from Γ by
setting all externalities of player i to zero. Therefore we can compute the appropriate
payments in polynomial time.

The resulting mechanism, which always charges the Clarke payments described
above irrespective of which randomized steps are taken, is clearly individually ratio-
nal in expectation, because the payment charged to a player is less than that player’s
expected utility. This mechanism is not universally individually rational however, be-
cause the rounding procedure of the mechanism may generate outcomes for which a
player’s utility is lower than the payment charged. We use the following trick, also
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used e.g. by Lavi and Swamy [2005], that allows us to convert the property of indi-
vidual rationality in expectation into universal individual rationality: Let pi denote the
Clarke payment just described. If a player i’s utility for the outcome (s′, t′) generated
by the mechanism is 0 (according to the vector of valuations it has reported), then the
mechanism charges the player a payment of 0. Otherwise, the mechanism charges the
player a payment of ui(s′, t′)pi/E[ui(s, t)]. This payment rule is universally individ-
ually rational because pi/E[ui(s, t)] ≤ 1. Moreover, note that the expected payment
that is charged by the mechanism is exactly pi, so that truthfulness in expectation is
preserved.

7.11 Future Work
The most pressing question that remains to be answered, is whether a mechanism exists
that has the same properties as the one we presented in Section 7.10, but does not
require the extended solution range (in which we are allowed to disable the externalities
of the players arbitrarily).

A less ambitious goal would be to see if it is possible to obtain such results when
weakening some of the other requirements we impose on the mechanism. Can we for
example attain a polynomial time constant approximation mechanism if we implement
truthfulness in ex-post equilibria instead of dominant strategies?

Other interesting research directions include the study of the same type of ques-
tions, but for non-positive externalities, instead of non-negative ones. Secondly, it
might make sense to try to acquire some insights into the equilibria of the congestion
games studied here. Do they exist, and how hard is it to compute one if they do? More-
over, what is the price of anarchy of these games? We have not considered these topics
yet and want to address this in future research.
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Chapter 8

Housing Markets with
Indifferences: a Tale of Two
Mechanisms*

We consider in this chapter mechanism design in (Shapley-Scarf) housing markets.
We aim in this setting for mechanisms that are stable in the sense that they are resistant
against cooperative behavior of the players. This property is referred to as core stability
in the setting of housing markets. The core stability requirement results in yet another
flavor of mechanism design, when we compare this to the mechanism design problems
of the previous two chapters. We advise the reader to be familiar with the material of
Sections 1.3 up to Section 1.3.1, Section 1.3.1.11, and optionally the definition of the
core in Section 1.3.2.

In a housing market, there is a set of players and a set of houses. Each player
owns a single house initially, and each player has certain preferences over the houses.
The goal is to reallocate the houses to the players in a mutually beneficial and stable
manner.

Definition 169 ((Shapley-Scarf) housing market, allocation). A (Shapley-Scarf) hous-
ing market is a triple H = (n, ω,�), where �= (�1, . . . ,�n) and ω : [n]→ [n]. For
i ∈ [n], �i is a complete transitive relation on [n]. This is interpreted as there being a
set of players [n] and a set of equally many houses [n]. An allocation for H is a bijec-
tion from [n] to [n]. Note that ω is an allocation for H . The function ω describes the

*The contents of this chapter have been published as Aziz and De Keijzer [2012]
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initial endowment, i.e., ω(i) is the house owned by player i ∈ [n]. Lastly, �i describes
the preferences of i ∈ [n], where player i prefers house j ∈ [n] to house j′ ∈ [n] iff
j′ � j.

Definition 170 (Housing market mechanism). A housing market mechanism M is a
mapping from housing markets (n, ω,�) to allocations f : [n] → [n] of the agents to
the houses.

Allocations generated by a housing market mechanism may satisfy certain proper-
ties.

Definition 171 ((Strict) core stable, Pareto optimal, individually rational). Let H =
(n, ω,�) be a housing market, and let f : [n]→ [n] be an allocation for H .

• f is said to be individually rational under H iff f(i) �i ω(i) for i ∈ [n]. Infor-
mally: no player i ∈ [n] is strictly better off with its initial house ω(i). A housing
market mechanism is said to be individually rational iff it always outputs an al-
location that is individually rational under its input input housing market.

• A set of players S ⊆ [n] is said to block f under H iff there exists an allocation
y such that f(i) = g(i) for all i ∈ [n] \ S and g(i) �i f(i) for all i ∈ S.
Informally: the players in S can trade their allocated houses among each other
such that each player in S strictly prefers its new house to its allocated house.

• A set of players S ⊆ [n] is said to weakly block f under H iff there exists an
allocation y such that f(i) = g(i) for all i ∈ [n] \ S and g(i) �i f(i) for
all i ∈ S, and moreover there exists a player i ∈ S such that g(i) �i f(i).
Informally: the players in S can trade their allocated houses among each other
such that each player in S obtains a house that is at least as good as its allocated
house, and at least one player in S strictly prefers its new house to its allocated
house.

• f is said to be core stable under H iff no coalition S ⊆ [n] blocks f . A housing
market mechanism is said to be core selecting iff it always outputs an allocation
that is core stable under its input housing market, if such an allocation exists.

• f is said to be strict core stable under H iff no coalition S ⊆ [n] weakly blocks
f . A housing market mechanism is said to be strict core selecting under H iff
it always outputs an allocation that is strict core stable under its input housing
market, if such an allocation exists.
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• f is said to be Pareto optimal underH iff [n] does not block f . A housing market
mechanism is said to be Pareto optimal iff it always outputs an allocation that is
Pareto optimal under its input housing market.

A housing market mechanismM induces a game for each housing market (n, ω,�)
with player set [n], where the strategy set of each player is the set of preference profiles
on the house set. Given a strategy profile s of this game, a player achieves higher utility
if M(n, ω, s) gives the player a more preferred house. We aim in this chapter toward
housing market mechanisms that always output core stable, strict core stable, Pareto
optimal, and individually rational allocations, even when the players have the ability to
strategize by misreporting their preferences in this sense. In order to achieve this, we
need our mechanism to satisfy truthfulness, which means the following in the context
of housing markets.

Definition 172 (Truthfulness). A housing market mechanismM is truthful iff for every
housing market H = (n, ω,�), every vector of preference profiles s = (s1, . . . , sn),
and every player i ∈ [n], it holds that f(i) �i g(i), where f = M(n, ω, (�i, s−i)) and
g = M(n, ω, s).

A final requirement that we impose is that our housing market mechanism is poly-
nomial time computable.

The case where the preferences of a player are restricted to strict total orders has
been examined and resolved by Shapley and Scarf [1974], where it is shown that a
simple and elegant mechanism called Gale’s Top Trading Cycle (TTC) mechanism is
truthful and core selecting.

Alcalde-Unzu and Molis [2011] and Jaramillo and Manjunath [2011] indepen-
dently examined the general case in which players can express indifferences among
houses. They proposed two important families of mechanisms, known as TTAS and
TCR respectively. We formulate in this chapter a family of mechanisms which not only
includes TTAS and TCR, but also satisfies many desirable properties of both families.
As a corollary, we show that TCR is strict core selecting. Finally, we settle an open
question regarding the computational complexity of the TTAS mechanism. Our study
also raises a number of interesting research questions.

8.1 Background
Housing markets are fundamental models of exchange economies of goods where the
goods could range from dormitories to kidneys [Sönmez and Ünver, 2011].

The classic housing market (also called the Shapley-Scarf Market) consists of a
set of players each of which owns a house and has strict preferences over the set of
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all houses. The goal is to redistribute the houses to the players in the most desirable
fashion. Shapley and Scarf [1974] showed that a simple yet elegant mechanism called
Gale’s Top Trading Cycle (TTC) is truthful and finds an allocation which is in the core.
TTC is based on multi-way exchanges of houses between players. Since the basic
assumption in the model is that players have strict preferences over houses, TTC is
also strict core selecting and therefore Pareto optimal.

Indifferences in preferences are not only a natural relaxation but are also a practi-
cal reality in many cases. Many new challenges arise in the presence of indifferences:
core stability does not imply Pareto optimality; the strict core can be empty [Quint and
Wako, 2004]; and issues related to truthfulness need to be re-examined. In spite of
these challenges, Alcalde-Unzu and Molis [2011] and Jaramillo and Manjunath [2011]
proposed mechanisms for housing markets with indifferences, that satisfy many nice
properties. Alcalde-Unzu and Molis [2011] presented the Top Trading Absorbing Sets
(TTAS) family of mechanisms which are truthful, core selecting (and therefore individ-
ually rational), Pareto optimal, and strict core selecting. Independently, Jaramillo and
Manjunath [2011] came up with a different family of mechanisms called Top Cycle
Rules (TCR) which are truthful, core selecting, and Pareto optimal. Whereas it was
shown in [Jaramillo and Manjunath, 2011] that each TCR mechanism runs in polyno-
mial time, the time complexity of TTAS was raised as an open problem in [Alcalde-
Unzu and Molis, 2011].

8.2 Contributions and Outline
We first highlight the commonality of TCR and TTAS by describing a simple class
of mechanisms called Generalized Absorbing Top Trading Cycle (GATTC) in Section
8.4, which encapsulates the TTAS and TCR families. It is proved that each GATTC
mechanism is core selecting, strict core selecting, and Pareto optimal.

The TCR and TTAS mechanisms are described in Section 8.5, where it is also
proved that TCR and TTAS are special cases of GATTC. As a corollary, TCR is strict
core selecting. We note that whereas a GATTC mechanism satisfies a number of desir-
able properties, the truthfulness of a particular GATTC mechanism hinges critically on
the order and way of choosing trading cycles.

Finally, we settle in Section 8.6 the computational complexity of TTAS. By simu-
lating a binary counter, it is shown that a TTAS mechanism can take exponential time
to terminate. This answers an open question raised by Alcalde-Unzu and Molis [2011].
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8.3 Preliminaries
Desirable allocations of housing markets can be computed via a graph-theoretic ap-
proach.

Definition 173 (G(H)). For a housing market H = (n, ω,�) we denote by G(H)
the directed graph G(H) = (V,A) where V = {v1, . . . , vn} ∪ {h1, . . . , hn} and
A = {(vi, hj) | i, j ∈ [n],∀j′ ∈ [n] : j �i j′} ∪ {(hj , vi) | i, j ∈ [n], ω(i) = j}.
In words, there is a set of vertices corresponding to the player set and there is a set of
vertices corresponding to the house set. Each player vertex points to its set of most
preferred houses, and each house vertex points to its initial owner, conform ω.

For convenience, when discussing the graph G(H) of a housing market H we will
make light of the difference between players and vertices corresponding to players,
i.e., we often refer to the vertices {v1, . . . , vn} as simply players. Likewise, we refer to
{h1, . . . , hn} as houses. We say that a player i ∈ [n] points to a house j ∈ [n] inG(H)
iff (vi, vj) is an arc of G(H). Analogously, we may say that houses point to players.

We introduce next some essential graph-theoretic notions.

Definition 174 (Absorbing set, symmetric pair, paired symmetric). Let G = (V,A) be
a directed graph. An absorbing set S ⊆ V of G is a strongly connected component for
which there exists no arc in A ∩ (S × (V \ S)), i.e., there are no outgoing arcs. Two
vertices v, v′ ∈ V constitute a symmetric pair of G iff (v, v′), (v′, v) ∈ A, i.e., there
are arcs between the two vertices going in both directions. An absorbing set S of G is
paired symmetric if each vertex in S belongs to a symmetric pair of G.

8.4 GATTC
In this section, we formulate a simple family of housing market mechanisms called
Generalized Absorbing Top Trading Cycle (GATTC) which is designed for housing
markets with indifferences and extends not only TTC, but also includes the two fam-
ilies TTAS and TCR. It is based on multi-way exchanges of houses between players.
We will show that GATTC satisfies many desirable properties of housing market mech-
anisms, such as being core selecting and Pareto optimal.

Before we describe GATTC, we will introduce the original TTC mechanism which
is defined for the domain of housing markets with strict preferences, i.e., in which all
players preferences are strict total orders. TTC works as follows. For a housing market
H with strict preferences, we first construct the corresponding graph G(H) as defined
above. Then, we start from a player and walk arbitrarily along the arcs until a cycle
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is completed. A cycle is of course guaranteed to exist, as each vertex of G(H) has
positive out-degree. This cycle is removed from G(H). Within the removed cycle C,
each player (corresponding to a vertex in C) gets allocated the house (corresponding
to the vertex in C) that it was pointing to. The graph G(H) is then adjusted so that the
remaining players point to their most preferred houses among the remaining houses in
G(H). The process is repeated until all the houses and players are deleted from the
graph.1

For a housing market with indifferences, TTC can still be used to return a core
selecting allocation: break ties of the preference relations of the players arbitrarily
(turning the housing market into a housing market with strict preferences), and then run
TTC. However such an allocation may not be Pareto optimal [see e.g., Alcalde-Unzu
and Molis, 2011, Jaramillo and Manjunath, 2011]. GATTC achieves Pareto optimality
and is based on absorbing sets and the concept of a ‘good cycle’.

Definition 175 (Good cycle, implementing a cycle). Let H = (n, ω,�) be a housing
market. Let G = (V,A) be any directed graph with vertex set V = V1 ∪ V2, V1 ⊆
{v1, . . . vn}, V2 ⊆ {h1, . . . , hn} with only arcs between V1 and V2. I.e., V is a graph
on a subset of the houses and players ofH . A good cycle is any cycle ofG that contains
at least one vertex that is not paired symmetric. LetC be a cycle ofG. By implementing
C we mean changing the graph G by removing all edges that point from V2 to V1 and
introducing edges {(hj , vi) | (vi, hj) ∈ C}.

Algorithm 4 defines our class of GATTC mechanisms, by providing an algorithmic
description of how an outcome of such a mechanism may be generated.

We stress that the choices that a GATTC mechanism makes in Steps 1.1 and 1.2
are allowed to be different each time the algorithm reaches these steps, within the same
execution. The same holds for the number of times that Steps 1.1 and 1.2 are repeated,
each time that Step 1 is executed.

Example 176. Consider a housing market H = (n, ω,�) where ω is such that ω(i) =
i for all i ∈ [n], and preferences � are defined as follows.

player 1 2 3 4 5

preferences 2 3 4, 5 1 2
1 2 3 5 4

4 5
This table should be interpreted as that a house is more preferred by a player i ∈ [n]

iff it occurs on a higher row in column i of the table. If two houses j, j′ occur on the
same row in column i, it means that player i is indifferent between house j and j′.

1See Section 2.2 of [Sönmez and Ünver, 2011] for an elegant illustration of how TTC works.
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Algorithm 4 A blueprint for mechanisms falling in the GATTC class. The concept of
adjusting a graph is defined here in the same way as for the TTC mechanism.

Input: A housing market H .
Output: An allocation f for H .
Begin

Let G = G(H). Let f = ∅. (At the end of execution, f will indeed be a function
from [n] to [n]. In this description of GATTC, we view f as a set of pairs, and
we initialize f as the empty set.) Repeat the following until G is empty:

1. Repeat the following a finite number of times on G:

1.1. Either implement a non-good cycle (if G is not empty), or do
nothing.

1.2. Either remove a paired symmetric absorbing set S of G (setting
f to f ∪ {(i, j) | i, j ∈ [n], vi and hj are symmetric pairs of the
subgraph of G induced by S}), and adjust G, or do nothing.

2. Repeatedly remove paired symmetric absorbing sets S of G from G (set-
ting f to f ∪ {(i, j) | i, j ∈ [n], vi and hj are symmetric pairs of the
subgraph of G induced by S}), and adjust G, until there are no paired
symmetric absorbing sets left in G.

3. If G is not empty, implement a good cycle.

End
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Given these preferences, if ties (i.e., indifferences in the preferences of the players)
are broken in any way, TTC does not return a Pareto optimal allocation. However,
GATTC mechanisms (including TTAS and TCR) will only return the following Pareto
optimal allocations: {(1, 2), (2, 3), (3, 5), (4, 1), (5, 4)} or {(1, 1), (2, 3), (3, 4), (4, 5),
(5, 2)}. Figure 2 illustrates the first steps in the execution of a GATTC mechanism on
this housing market.

We say that an algorithm induces a housing market mechanism iff it terminates and
returns an allocation.

Theorem 177. An algorithm in the class of GATTC algorithms induces a core select-
ing, and Pareto optimal housing market mechanism.

Proof. We prove each property separately. We start by proving that an algorithm in the
class of GATTC algorithms induces a housing market mechanism, i.e., it terminates
and returns an allocation for its input housing market.

Terminates and returns allocation: From its description (Algorithm 4), due to the
definition of implementation of a cycle, the out-degree of a house in G is always
1 at every step of the algoritm. So at the beginning of every step, G has the
property that each vertex has positive out-degree. For non-empty graphs with
this property, an absorbing set of cardinality greater than 1 is guaranteed to ex-
ist [Kalai and Schmeidler, 1977]. Therefore, if G is not empty, then at Step 1.1
there is guaranteed to be a cycle, and at Step 3 there is guaranteed to be a good
cycle (because there is an absorbing set that is not paired symmetric). In each it-
eration (consisting of Steps 1, 2, and 3), if paired symmetric absorbing sets exist
they are removed in Step 2.2 Also, at least one good cycle is implemented in Step
3, which reduces the number of vertices that are not paired symmetric. There-
fore, there is a maximum ofO(n) iterations until GATTC terminates. Since each
removed house is allocated to the player it was last pointing to, GATTC returns
an allocation for its input housing market.

Core selecting: When a player i ∈ [n] is removed from the graph along with its al-
located house h ∈ [n], then h is among player i’s set of most preferred houses,
among those houses that are still in the graph. Therefore i cannot be in a block-
ing set S of players, when S consists only of players remaining in the graph.
Thus, for each set S there is a player i ∈ S for which there is no house among
the houses allocated to S that i prefers more than the house allocated to i, so S
is not a blocking coalitions.

2An absorbing set of a graph can be computed in linear time via the algorithm of Tarjan [1972].
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Pareto optimal: Let Sk be the kth paired symmetric absorbing set that arises at some
point in the GATTC mechanism (and is thus removed from the graph by the
GATTC mechanism, and is included accordingly in the allocation produced by
the GATTC mechanism). In any allocation x in which none of the players in
S1 are worse off than in the allocation produced by GATTC, the players in S1

must be allocated to houses in S1. Taking this as the base case, it follows by
easy induction that in x, the players of Sk must be allocated to houses in the kth
paired symmetric absorbing set. Next, suppose that i is a player in Sk for some
k. Then no house in Sk is more preferred by i than the house that the GATTC
mechanism assigns it to. It follows that no player is strictly better off in x than
in the allocation produced by GATTC.

This completes the proof.

Theorem 178. GATTC is strict core selecting.

Proof. We prove the statement by proving two claims.
Claim 179. For any GATTC mechanism it holds that if at any point during the exe-
cution, there is an absorbing set A and an allocation in which each player in A gets
allocated its most preferred house among the houses in A, then the GATTC mechanism
will output an allocation in which every player in A gets allocated its most preferred
house among the houses in A.

Proof. Define an inward set as a set of vertices without arcs pointing outward from
A. An absorbing set is by definition an inward set. We prove this claim for the more
general notion of inward sets. Let A be an inward set that arises at some time point
t during the execution of the GATTC mechanism, and assume that there exists an al-
location in which each player in A gets allocated its most preferred house among the
houses in A. If A eventually becomes paired symmetric, then every player in A surely
gets a maximal house within A. Let us thus assume that A does not eventually become
paired symmetric. Consider the first point in time t′ where vertices are removed from
A by the mechanism. This point t′ exists because the mechanism terminates. All cycles
that are implemented in between t and t′ either lie completely inside A or completely
outside A, because there are no arcs pointing from a vertex outside A to a vertex inside
A. It follows that at point t′, the removed paired symmetric absorbing set A′ is a strict
subset of A. Note that players in A \ A′ cannot get a house from within A′ without
some player in A′ getting a house that it prefers strictly less. Hence, by the assumption
that an allocation exists in which each player in A gets its most preferred house within
A, it follows that players inA\A′ can still all get a maximal house from withinA\A′.
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The proof follows by induction; repeating the same argument on the inward set A \A′
that arises when removing A′ from the graph.

Claim 180. The returned allocation f is in the strict core if and only if for each ab-
sorbing set A encountered in the algorithm, each player in A gets allocated a most
preferred house in A.

Proof. (⇒) Assume there is a player i that is in A, for which there exists a house h in
A for which h �i f(i). Then any set of players in a cycle withinA that contains player
i, is a weakly blocking coalition. This contradicts that f is in the strict core.

(⇐) Assume that each player i in A gets a most preferred house among the houses
within A. Then i cannot be part of a blocking coalition. It can still be part of a weakly
blocking coalition if a player i in A has a most preferred house h among the houses
in the remaining graph, where h is outside A, and there exists a cycle of the form
(i, h, . . . , i). But this is not possible since A is absorbing.

From the two claims, the theorem follows.

We also observe that on the domain of strict preferences, GATTC is equivalent
to TTC. The reason is that implementation of any cycle results in a paired symmetric
absorbing set which is then removed from the graph. Ma [1994] proved that for housing
markets with strict preferences, a mechanism is strict core selecting if and only if it is
individually rational, Pareto optimal, and truthful.

Theorem 181. Not every GATTC mechanism is truthful.

Proof sketch. Consider the following GATTC mechanism in which no non-good cycle
is implemented, and every good cycle is found in the following way. Consider player
i ∈ [n], and house j ∈ [n] for which (vi, hj) ∈ E , (hj , vi) 6∈ E, and vi and hj are in a
strongly connected component of G(H). Then, there exists a shortest path P from hj
to vi. Find this path P by Dijkstra’s shortest path algorithm. Path P gives us a good
cycle (vi, hj , P, vi).

For this subclass of GATTC, it can be shown that a player may have an incentive to
lie about its preferences to obtain a better allocation. Informally, there exist instances
of a housing market in which if a player i ∈ [n] does not misreport its preferences,
it may only get a third most preferred house. However, if i points to its second most
preferred house h in the graph, it can manage to influence which good cycle is selected
by the mechanism, and be included in that good cycle. Player i then gets allocated
house j.
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8.5 TTAS and TCR
We now describe the two families of mechanisms in the literature — TTAS [Alcalde-
Unzu and Molis, 2011] and TCR [Jaramillo and Manjunath, 2011] — designed for
housing markets with indifferences. Both families of mechanisms are extensions of
TTC. We will later show that both families are subclasses of GATTC.

TTAS

Let H = (n, ω,�) be the input housing market. Fix a priority ranking of the
houses; i.e., a complete, transitive and antisymmetric binary relation over [n].
Construct the graph G(H), and run the following procedure on it (starting with
i = 1, incrementing i every iteration) until no more players are remaining in the
graph.

Step i.

(i.1) Let each player remaining in the graph point to its most preferred set of
houses among the houses remaining in the graph. Select the absorbing sets
of this directed graph.

(i.2) Consider the paired symmetric absorbing sets. Their players are allocated
to the house that the players currently point to in the graph. These absorb-
ing sets are removed from the graph.

(i.3) Consider the remaining absorbing sets. Select for each player i a unique
house to point to by using the following criterion: Let h be the house that
points to player i in the graph that is remaining. Player i points only to
the house that it prefers most among the houses remaining. Ties are broken
by selecting among the candidate houses the one that comes after h in the
priority order (if there is no such house, then select among the candidate
houses the first house in the priority order).

(i.4) Then, in this subgraph, there is necessarily at least one cycle and no two
cycles intersect. Implement all cycles in this subgraph, but do not remove
them from the graph.

The algorithm terminates when no players and houses remain, and the outcome is
the assignment formed during its execution.
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TCR

Consider a priority ranking of the players; i.e., a complete, transitive and anti-
symmetric binary relation over [n]. Construct the graph G(H) and repeat the
following three steps until no more players are left.

Departure: A set of players S is chosen to “depart” if for each player i ∈ S it holds that one
of i’s most preferred houses (among the houses remaining in the graph) points
to i, and secondly, any house in the set of most preferred houses by S among the
houses remaining in the graph, points to a player in S.

Once a set S of players departs, each player in S is allocated the house pointing
to it. The set S and the houses pointing to this set are removed from the graph.

There may be other sets of players that can depart. The process continues until
there are no more sets that can depart. If the two conditions are not met by any
set, then no set departs.

Pointing: Each player in the graph is made to point to a particular player holding one of
its most preferred houses (among the houses remaining in the graph), which is
done as follows.

Stage 1. For each remaining player i′ ∈ [n] where i′ is pointed at by the same house
as in the previous iteration, each player i ∈ [n] that pointed at i′ in the
previous step points to i′ in the current step. This step does not apply in
case it is the very first step.

Stage 2. Each player i ∈ [n] with a unique most preferred house j (among the
houses remaining in the graph) is made to point to the player i′ for which
it holds that j points to i′.

Stage 3. A player i ∈ [n] is called unsatisfied iff none of its most preferred houses
among the houses remaining in the graph points toward i. Each player
i for which at least one of its most preferred houses (among the houses
remaining in the graph) points to an unsatisfied player, is made to point to
such an unsatisfied player that is pointed at by one of i’s most preferred
houses (among the houses remaining in the graph). If there are multiple
players that i can point to, ties are broken by taking the player that appears
first in the priority order that we fixed beforehand.

Stage 4. Each player i ∈ [n] for which at least one of its most preferred houses
(among the houses remaining in the graph) points to a satisfied player that
points to an unsatisfied player, is made to point to such a satisfied player.
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Ties are broken by making i point to the satisfied player that points to the
unsatisfied player that appears first in the priority order. If two or more
such satisfied players point to the unsatisfied player with highest priority,
ties are broken by making the player player point to the satisfied player
with highest priority.

Stage . . . And so on.

Trading: Since each player remaining in the graph points to another player, there is at
least one cycle of players. For each cycle C of players in the graph, each house
pointing to a player i in C is repointed to the player pointing to i.

Note that TTAS and TCR mechanisms depend on the priority ordering over the
houses and players respectively, and different priority rankings lead to different mech-
anisms. Thus, TTAS and TCR are classes of mechanisms rather than single mecha-
nisms. Next, we show that TTAS and TCR are subclasses of GATTC, in which cycles
are selected via the priority order over houses and players respectively.

Theorem 182. GATTC generalizes both the TTAS and TCR families of mechanisms.

Proof. (GATTC generalizes TTAS). Step i.2 of TTAS corresponds to repeatedly exe-
cuting Step 1.2 (and skipping Step 1.1). After that, TTAS may implement a number
of non-good cycles. This corresponds in GATTC to executing Step 1.1 (skipping Step
1.2). However, the proof of Proposition 1 in [Alcalde-Unzu and Molis, 2011] shows
that TTAS can never perpetually implement non-good cycles: Either the graph be-
comes empty, or eventually a good cycle is found and implemented. So executing in
TTAS Step i.2 to i.4 on iterations where a good cycle is implemented, corresponds to
executing Steps 3 and 4 of GATTC.

(GATTC generalizes TCR). A TCR rule reduces to the GATTC mechanism if zero
non-good cycles are implemented in Step 1 and if in Step 3 of GATTC, a good cycle
is implemented in the particular way as outlined in the definition as TCR.3 It is clear
from Step 2 (pointing) of TCR that because of the way players are made to point, the
cycles implemented in Step 3 involve at least one vertex that is not paired symmetric.
Therefore the cycles implemented are good cycles.

In contrast to TTAS (which is known to be strict core selecting), it was not known
whether TCR is also strict core selecting. As a corollary of Theorems 178 and 182, we
obtain the following.

3Of course, in the description of TCR, players are made to point to other players rather than houses, but
TCR is trivially rephrased so that in the trading step players are made to point to the houses instead of their
owners, leading to the trading step being equivalent to the implementation of a good cycle.
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Corollary 183. Each TCR mechanism is strict core selecting.

In the next section, we answer an open question concerning the running time of the
TTAS mechanism.

8.6 Complexity of TTAS
An important property of TTAS is that if a player i ∈ [n] is repointed at by a house
j ∈ [n] during the running of TTAS, but i and j are not yet deleted from the graph,
then player i is guaranteed to be ultimately allocated a house j′ ∈ [n] where j ∼i
j′ [Lemma 1, Alcalde-Unzu and Molis, 2011]. Therefore, the number of symmetric
pairs can only increase during the running of the algorithm although it may stay con-
stant in a number of iterations. Alcalde-Unzu and Molis [2011] showed that despite a
number of stages in which no obvious progress is being made, TTAS eventually termi-
nates [Proposition 1, Alcalde-Unzu and Molis, 2011]. Although, we know that TTAS
terminates and results in a proper allocation, the proof of [Proposition 1, Alcalde-
Unzu and Molis, 2011] does not give insight into how many steps are taken before
TTAS finishes.We will show the following.

Theorem 184. There exists a family of housing markets {Hk = (nk, ωk,�k) | k ∈
N>0} with nk = 2k + 1, and corresponding priority rankings {Rk | k ∈ N>0} such
that if the TTAS mechanism receives input Hk and chooses Rk as its priority ranking
in Step 0, then the TTAS mechanism runs for at least 2k = 2(nk−1)/2 steps until it
terminates.

This theorem shows thus that the TTAS mechanism, according to its current de-
scription, does not run in polynomial time. It still might be that for each instance, there
is some priority ranking such that the TTAS mechanism runs in polynomial time, but
then at least some additional details are needed in the description on how to choose the
priority ranking. I.e., the algorithm described in Alcalde-Unzu and Molis [2011] is not
sufficient to attain a polynomial running time.

Proof. For convenience, we name the houses of housing market Hk as {h1, h
′
1, h2, h

′
2,

. . . , hk, h
′
k, hk+1} and we name the players {v1, v

′
1, v2, v

′
2, . . . , vk, v

′
k, vk+1}. In the

initial endowment ωk, house hj is assigned to player vj for all j ∈ [k+1], and house h′j
is assigned to player v′j for all j ∈ [k]. The preference profile of player vj , j ∈ [k] is de-
scribed by two equivalence classes: its class of most preferred houses is {h′j , hj , hj+1},
and the remainder of the houses is in its other equivalence class, i.e., its class of least
preferred houses. The preference profile of player v′j , j ∈ [k], is also described by two
equivalence classes: its class of most preferred houses is {hj , h′j , h1} (so for j = 1,
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this set has cardinality 2), and the remainder of the houses are in the other equivalence
class, i.e., its class of least preferred houses. The preference profile of player vk+1 is
also described by two equivalence classes: Its class of most preferred houses is {h1},
and the remainder of the houses is in its other equivalence class, i.e., its class of least
preferred houses. The priority ranking R is (h1, h

′
1, h2, h

′
2, . . . , hk, h

′
k, hk+1).

The high level idea of this example is to simulate a binary counter. The graph that
the TTAS mechanism maintains will contain a single absorbing set at every step: the
entire graph. At every step except the last one, the only player that prevents the graph
from being paired symmetric will be player vk+1. We associate bit-strings of length k
to the graphs that may arise in some of the steps of the TTAS algorithm: Let b ∈ {0, 1}k
be any bit-string of length k, then we define the graph Gb as the graph where for all j,

• vj and v′j all point to their set of most preferred houses,

• if bj = 0, then hj points to vj and h′j points to a′j .

• if bj = 1, then hj points to v′j and h′j points to aj .

We prove that for all bit-strings b of length k there is a step ib such that the graph at the
beginning of step ib is equal to Gb. Because there are 2k possible bit-strings, it then
follows that there are at least 2k steps before the algorithm terminates.

In order to understand what happens during the execution of the TTAS algorithm on
an instance Mj , we recommend the reader to inspect the example of Figure 8.2, where
the graph at the beginning of every step is shown when we run the TTAS mechanism
on M3.

Let us assume that at the beginning of step i of the execution of the TTAS mecha-
nism, the graph is equal to Gb for some b. We can prove that Gb is strongly connected:

Claim 185. For each length k bit-string b, Gb is strongly connected.

Proof. We first show that there is a path from h1 to every other vertex v.
If b1 = 0, then h1 points to v1 and h′1 points to a′1. If b2 = 0, then there exists a

path (h1, v1, h2, v2, h
′
2, v
′
2). If b2 = 1, then there exists a path (h1, v1, h2, v2, h

′
2, v2).

If b1 = 1, then h1 points to v′1 and h′1 points to v1. If b2 = 0, then there exists a path
(h1, v

′
1, h
′
1, v1, h2, v2, h

′
2, v
′
2). If b2 = 1, then there exists a path (h1, v

′
1, h
′
1, v1, h2, v

′
2,

h′2, v2).
Therefore h1 has a path to the following vertices: v1, v2, h1, h2, v

′
1, v
′
2, h
′
1, h
′
2.

Using the same argument, we can see that for each vj , there is a path to vj+1; for
each v′j , there is a path to v′j+1; for each hj there is a path to hj+1; for each h′j , there
is a path to h′j+1. Therefore, it holds that: From h1, there is a path to each vj for



222 CHAPTER 8. HOUSING MARKETS WITH INDIFFERENCES

j ∈ [k + 1]; From h1, there is a path to each v′j for j ∈ [k]; From h1, there is a path to
each hj for j ∈ [k + 1]; and from h1, there is a path to each h′j for j ∈ [k].

Similarly, it can be shown that from every vertex, there is a path to h1. This com-
pletes the argument of the claim.

Therefore, Gb has only one absorbing set: the whole of Gb.
Also observe that for all b, Gb is not paired symmetric, because of player k + 1.

From this we conclude that if the graph at the beginning of a step i is equal to Gb,
for some b ∈ {0, 1}k, then the TTAS mechanism does not terminate at step i, and the
mechanism will certainly reach step i+ 1.

For some step i of the TTAS mechanism, and for every player v ∈ [n], let Siv denote
the set of most preferred houses of v that are ranked lower than the house assigned to
v in step i. However, if this set is empty, then define Siv to be the set of most preferred
houses of v. Let us assume that for step i, the following property holds, which we will
call Property Ai: for every player v ∈ [n], it holds that the set of most preferred houses
of v that have been repointed to v the least number of times (including 0 times), is Siv .

We define a straightforward bijection c : {0, 1}k → [2k − 1] ∪ {0} as follows:
bit-string b corresponds to the integer

∑k
j=1 2j−1bj . We then see that the following

happens:

Claim 186. Let b be a bit-string of length k, suppose that i is a step in the TTAS
mechanism such that the graph at step i is equal to Gb, and suppose that Property Ai
holds.

• If c(b) is even, then the graph at step i + 1 of the TTAS algorithm is equal to
Gb+1, and Property Ai+1 holds.

• If c(b) is odd and not equal to 2k − 1, then the graph at step i + 2 of the TTAS
algorithm is equal to Gb+1, and Property Ai+2 holds.

Proof. If c(b) is even, it is easy to see that at the beginning of step i+ 1, the graph will
be Gc−1(c(b)+1): the only cycle found in part 3 of step i is (h1, v1, h

′
1, v
′
1, h1). Any

other cycles would have to make use of one of the arcs pointing toward h′1, but that is
not possible by the vertex-disjointness property of the cycles in the subgraph used at
part 3 of step i. After augmenting Gb according to cycle (h1, v1, h

′
1, v
′
1, h1), it is easy

to check that the graph is equal to Gb+1. Also, observe that Property Ai+1 holds.
If c(b) is odd and not equal to 2k − 1, then define j to be the largest index such that

bj′ = 1 for all j′ ≤ j. Then, in part 3 of step i, the cycle (h1, v
′
1, h
′
1, v1, h2, v

′
2, h
′
2, v2,

. . . , hj , v
′
j , h
′
j , vj , hj+1, vj+1, h

′
j+1, v

′
j+1, h1) is found, and no other cycle is found,
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because otherwise h1 would be in such a cycle: a contradiction. It is not hard to verify
that property Ai+1 holds, and the graph that now arises at the beginning of step i + 1
is again a single absorbing set that is not paired symmetric, because of vk+1. Step
i + 2 will therefore certainly be reached, and it can be verified by similar reasoning
as before that again a single cycle is found in part 3 of step i + 1. This cycle is
(h1, v

′
j+1, hj+1, vj , hj , vj−1, hj−1, vj−2, hj−2, . . . , v1, h1). Augmenting the graph on

this cycle makes the graph exactly equal to Gc−1(c(b)+1). Moreover, Property Ai+2

holds.

Property A1 is certainly satisfied, and the graph at step 1 is G000.... By straight-
forward induction, using the claim above, it follows that for all bit-strings b of length
k there is indeed a step ib such that the graph at the beginning of step ib is equal to
Gb.

8.7 Discussion

Properties TTAS TCR GATTC

Core, Pareto optimal X X 4Th. 177

Strict core (if non-empty) X 4 Cor. 183 4Th. 178

Truthful X X 7 Th. 181

Polynomial time 7 Th. 184 X 7 Th. 184

Table 8.1: Housing market mechanisms: new results are in a bolder font.

We analyzed and compared the two housing market mechanisms TTAS and TCR.
Whereas it was shown that TTAS may take exponential time, TCR was shown to be
strict core selecting just like TTAS. The new and old results are summarized in Ta-
ble 8.1. Our abstraction from TTAS and TCR to GATTC helps identify the crucial
higher level details and commonality of both TTAS and TCR. This leads to simple
proofs for properties satisfied by any GATTC mechanism. Whereas core, strict core,
and Pareto optimality are properties that can be fulfilled by any GATTC mechanism,
additionally satisfying truthfulness requires subtlety in choosing which cycles are im-
plemented in which order. This additional complexity leads to an exponential time
lower bound in the case of TTAS and a difficulty in having a very simple description
in the case of TCR.

Our study leads to a number of further research questions. It will be interesting
to characterize the subset of GATTC mechanisms which are truthful or are both truth-
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ful and run in polynomial time. Another question is to see whether being a GATTC
mechanism is a necessary condition to simultaneously achieve core stability, Pareto
optimality and strict core stability. We have seen that all known housing market mech-
anisms which are core selecting and Pareto optimal are also strict core selecting (if
the strict core is non-empty). This raises the question whether every housing market
mechanism which is core selecting and Pareto optimal is also strict core selecting (if
the strict core is non-empty).
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Figure 8.1: Illustration of the first steps of a GATTC mechanism applied to the hous-
ing market H in Example 176. The top figure shows the graph G(H) as initial-
ized. The algorithm proceeds by executing Step 1 zero times, removing no paired
symmetric absorbing sets in Step 2 (as there are none), and implementing the cycle
(v1, h2, v2, h3, v3, h4, v4, h1, v1) in Step 3. The graph after implementing this cycle is
shown in the middle figure. Subsequently, the mechanism removes the paired symmet-
ric absorbing sets, forcing v5 to point to its second-most preferred houses, i.e., house
h4.
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Chapter 9

Complexity of coalition
structure generation*

We deal in this chapter with the following problem: given a cooperative game (n, v)
(see Definition 26), find a partition P of [n] such that

∑
P∈P v(P ) is maximized. This

problem is referred to as the coalition structure generation problem, and is an impor-
tant and widely studied problem in algorithmic cooperative game theory; especially
for cooperative games that are known to not satisfy the superadditivity property. We
will refer to the coalition structure generation problem as OPTCS. Computing optimal
coalition structures is a natural problem in which the aim is to utilize resources in the
most efficient manner.

OPTCS is relevant to certain optimization problems in strategic games as well: the
main problem studied in Chapter 7 (i.e., finding an optimal assignment of the players
to the facilities, in a singleton congestion game with externalities) can be straightfor-
wardly seen as a coalition structure generation problem of a cooperative game. This
chapter can thus be regarded as a more general study of such OPTCS problems.

We first study the complexity of OPTCS under a “black-box” model, where the
algorithm has only query access to the given characteristic function. It turns out that
for this model, a polynomial time algorithm exists that solves OPTCS for all cooper-
ative games for which the types of the players are known, and this number of types
is bounded by a constant. This notion of player type is formally defined later; one
may think of a set of players having the same type iff permuting these players does
not change the cooperative game. As a corollary of our result, we obtain a polynomial

*The contents of this chapter have been published as Aziz and De Keijzer [2011a,b]
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228 CHAPTER 9. COMPLEXITY OF COALITION STRUCTURE GENERATION

time algorithm to compute an optimal partition for three classes of games: weighted
voting games with a constant number of weight values, linear games with a constant
number of desirability classes, and cooperative skill games with a constant number of
skills. However, on the negative side we show that an exponential number of queries to
the characteristic function may be needed in order to find out which player has which
type, even if there are only two types and the input cooperative game is simple (i.e., a
monotone game of which the characteristic function maps to {0, 1}).

Lastly, we consider the coalition structure generation problem for various well-
known cooperative games defined compactly on combinatorial domains. For these
games, we characterize the complexity of computing an optimal coalition structure
by presenting polynomial-time algorithms, approximation algorithms, or NP-hardness
and inapproximability lower bounds.

The reader is recommended to study Sections 1.2 and 1.3.2 from the introduction
chapter of this thesis, prior to reading this chapter.

9.1 Background
Cooperative games have been used to model various cooperative settings in operations
research, artificial intelligence, and multiagent systems [see e.g, Bachrach and Rosen-
schein, 2008, 2009, Elkind et al., 2007]. The area of cooperative game theory, which
studies (among other aspects) coalition formation, has seen considerable growth over
the last few decades.

OPTCS has received attention in the artificial intelligence community where the
focus has generally been on computing optimal coalition structures for general cooper-
ative games [Michalak et al., 2010, Sandholm et al., 1999] without any combinatorial
structure. Traditionally, the input considered is an oracle called a characteristic func-
tion which returns the value for any given coalition (in time polynomial in the number
of players). In this setting, it is generally assumed that the value of a coalition does not
depend on players that are not in the coalition.

Computing optimal coalition structures is a computationally hard task because the
number of coalition structures that grows exponentially in the number of players, and
in general it is necessary to inspect all coalition structures in order to find the optimal
one. The total number of coalition structures for a player set of size n is Bn ∈ Θ(nn)
where Bn is the nth Bell number. Various algorithms have been developed in the
last decade which attempt to satisfy many desirable criteria, e.g. outputting an optimal
solution or a good approximation, the ability to prune, the anytime property, worst-case
guarantees, distributed computation, etc. [Michalak et al., 2010, Rahwan et al., 2009,
Sandholm et al., 1999, Service and Adams, 2010]. In all of the cases, the algorithms
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have a worst-case time complexity that is exponential in n.
Alternatively, cooperative games can be represented compactly on combinatorial

domains where the valuation function is implicitly defined [Deng and Fang, 2008, Deng
and Papadimitriou, 1994]. Numerous such classes of cooperative games have been the
subject of research: weighted voting games [Elkind et al., 2007]; skill games [Bachrach
and Rosenschein, 2008]; multiple weighted voting games [Aziz et al., 2010]; network
flow games [Bachrach and Rosenschein, 2009]; spanning connectivity games [Aziz
et al., 2009]; and matching games [Kern and Paulusma, 2003]. Apart from some ex-
ceptions (skill games [Bachrach et al., 2010b] and marginal contribution nets [Ohta
et al., 2009]), most of the Algorithms research for these classes of games has been on
computing stability-based solutions.

9.1.0.0.1 Contribution and Outline In Section 9.2, we define formally the coali-
tion structure generation problem, OPTCS, and we introduce the various classes of
cooperative games for which we study the OPTCS problem.

Subsequently, in Section 9.3, we consider the case where there is a fixed number
of types of players, and it is known in advance which player has which type. We show
that a polynomial time algorithm for OPTCS exists in this case, and as a corollary it
holds that OPTCS is solvable in polynomial time for weighted voting games with a
constant number of weight values, linear games with a constant number of desirability
classes, and cooperative skill games with a constant number of skills. On the negative
side, we show that in general an exponential number of queries to the characteristic
function may be needed in order to derive the types of the players even in case the input
cooperative game is simple (i.e., a monotone game for which the characteristic function
maps to {0, 1}) and there are only 2 types. The latter holds even in expectation (when
the algorithm is randomized), and is shown through an application of Yao’s minimax
principle.

Some specific cooperative games are studied in Sections 9.4 and 9.5: Simple games
and weighted voting games are studied in Section 9.4: We present a 2-approximation
algorithm for the case of weighted voting games and show that this approximation
bound is the best possible. For general simple games, the degree of inapproximability
deteriorates to n1−ε (for any ε > 0). The approximation and inapproximability results
concerning weighted voting games may be of independent interest since they address a
problem in the family of knapsack problems [Kellerer et al., 2004] which has not been
studied before.

We examine in Section 9.5 some well-known cooperative games based on graphs,
and characterize the complexity of computing the optimal coalition structures.

Finally, a table summarizing all results of this chapter is provided in section 9.6.
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9.2 Preliminaries
In this section, we define several important classes of cooperative games and formally
define our fundamental computational problem OPTCS.

9.2.1 Simple Games and Threshold Games
Definition 187 (Simple game, winning and losing coalition, minimal winning coali-
tion). A simple game is a monotone cooperative game (n, v) with v : 2[n] → {0, 1}
such that v(∅) = 0 and v([n]) = 1. A coalition P ⊆ [n] is said to be winning iff
v(P ) = 1 and losing iff v(P ) = 0. A minimal winning coalition (MWC) of a simple
game v is a winning coalition for which removing of any player makes the coalition
losing. Likewise, one can define the set of maximal losing coalitions as the set of losing
coalitions for which adding any player makes the coalition winning. A simple game
can be represented by its set of minimal winning coalitions, and by its set of maximal
losing coalitions.

For any monotone cooperative game, one can construct a corresponding threshold
game [Aziz et al., 2010]. Threshold versions of cooperative games are common in
the multiagent systems literature; see for instance [Bachrach and Rosenschein, 2009,
Elkind et al., 2007].

Definition 188 (Threshold version of a cooperative game). For a cooperative game (n, v)
and a number t ∈ R, the corresponding t-threshold game is defined as the cooperative
game (n, vt), where for all P ⊆ [n],

vt(P ) =

{
1 if v(P ) ≥ t
0 otherwise.

It can easily be verified that if (n, v) is monotone, then for any threshold t ≤ v([n]),
the t-threshold version (n, vt) is a simple game.

9.2.2 Cooperative Game Classes
We now review a number of specific classes of cooperative games. Here we adopt
the convention that if CLASS denotes a particular class of games, we have T-CLASS
refer to the class of threshold games corresponding to games in CLASS, i.e., for every
threshold t ∈ R, (n, vt) is in T-CLASS if and only if (n, v) is in CLASS.

Weighted voting games are a widely studied class of monotone games (see e.g.
Taylor and Zwicker [1999]).
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Definition 189 (Weighted voting games). A weighted voting game (WVG) is a simple
game (n, v) for which there is a quota q ∈ R≥0 and a weight wi ∈ R≥0 for each player
i ∈ [n] such that for all P ⊆ [n],

v(P ) = 1 if and only if
∑
i∈P

wi ≥ q.

The WVG with quota q and weights w1, . . . , wn is denoted by [q;w1, . . . , wn], where
we commonly assume wi ≥ wi+1 for i ∈ [n− 1].

A multiple weighted voting game (MWVG) is the simple game (n, v) for which
there are WVGs (n, v1), . . . , (n, vm) such that for all P ⊆ [n],

v(P ) = 1 if and only if vk(P ) = 1 for all k ∈ [m].

The remaining classes of cooperative games we will study are defined on graphs.
These are spanning connectivity games, independent set games, matching games, net-
work flow games, and induced subgraph games, where either nodes or edges are con-
trolled by players, and the value of a coalition of players depends on their ability to
connect the graph, enable a bigger flow, or obtain a heavier matching or edge set.

Definition 190 (Spanning connectivity game [Aziz et al., 2009]). For each connected
undirected graph G = (V,E), we define the spanning connectivity game (SCG) on G
as the simple game (m, v) where m = |E| and each player corresponds to an edge in
E, according to a bijection b : [m] → E. For all P ⊆ [m], v(P ) = 1 if and only if
there exists some P ′ ⊆ P such that (V, {b(i) | i ∈ P ′}) is a spanning tree.

Definition 191 (Independent set game [Deng and Fang, 2008]). For each connected
undirected graph G = ([n], E), we define the independent set game (ISG) on G as
the game (n, v) such that for all P ⊆ [n], v(P ) is the cardinality of the maximum
independent set on the subgraph of G induced by P .

Definition 192 ((Unweighted) matching game [Kern and Paulusma, 2003]). Let (G =
([n], E), w) be an undirected edge-weighted graph (i.e., w : E → R). The (un-
weighted) matching game corresponding to G is the cooperative game (n, v) such that
for all P ⊆ [n], the value v(P ) equals the weight of the maximum weighted matching
of the subgraph induced by P .

Definition 193 (Induced subgraph game [Deng and Papadimitriou, 1994]). For an
undirected edge-weighted graph (G = ([n], E), w) (i.e., w : E → R), the induced
subgraph game (ISG) corresponding to G is the cooperative game (n, v) such that for
all P ⊆ [n], v(P ) is the total weight of edges in the subgraph induced by P . In this
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chapter, we sometimes assume that the graph corresponding to a induced subgraph
game has only positive edge weights and denote the class of such induced subgraph
games by ISG≥0. We denote the class of induced subgraph games where negative edge
weights are allowed, by ISG. Note that for this latter general class of induced subgraph
games, we allow the characteristic function v to map to negative numbers.

For the definition of network flow games, we need to introduce the notions of flow
networks and network flows.

Definition 194 (Flow network, network flow, value of a flow). A flow network ((V,E),
c, s, t) consists of a directed graph (V,E), where c : E → R≥0 is referred to as the
capacity function, and s ∈ V and t ∈ V are referred to as the source and sink vertices,
respectively. A network flow for ((V,E), c, s, t) is a function f : E → R≥0, that obeys
the capacity function (i.e., f(e) ≤ c(e) for all e ∈ E), as well as the condition that
the total flow entering any vertex (other than s and t) equals the total flow leaving the
vertex (i.e., for all v ∈ V \ {s, t} it holds that

∑
e∈in(v) f(e) =

∑
e∈out(v) f(e) where

in(v) = {(v1, v2) ∈ E | v2 = v} and out(v) = {(v1, v2) ∈ E | v1 = v}). The value of
the network flow f is the amount flowing out of the source (i.e.,

∑
e∈out(s) f(e)).

Definition 195 (Network flow game [Bachrach and Rosenschein, 2009]). Given a flow
network ((V,E), c, s, t), the associated network flow game (NFG) is the cooperative
game (n, v), where m = |E| and each player corresponds to an edge in E, according
to a bijection b : [m] → E. For each P ⊆ [m], the value v(P ) is the maximum value
of a network flow f for ((V,E, c, s, t) such that f(e) = 0 for all e ∈ {b(i) | i 6∈ P}.

Definition 196 (Path cooperative games). Let G = ([n], E) be a directed graph, and
let s, t ∈ [n]

• the edge (s, t)-path cooperative game (EPCG) corresponding to G is a simple
game (m, v) such that m = |E| and each player corresponds to an edge in E,
according to a bijection b : [m] → E. For each P ⊆ [m], v(P ) = 1 if and only
if there exists an (s, t)-path in (V, {b(i) | i ∈ P}).

• the vertex path cooperative game (VPCG) corresponding to G is a simple game
(n, v) such that for all P ⊆ [n], v(P ) = 1 if and only if there is an (s, t)-path in
the subgraph of G induced by P .

Definition 197 (Cooperative skill games Bachrach and Rosenschein [2008]). A co-
operative skill domain is a tuple (n,m,U, S, T, u) where n,m ∈ N≥1 and [n] is the
player set, [m] is the task set, and U is a finite set of skills. S is an n-dimensional
vector of subsets of U and Si, i ∈ [n], is referred to as the skill set of player i. T is a
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m-dimensional vector of subsets of U , and Sj , j ∈ [m], is referred to as the set of skills
required for task j. The set of skills that a coalition P ⊆ [n] has is S(P ) =

⋃
i∈P Si.

A coalition P ⊆ [n] is said to be able to perform task j if Tj ⊆ S(P ). The set of
tasks that coalition P is able to perform is T (P ) = {j | Tj ⊆ S(P )}. The function
u : 2T → R is referred to as the task value function, and is monotone. The cooperative
skill game (CSG) corresponding to a given cooperative skill domain (n,m,U, S, T, u)
is the game (n, v) such that for all P ⊆ [n], v(P ) = u(T (P )). A weighted task co-
operative skill game (WTCSG) is a CSG corresponding to a cooperative skill domain
(n,m,U, S, T, u) where each task j ∈ T has an associated weight wj ∈ R≥0 and the
task value function is given by u(T ′) =

∑
j ∈T ′ wj . A threshold version of WTCSG

can be defined according to Definition 188.

Definition 198 (Linear games Taylor and Zwicker [1999]). On a cooperative game
(n, v), we define the desirability relation �D as follows: we say that a player i ∈ [n]
is more desirable than a player i′ ∈ [n] (i �D i′) if for all coalitions P ⊆ [n]\{i, i′} it
holds that v(P ∪{i}) ≥ v(P ∪{i′}). The relations�D (“strictly more desirable”),∼D
(“equally desirable”), and �D and ≺D (“(strictly) less desirable”) are defined in the
obvious way. Linear games are simple games with a complete desirability relation, i.e.
every pair of players is comparable with respect to�D. Weighted voting games form a
strict subclass of linear games. A linear game on players [n] is canonical iff ∀i, i′ ∈ [n]
such that i < i′ it holds that i �D i′. A right-shift of a coalition P , in a linear game
(n, v), is a coalition that can be obtained by a sequence of replacements of players in P
by less desirable players. A left-shift of a coalition P is defined analogously. Canonical
linear games can be represented by listing their shift-minimal winning coalitions: min-
imal winning coalitions for which it holds that any right-shift is losing. Similarly they
can be represented by listing their shift-maximal losing coalitions, defined analogously.

9.2.3 Problem Definition
We formally define coalition structures and OPTCS.

Definition 199 ((Optimal) coalition structure). A coalition structure for a cooperative
game (n, v) is a partition of [n]. The value attained by a coalition structure P , denoted
v(P) (we overload notation), is defined as

∑
P∈P v(P ). A coalition structure P is

optimal for (n, v) when v(P) ≥ v(P ′) for every coalition structure P ′ for (n, v).

We consider the following computational problem.

Definition 200 (Problem OPTCS). For any class of cooperative gamesX , the problem
OPTCS(X ) is as follows: given a cooperative game (n, v) ∈ X in its natural represen-
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tation, compute an optimal coalition structure. Throughout this chapter, it will be clear
what is meant with the “natural representation”, for each class X that we consider.

9.3 Games with Fixed Player Types
We study the problem of computing an optimal coalition structure for a game in the
case that the number of player types is fixed. Shrot et al. [2010] considered player types
and showed that some intractable problems become tractable when only dealing with a
fixed number of player types. However, the coalition structure generation problem was
not addressed in that paper.

Definition 201 (Strategic equivalence, player type). For a cooperative game (n, v),
we call two players i, i′ ∈ [n] strategically equivalent iff for every coalition P ⊆
[n]\{i, i′} it holds that v(P ∪ {i}) = v(P ∪ {i′}). When two players i, i′ ∈ [n] are
strategically equivalent, we say that i and i′ are of the same player type.

Definition 202 (Valid type-partition). A valid type-partition for a game (n, v) is a
partition P of [n] such that for each player set P ∈ P , all players in P are of the same
player type.

Let k ∈ N≥1 be a given constant. We consider the computational problem where
the goal is to compute an optimal coalition structure for a cooperative game (n, v),
given as input a valid type partition P for (n, v), such that |P| ≤ k. In general, it is
not easy to verify that a given partition for a simple game is a valid type-partition. But
under the assumption that we are given a valid type partition of which the cardinality
is at most k, and under the assumption that it is computationally easy to evaluate v, it
turns out that an optimal coalition structure can be computed in polynomial time.

9.3.1 A General Algorithm
We show that there exists a polynomial time algorithm to compute an optimal coali-
tion structure for any cooperative game when we are given a valid type partition with
the number of player types bounded by a constant. Our algorithm utilizes dynamic
programming to compute an optimal coalition structure provided there are a constant
number of player types.

Theorem 203. Let k ∈ N≥1. There exists an algorithm A that finds, given a game
(n, v) and type partition P , an optimal coalition structure for (n, v) in time polynomial
in n, provided that v can be evaluated in polynomial time, the input type partitionP is a
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valid type partition, and |P| ≤ k. More precisely,A runs in timeO((n+1)k·time(v)+
(n+ 1)2k), where time(v) is the time it takes to evaluate v.

Proof. Let (n, v) be the input cooperative game, let P = {T1, . . . , Tk} be the input
type-partition, and assume P is valid. We define coalition types as follows. For num-
bers t1, . . . , tk ∈ [n] ∪ {0}, the coalition-type T (t1, . . . , tk) is the set of coalitions
{P ⊆ [n] | ∀i ∈ {1, . . . , k} : |P ∩ Ti| = ti}. In words: coalitions in coalition-type
T (t1, . . . , tk) have ti players of type Ti, for all i ∈ [k]. Note that v maps all coalitions
of the same coalition type to the same value.

First, our algorithm computes a table V of characteristic function values for each
coalition type. In order to do this we need to query v at most (n + 1)k times, since
ti ∈ [n] ∪ {0} for all i ∈ [k]. Let time(v) denote the time it takes to query v, then
computing V takes O(nk·time(v)) time.

We proceed with a dynamic programming approach in order to find an optimal
coalition structure: Let f(a1, . . . , ak) be the optimal value attained by an optimal
coalition structure on the cooperative game (n, v) restricted to a subset of players
N ′ ∈ {N ′ | ∀i ∈ {1, . . . , k} : |N ′ ∩ Ti| = ai}. Note that f(a1, . . . , ak) is indeed
well-defined since it is independent of our particular choice of N ′. We are interested
in computing f(|T1|, . . . , |Tk|). By γ, we signify the set of type-partitions P such that
v(P) = v(∅).

Since v(∅) = 0, the following recursive definition of f(a1, . . . , ak) holds:

f(a1, . . . , ak) =


0 if ai = 0 for all i ∈ [k],

max{f(a1 − b1, . . . , a1 − bk) + v(b1, . . . , bk)

| ∀i ∈ [k] : bi ≤ ai} otherwise.
(9.1)

The recursive definition of f(a1, . . . , ak) directly implies a dynamic programming
algorithm. The dynamic programming approach works by filling in a |T1| × · · · × |Tk|
table Q, where the value of f(a1, . . . ak) is stored at entry Q[a1, . . . , ak]. Once the
table has been computed, f(|T1|, . . . , |Tk|) is returned. The entries of Q are filled
in according to (9.1). In order to utilize (9.1), “lower” entries are filled in first, i.e.
Q[a1, . . . , ak] is filled in before Q[a′1, . . . , a

′
k] if ai ≤ a′i for 1 ≤ i ≤ k. Evaluating

(9.1) then takes O((n + 1)k) time (due to the “otherwise”-case of (9.1), where the
maximum of a set of at most (n + 1)k elements needs to be computed). There are
O((n+1)k) entries to be computed, so the algorithm runs inO(nk·time(v)+(n+1)2k)
time.

It is straightforward to extend this algorithm so that it (instead of outputting only
the optimal value) also computes and outputs an actual coalition structure that attains
the optimal value. To do so, maintain another table |T1| × · · · × |Tk| table R. At each
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point in time that some entry of Q is computed, say Q[a1, . . . , ak], now we also fill in
R[a1, . . . , ak]. R[a1, . . . , ak] contains a description of a set P of coalitions such that∑
P∈P v(P ) = f(a1, . . . , an) and

⋃
P ∈ T (a1, . . . , ak). It suffices to describe P

by simply listing the type of each P ∈ P , and it is straightforward to verify that we
can set R(a1, . . . , ak) to ∅ if (a1, . . . , ak) ∈ γ, and otherwise we set R(a1, . . . , ak)
to (P (a1 − b1, . . . , a1 − bk), (b1, . . . , bk)), where (b1, . . . , bk) is the argument in the
max-expression of (9.1).

9.3.2 Difficulty of Finding Types
The polynomial time algorithm given in the proof of Theorem 203 relies on the promise
that the input type partition is valid. A natural question is now whether it is also possi-
ble to efficiently compute the type partition of a game in polynomial time when given
only the weaker promise that the number of player types is constant k. We answer this
question negatively. For randomized algorithms, we show high communication com-
plexity is necessary, i.e., we show that an exponential amount of information is needed
from the characteristic function v when we are given no information on the structure of
the characteristic function and we rely only on querying v. In fact, the theorem states
that this is the case even when v is simple and k = 2. It should be noted that this result
also holds for deterministic algorithms, since they are a special case of randomized
algorithms. Despite this negative result, we show in Section 9.3.3 that we can do better
for some subclasses of cooperative games, where we are provided with information on
the structure of function v.

Theorem 204. Any randomized algorithm that computes a player type-partition when
given as input a monotone simple game (n, v) that has 2 player types, requires at least
Θ( 2n√

n
) queries to v.

Proof. We use Yao’s minimax principle Yao [1977], which states that the expected cost
of a randomized algorithm on a given problem’s worst-case instances is at least the low-
est expected cost among all deterministic algorithms that run on any fixed probability
distribution over the problem instances.

Consider the following distribution over the input, where the player set is [n] and
n is even, the number of player types is always k = 2, and the given cooperative
game (n, v) is a simple game. Valuation v is drawn uniformly at random from the
set V = {vP | P ⊂ [n], |P | = n/2} where in vP , we call P the critical coalition.
Function vP is specified as follows:

• vP (D) = 0 when |D| < n/2;

• vP (D) = 1 when |D| > n/2;
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• vP (D) = 1 when D = P , i.e. D is the critical coalition;

• vP (D) = 0 otherwise.

Observe that there are exactly two player types in any of the games in V : for
vP , the type partition is (P, [n]\P ). Also observe that because v is drawn from V ,
for coalitions P of size n

2 , v(P ) = 1 with probability 1/
(
n
n/2

)
, because v is drawn

uniformly at random from V .
Now let us consider an arbitrary deterministic algorithm A that computes the type-

partition for instances in this input distribution by queries to v. Let P be the critical
coalition of n/2 players such that v(P ) = 1. A will have to query v(P ) in order to
know which characteristic function of V has been drawn, and thus determine the type
partition correctly. Let Q(v) be the sequence of queries to v that A generates. Let
Q′(v) be the subsequence obtained by removing fromQ(v) all queries v(D) such that
|D| 6= n/2 and all queries that occur after v(P ). Because A is deterministic, the query
sequence of A is the same among all instances up to querying the critical coalition,
since the critical coalitions are the only points in which the characteristic functions of V
differ from each other. Therefore the expected length of Q′(v) is

(
n
n/2

)
/2. Because A

was chosen arbitrarily, we conclude that also the most efficient deterministic algorithm
is expected to make at least

(
n
n/2

)
/2 = Θ( 2n√

n
) queries to v, and the theorem now

follows from Yao’s minimax principle.

Shrot et al. [2010] showed that checking whether two players are of the same type
is NP-hard for the cooperative games defined in Conitzer and Sandholm [2006], but
those games are such that even computing the value of a coalition is NP-hard. It is
possible to say something stronger.

Proposition 205. There exists a representation for a class of cooperative games for
which checking whether two players are of the same type is coNP-complete even though
the value of each coalition can be computed in polynomial time under this representa-
tion.

Proof. A coalition P ⊆ [n]\{i, j} such that v(P ∪{i}) 6= v(P ∪{j}) is a polynomial
time certificate for membership in coNP. Also, it is well known that checking whether
two players in a WVG have the same Banzhaf index is coNP-hard [Matsui and Matsui,
2000].1 Since two players in a WVG are of the same type if and only if they have same
the Banzhaf index, the claim follows.

1The Banzhaf index of a player i is defined as the ratio of |{S ⊆ [n]\{i} | v(S) = 0, v(S∪{i}) = 1}|
and 2n−1.
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9.3.3 Applications of Theorem 203
Theorem 204 and Proposition 205 indicate that finding player types is in general a
difficult task. Despite these negative results, Theorem 203 still applies to all classes
of games and many natural settings where the type partition is implicitly or explicitly
evident:

Corollary 206. There exists a polynomial time algorithm that solves OPTCS(WVG)
in case it holds that in the input game (given in the form of a quota and a weight for
each player), the number of distinct weights is constant. There exists a polynomial time
algorithm that solves OPTCS(MWVG) in case it holds that in the input game (given
in the form of a vector of quotas and a vector of weights for each player), the number
of distinct weight vectors for the players is constant.

Proof. When two players have the same weight (in the case of WVGs) or weight vec-
tors (in the case of MWVGs), they are strategically equivalent. Therefore we can
type-partition the players according to their weights or weight vectors and apply The-
orem 203.

There exists a polynomial-time algorithm for computing the desirability classes,
when given the list of shift-minimal winning coalitions of a linear game [Aziz, 2008].
This immediately yields the following corollary:

Corollary 207. In the following cases, there exists a polynomial-time algorithm that
computes an optimal coalition structure for linear games with a constant number of
desirability classes:

• The input game is represented as a list of (shift-)minimal winning coalitions;

• The input game is represented as a list of (shift-)maximal losing coalitions.

Bachrach et al. [2010b] proved that OPTCS(CSG) is polynomial time solvable if
the number of tasks is constant and a certain associated graph, named the “skill graph”,
has bounded treewidth. As a corollary of Theorem 203, we obtain a complementing
positive result that applies to all of the cooperative skill games defined in [Bachrach
and Rosenschein, 2008].

Corollary 208. There exists a polynomial time algorithm that computes an optimal
coalition structure for WTCSGs and T-WTCSGs with at most a fixed number of skills.

Proof. Assume that the number of skills is bounded by a constant k′. Then there is a
maximum of 2k

′
player types. A polynomial-time algorithm that computes an optimal

coalition structure now follows from Theorem 203.
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9.4 Weighted Voting Games and Simple Games
In this section, we examine weighted voting games (WVGs) and, more generally, sim-
ple games. Weighted voting games are cooperative games widely used in multiagent
systems and artificial intelligence. We have already seen that there exists a polynomial
time algorithm to compute an optimal coalition structure for WVGs with a constant
number of weight values. We show that if the number of weight values is not a con-
stant, then the problem becomes strongly NP-hard.

In the following propositions, we use the computational problem k-PARTITION. An
instance of the problem k-PARTITION is a set of n integer weights A = {a1, . . . , an}
and the question is whether it is possible to partitionA, into k sets P1, . . . , Pk ⊆ A such
that for i, j ∈ [k], Pi ∩ Pj = ∅ and

⋃
i∈[k] Pi = A and for all i ∈ [k],

∑
aj∈Ai aj =∑

j∈[n] aj/k.

Proposition 209. For a WVG, checking whether there is a coalition structure that
attains a value of k or more is NP-complete.

Proof. We prove this by a reduction from an instance of the classical NP-hard PARTI-
TION problem to checking whether a coalition structure in a WVG gets value at least
2.

Without loss of generality, assume that W =
∑
ai∈A ai is a multiple of k. Given

an instance of k-PARTITION, I = {a1, . . . , ak}, we can transform it to a WVG v =
[q;w1, . . . , wk] wherewi = ai for all i ∈ {1, . . . , k} and q = W/k. Then the answer to
I is yes if and only if there exists a coalition structure P for v such that v(P) = k.

Since 3-PARTITION is strongly NP-complete, it follows that OPTCS(WVG) is
strongly NP-hard. This stands in contrast with other results concerning WVGs where
computation becomes easy when the weights are encoded in unary [Matsui and Mat-
sui, 2000]. Proposition 209 does not discourage us from seeking an approximation
algorithm for WVGs. We show that there exists a polynomial time 2-approximation
algorithm.

Proposition 210. There exists a polynomial time 2-approximation algorithm for
OPTCS(WVG).

Proof. Consider the following algorithm: Let [q;w1, . . . , wn] be the input. We assume
without loss of generality that wi ≤ q for all i ∈ [n]. The algorithm first sets p[0] := 0,
and then computes for some number c the values p[1], . . . , p[c] using the rule

p[i] :=

{
n if

∑n
k=p[i−1]+1 wk < q,

min{j |
∑j
k=p[i−1]+1 wk ≥ q, (p[i− 1] + 1) ≤ j ≤ n} otherwise,

(9.2)
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where c is taken such that p[c] = n. The algorithm outputs the coalition structure
{P1, . . . , Pc}, where for i ∈ [c], Pi = {p[i− 1] + 1, . . . , p[i]}.

Observe that the coalitions P1 to Pc−1 are all winning and Pc is not necessarily
winning, so the value of the computed coalition structure is at least c − 1. By our
assumption, the total weight of any of the coalitions P1, . . . , Pc−1 is less than 2q, and
the total weight of Pc is less than q. Therefore, the total weight of [n] is strictly less
than q(2c− 1), so the optimal value is at most 2c− 2 = 2(c− 1). This is two times the
value of the coalition structure computed by the algorithm.

A tight example for the algorithm described in the proof of Theorem 210 would
be [q; q − ε, q − ε, ε, ε], where q is a fixed constant and ε is any positive real number
strictly less than q/2. On this input, the algorithm outputs a coalition structure that
attains a total value of 1, while clearly the optimal coalition structure attains a value of
2. The following proposition shows that there does not exist a better polynomial time
approximation algorithm under the assumption that P 6= NP.

Proposition 211. Let α < 2. Unless P = NP, there exists no polynomial time algo-
rithm that computes an α-approximate optimal coalition structure for a WVG.

Proof. We would be able to solve the NP-complete problem 2-PARTITION in polyno-
mial time if there existed a (< 2)-optimal polynomial-time approximation algorithm for
OPTCS(WVG). We could reduce a 2-PARTITION instance (w1, . . . , wn) to a weighted
voting game [q;w1, . . . , wn] where q =

∑
i∈[n] wi/2. Because the sum of all weights

of the players is 2q, a (< 2)-optimal approximation algorithm would output an optimal
coalition structure when provided with this instance. The output coalition structure di-
rectly corresponds to a solution of the original 2-PARTITION instance, in case it exists.
Otherwise, the value attained by the output coalition structure is 1.

Simple games that are not necessarily weighted, and are represented by the list of
minimal winning coalitions, are even harder to approximate.

Proposition 212. OPTCS(MWC), i.e. OPTCS for simple games represented as a list
of minimal winning coalitions, cannot be approximated within a factor of n1−ε in poly-
nomial time, unless P = NP.

Proof. This can be shown by means of a reduction from an instance of the classical
NP-hard maximum clique (MAXCLIQUE) problem. It is known that MAXCLIQUE
cannot be approximated within any constant factor [Maffioli and Galbiati, 2000].

Consider the instance I of MAXCLIQUE represented by an undirected graph GI =
(V,E). Transform I into instance I ′ = (|V |(|V | − 1)/2,Wm) of OPTCS(MWC)
in the following way. Define N = {{v, v′} | v ∈ V, v′ ∈ V } to be all subsets of
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V of cardinality 2, and let each player of I ′ correspond to a subset in N , according
to a bijection b : [|V |(|V | − 1)/2] → N . Next, for i ∈ V define Pi = {{i, j} ∈
V | {i, j} 6∈ E} and set Wm = {b−1(Pi) | i ∈ V }. Now, two coalitions b−1(Pi)
and b−1(Pi′) are disjoint if and only if {i, i′} ∈ E. Then the maximum clique size
is greater than or equal to k if and only if there is a coalition structure for I ′ that
attains value k. Assume that there exists a polynomial time algorithm which computes
a coalition structure P that gets a value that lies within a constant factor α of the
maximum possible value k. Then we can use P to get a constant factor approximation
solution to instance I in polynomial time in the following way. Assume without loss
of generality that P contains only minimal winning coalitions, and consider the set of
vertices {i | b−1(Pi) ∈ P}. Since for Pi, Pi′ ∈ P , Pi and Pi′ are disjoint, then we
know that (i, i′) ∈ E. Therefore the vertices {i | b−1(Pi) ∈ P} form a clique of size
k/α.

9.5 Games on Graphs
Numerous classes of cooperative games are based on graphs. We characterize the com-
plexity of OPTCS for many of these classes in the section. We first turn our attention
to one such class for which the computation of cooperative game solutions is well stud-
ied [Deng and Papadimitriou, 1994]. We see that that OPTCS is computationally hard
in general for induced subgraph games:

Proposition 213. For the general class of induced subgraph games ISG, the problem
OPTCS is strongly NP-hard.

Proof. We prove this by presenting a reduction from the strongly NP-hard problem
MAXCUT, where we are given a (non-negative) edge-weighted undirected graph and
the goal is to find a cut of the graph such that the total weight of the edges crossing the
cut is maximized. Consider an instance I = (G = ([n], E), w) of MAXCUT (where
w : E → R≥0), and non-negative weights w(i, i′) for each edge (i, i′) ∈ E. Let
W =

∑
(i,i′)∈E w(i, i′) and for a partition P of [n] into two parts, define P(i) as the

set of vertices in the same part as vertex i. We show that if there is a polynomial time
algorithm that computes an optimal coalition structure, then there is a polynomial time
algorithm for MAXCUT.

There exists a polynomial-time reduction that reduces I to an instance I ′ = (([n+
2], E′), w′) of OPTCS(ISG) where E′ = E ∪{{n+ 1, i} | i ∈ [n]}∪{{n+ 2, i} | i ∈
[n]} ∪ {{n + 1, n + 2}}. The weight function w′ is defined as follows: w′({i, i′}) =
−w({i, i′}) if i, i′ ∈ [n], w′({i, i′}) = W + 1 if i ∈ {n + 1, n + 2} and i′ ∈ [n],
w′({n+ 1, n+ 2}) = −(|V |+ 1)W .
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We now show that a solution to instance I ′ of OPTCS(ISG) can be be used to solve
instance I of MAXCUT. Assume that P ′ is an optimal coalition structure for I ′. Then
we know that P is of the form {{n+ 1, A′}, {n+ 2, B′}} where (A′, B′) is a partition
of [n]. We also know that

∑
{i,i′}⊆[n]:i6∈P (i′) w

′({i, i′}) is minimized in P ′. Therefore,
removing n+ 1 and n+ 2 from P yields a maximum weight cut for I .

Observation 214. It is clear that for ISG≥0, the coalition structure containing only the
set of all players is the optimal coalition structure.

We now present some positive results concerning OPTCS for other games on graphs:

Proposition 215. OPTCS(SCG) can be solved in polynomial time.

Proof. OPTCS(SCG) is equivalent to computing the maximum number of edge dis-
joint spanning trees. This problem is solvable in O(m2) [Roskind and Tarjan, 1985].

Proposition 216. For EPCGs and VPCGs, OPTCS can be solved in polynomial time.

Proof. The problems are equivalent to computing the maximum number of edge dis-
joint and vertex disjoint (s, t)-paths respectively. There are well-known algorithms
to compute them. For example, the maximum number of edge disjoint (s, t)-paths is
equal to the max-flow value of the graph in which each edge has unit capacity.

The problem of maximizing the number of of vertex disjoint paths can be reduced
to maximizing the number of of vertex disjoint paths in the following way: duplicate
each vertex (apart from s and t) with one getting all ingoing edges, and the other getting
all the outgoing edges, and an internal edge between them.

Proposition 217. The coalition structure containing only the coalition of all players is
an optimal coalition structure for NFGs and matching games.

Proof. We first prove the claim for NFGs. Assume there is a partition P of the edges
which achieves a total value of x. This means that the sum of the maximum values
of the flows of the flow networks ((V,E′), c, s, t), E′ ∈ P totals x. Since P is a
partition, the sum of a set of feasible flows of the flow networks ((V,E′), c, s, t), E′ ∈
P is a feasible flow of ((V,E), c, s, t). Therefore, the sum of max-valued flows of
((V,E′), c, s, t) is also a feasible flow of ((V,E), c, s, t), and has a value equal to the
sum of the values of these flows, which is x. This means that the set of all players is an
optimal coalition structure.

Next, we prove the claim for matching games. Let G = ([n], E) be a graph on
which a matching game is defined. Assume there is a partition P = {V1, . . . , Vk} of
the vertices that attains a value of x. Let the maximum weighted matching of the graph
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of G induced by Vi be mi. Then we know that
∑
i∈[k]mi = x. Since each member

of P is mutually exclusive, for any Vi, Vj ∈ P , the matchings in the subgraphs of
G induced by Vi and Vj respectively, do not intersect. Now, consider the partition
P ′ = {[n]} which consists of the set of all vertices. Then V has a value of at least
x because the union of the maximum matchings of the subgraphs of G induced by
V1, . . . , Vk, is a matching of G. This implies that that v(P ′) ≥ x. Therefore, the
coalition structure consisting of only the set of all players attains a value that is at least
the value attained by any other coalition structure.

On the other hand, the threshold versions of certain games are computationally
harder to solve because of their similarity to WVGs [Aziz et al., 2010]. As a corollary
of Proposition 211, we obtain the following:

Corollary 218. Let α < 2. Unless P = NP, there exists no polynomial time al-
gorithm which computes an α-approximately optimal coalition structure for T-NFGs,
T-Matching games, and T-ISG≥0.

In some cases, OPTCS may be expected to be intractable because the cooperative
game is defined on a combinatorial optimization domain which itself is intractable. We
observe that even if computing the value of coalitions is intractable, solving OPTCS
may be easy:

Observation 219. Given a maximum independent set game on graph G = ([n], E),
finding the value of the coalition v([n]) is NP-hard, but the optimal coalition structure
is the one consisting of all singleton sets.

9.6 Summary of Results
We presented a general positive algorithmic result for coalition structure generation,
namely that an optimal coalition structure can be computed in polynomial time if the
player types are known and the number of player types is bounded by a constant. This is
a useful result, as for many large multiagent systems it is a valid assumption that there
are a lot of agents but the agents can be divided into a bounded number of strategic
classes. For example, skill games are well motivated for coordinated rescue operation
settings [Bachrach and Rosenschein, 2008, Bachrach et al., 2010b]. In these settings,
there may be a large number of rescuers but they can be divided into a constant number
of types such as firemen, policemen and medics.

We have also undertaken a detailed study of the complexity of computing an opti-
mal coalition structure for a number of well-known cooperative games in that are rele-
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Game class Complexity of OPTCS

Coalition value oracle (valid type-partition & const. #types) P (Theorem 203)
WVG (const number of weight values) P (Corollary 206)
(T-)WTCSG (constant #skills or constant #types) P (Corollary 208)
WCSG (constant #tasks, bounded tree-width skill graph) P [Bachrach et al., 2010b]
SCG P (Proposition 215)
EPCG and VPCG P (Proposition 216)
NFG and matching game P (Proposition 217)
ISG≥0 P (Observation 214)
Independent Set Game P (Observation 219)
ISG Strongly NP-hard (Proposition 213)
(N,Wm) NP-hard to approx. within a const. factor (Prop. 212)
WVG Strongly NP-hard (Proposition 209);

NP-hard to approximate within factor< 2 (Prop. 211)
T-Matching; T-NFG; T-ISG NP-hard to approximate within factor< 2 (Cor. 218)
CSG NP-hard [Bachrach et al., 2010b]

Table 9.1: Summary of complexity results for OPTCS

vant to AI, multiagent systems and operations research. The results are summarized in
Table 9.1.



Chapter 10

Shapley Meets Shapley*

The unweighted version of matching games was introduced in the previous chapter
(see Definition 192), where we concluded that its optimal coalition structure consists
of the single set of all players in the game. For this reason, it makes sense to study
solution concepts for matching games that divide the value v([n]) among the players.
We introduce in this chapter a more general variant of these games, weighted matching
games, and we will focus on the problem of computing one of the most well-known
single-point solution concepts for this class of games: the Shapley value (Definition
31). The title of this chapter follows from the fact that both the the Shapley value and
matching game concepts can be traced to the famous game theorist Lloyd S. Shapley.

Before reading this chapter, we advise the reader to make himself or herself familiar
with Sections 1.2 and 1.3.2 of Chapter 1.

General weighted matching games are defined as follows.

Definition 220 (Matching Game). A (weighted) matching game is a cooperative game
(n, v) for which there is an undirected weighted graph (G = ([n], E), w) (where w :
E → R≥0) such that for any P ⊆ [n], v(P ) is the weight of a maximum weight
matching of the subgraph of G induced b P . For a given weighted graph (G,w),
we will denote by MG(G,w) the matching game corresponding to graph G. For an
unweighted graphG = ([n], E), we denote by MG(G) the matching game MG(G,w)
where w(e) = 1 for all e ∈ E.

Matching games constitute a fundamental class of cooperative games that help un-
derstand and model auctions and assignments.

*The contents of this chapter are based on Aziz and De Keijzer [2014, 2011c].
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In economics and computer science, one of the most fundamental problems is the
allocation of profits based on contributions of the nodes in a network. The problem has
assumed even more importance as networks have become ubiquitous. The study we
undertake in this chapter is related to this problem, as one way to address this problem
is by defining a game over the network (a matching game in our case) and using its
Shapley value as an allocation scheme for such profits.

After establishing some general insights, we will show that the Shapley value of
matching games can be computed in polynomial time for some special cases: graphs
with maximum degree two, and graphs that have a small modular decomposition into
cliques or cocliques (complete k-partite graphs are a notable special case of this).
The latter result extends to some other well-known classes of graph-based coopera-
tive games.

We then show that computing the Shapley value of unweighted matching games is
#P-complete in general. Finally, a fully polynomial-time randomized approximation
scheme (FPRAS) is presented for general weighted matching games. This FPRAS can
be considered the best positive result conceivable, in view of the #P-completeness
result.

10.1 Background
Lloyd S. Shapley is one of the most influential game theorists in history. Among his
numerous contributions, two of them are the following: (i) formulating the assignment
game as a rich and versatile class of cooperative games [Shapley and Shubik, 1972],
and (ii) proposing the Shapley value as a highly desirable solution concept for coopera-
tive games [Shapley, 1953]. Both contributions have had far-reaching impact and were
part of Shapley’s Nobel Prize winning achievements.

The assignment game is a cooperative game based on bipartite graphs, and models
the interaction between buyers and sellers. It is the transferable utility version of the
well-known stable marriage setting and is a fundamental model that is used for model-
ing exchange markets and auctions [Roth and Sotomayor, 1990]. Assignment games
were later generalized to matching games (see [Deng et al., 1999, Kern and Paulusma,
2003]).

Whereas the matching game is one of the most natural and important cooperative
games, the Shapley value has been termed “the most important normative payoff divi-
sion scheme” in cooperative game theory [Winter, 2002]. It is based on the idea that the
payoff of an agent should be proportional to his marginal contributions to the payoff
for the set of all players. For an excellent overview of the concept, we refer the reader
to [Chapter 5, Moulin, 2003].
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As network analysis becomes an increasingly important research area, centrality
indices of graphs have received interest (see e.g., [Brandes and Erlebach, 2005]). The
idea is to get a ranking of vertices according to their ability to connect with other ver-
tices. Recently, a Shapley-value based game-theoretic approach has been used to gauge
the centrality or connectivity of vertices by representing different valuation functions
with a graph [see e.g., Michalak et al., 2013]. The motivation is that the Shapley value
of a vertex captures various synergies which standard centrality measures do not. In this
vein, the Shapley value is of importance outside game theory as well, as it constitutes
an interesting method of gauging centrality/connectivity of the vertices. In particular it
quantifies in a principled manner the ability of a vertex to match with other vertices to
increase the value of coalitions.

The complexity of computing the Shapley value of important classes of coopera-
tive games has been the topic of detailed studies. The papers Deng and Papadimitriou
[1994] and Ieong and Shoham [2005] present algorithms to compute the Shapley value
of graph games and marginal contribution nets respectively. On the other hand, com-
puting the Shapley value is known to be intractable for a number of cooperative games
(see e.g., [Elkind et al., 2009, Aziz et al., 2009]). Among the classes of cooperative
games, matching games are one of the most well-studied. The core of matching games
is characterized in Deng et al. [1999], where it is also shown that various computational
problems regarding the core and the least core of matching games can be solved in poly-
nomial time. For matching games, there has been considerable algorithmic research on
the nucleolus: an alternative single-valued solution concept (see e.g., [Solymosi and
Raghavan, 1994, Kern and Paulusma, 2003]).

10.2 Contributions and Outline
We address a gap in the compuational cooperative game theory literature, by studying
the algorithmic aspects and computational complexity of the Shapley value for match-
ing games for the first time. This gap is surprising on two fronts: First, computational
aspects of Shapley values have been extensively studied for a number of cooperative
games (see e.g., [Deng and Papadimitriou, 1994, Ieong and Shoham, 2005, Elkind
et al., 2009]). Secondly, matching games are a well-established class of cooperative
games, and the structure and computational complexity of computing important solu-
tion concepts such as the core, least core, and nucleolus have been examined in-depth
for matching games (see e.g., [Alkan and Gale, 1990, Solymosi and Raghavan, 1994,
Kern and Paulusma, 2003, Deng and Fang, 2008, Biró et al., 2011, 2013]).
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We establish first some general insights (Section 10.3) and we consider two partic-
ular special cases for which the exact Shapley value can be computed in polynomial
time (Section 10.4): graphs with a constant size decomposition into clique and coclique
modules (these include e.g., complete k-partite graphs, for k constant), and graphs with
maximum degree two. The non-trivial algorithm required for graphs of maximum de-
gree two illustrates that exact computation of the Shapley value quickly becomes rather
complex, even for very simple graph classes. We then move on to the central results
of this chapter, which concern the general problem: we prove in Section 10.5 that the
computational complexity of computing the Shapley value of matching games is #P-
complete even if the graph is unweighted. The proof relies on Berge’s Lemma and the
fact that a certain matrix related to the Pascal triangle has a non-zero determinant. We
subsequently present in Section 10.6 an FPRAS (i.e., a fully polynomial time random-
ized approximation scheme) for computing the Shapley value of (weighted) matching
games. In view of our #P-completeness result, the FPRAS is the best possible result
we can hope for.

Lastly, we discuss in Section 10.7 some prospectives for future research.

10.3 Preliminaries
We introduce first some essential basic notions related to graphs and matchings. While
some readers may regard most of these notions as rudimentary, we define these anyway
so that there will arise no confusion about the terminology used.

Matching basics. Given an undirected graph G = ([n], E) (with vertex set [n] and
edge set E), a matching of G is a subset M of E such that e∩ e′ = ∅ when e, e′ ∈M ,
e 6= e′. When discussing a particular matching M , we refer to the edges of a matching
M as matched edges, and those outside M as unmatched edges. A matched graph is a
pair (G,M) where G is a graph and M is a matching of G. A maximum matching of
G is a matching of maximum cardinality among the set of all matchings of G.

We call a vertex i exposed or unmatched in (G,M) when i is not in any edge
of M . Otherwise, we call i matched. An alternating path P in (G,M) is a path
in G where the edges of P alternate between edges in M and edges in E\M . An
augmenting path P (with respect to a matchingM ) is an alternating path inG of which
the endpoints are both exposed vertices. An augmenting path thus has odd length, starts
with an unmatched edge, and ends with an unmatched edge. The following lemma is
fundamental to matching theory:
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Lemma 221 (Berge’s lemma). Let G = (V,E) be a graph. A matching M of G
maximum if and only if there is no augmenting path in G with respect to M .

Suppose we have a matching M for a graph G that is not a maximum matching.
Then by the above lemma, there is an augmenting path P . It can be seen that removing
from M the matched edges of P and adding to M the unmatched edges of P , gives us
a bigger matching (i.e., a matching with one additional edge). We refer to this as the
operation of augmenting M along P . Likewise, it is possible to augment a matching
along an even-length alternating path with one exposed vertex and one matched vertex
as endpoints. Augmenting along such a path does not increase the cardinality of the
matching.

Observe that if P is an alternating path that is not augmenting, then it still possible
to augment the matching along P iff one of the endpoints of P is an exposed vertex.
Edmonds’ blossom algorithm [Edmonds, 1965] is a polynomial time algorithm for
finding a maximum weight matching in a graph.

Let M1 and M2 be two distinct maximum matchings for an unweighted graph G =
([n], E). Then M2 can be obtained from M1 by a sequence of augmentations along
mutually disjoint even-length alternating paths and even-length alternating cycles. A
rough sketch of a proof for this is as follows: We investigate the symmetric difference
D of M1 and M2, and conclude that D must be a collection of disjoint even-length
paths and even length cycles of which the edges alternate between edges in M1 and
edges inM2. A cycle inD must be an alternating cycle inM1, and a path inD must be
an alternating path in M1. After augmenting M1 along such a cycle or path, we obtain
a matching M3 such that the symmetric difference between M3 and M2 is D minus
the cycle or path that we augmented. So by augmenting along all paths and cycles in
D, we obtain M2.

Pivotal players and marginal contribution. If, for an unweighted matching game
(n, v), a player i ∈ [n], and a coalition P ⊆ [n]\{i}, it holds that v(P ∪ {i}) =
v(P )+1, then we say that player i is pivotal (for coalition P , in game (n, v)). Similarly,
if σ : [n] → [n] is a permutation on [n], and i is pivotal for set of players p(i, σ) =
{i′ | σ−1(i′) < σ−1(i)} (i.e., the players occurring before i in σ), then we say that σ is
pivotal for i.

For the general case of weighted matching games, when P is a coalition not con-
taining player i, we refer to the value v(P ∪{i})−v(P ) as the marginal contribution of
i to P . When σ is a permutation on [n], we refer to the value v(p(i, σ)∪{i})−v(p(i, σ))
as the marginal contribution of i to σ.

For an unweighted matching game, the raw Shapley value of a player is thus equal
to the number of pivotal permutations.
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The computational problem. We are interested in the following computational prob-
lem.

SHAPLEY
Instance: A weighted graph (G = ([n], E), w) and a specified player i ∈ [n].
Question: Compute ϕi(MG(G)).

General Insights
In this section, we gain some general insights about the Shapley value of matching
games. First, if the graph is not connected, then the problem of computing the Shapley
value of the graph reduces to computing the Shapley value of the respective connected
components.

Lemma 222 (Shapley value in connected components). Let (G = ([n], E), w) be a
weighted graph with k connected components for some k ∈ N≥1, and let the respective
vertex sets of these connected components be P1, . . . , Pk. Let v be the characteristic
function of the matching game MG(G) on that graph, and let c : [n] → [k] be the
function that maps a vertex i to the number j such that j ∈ Pk. Then, for every vertex
i it holds that ϕi(v) = ϕi(vc(i)), where vj denotes the characteristic function of the
matching game on the subgraph induced by Pj , for j ∈ [k].

Proof. We prove this for k = 2. For k > 2, the claim then holds by straightforward
induction.

Therefore, let P1 and P2 be the vertex sets of the two connected components of G,
and let (n, v′P1

) and (n, v′P2
) denote the matching game obtained by removing from the

graph all edges among vertices in respectively P1 and P2. Note that v is the sum of v′P1

and v′P2
.

By the additivity property of the Shapley value, it thus holds for every player i that
ϕi(v) = ϕi(v

′
P1

) + ϕi(v
′
P2

). It is therefore sufficient to show that ϕi(v′P1
) = ϕi(vP2

)
for all i ∈ P1 and that ϕi(v′P2

) = ϕi(vP1
) for all i ∈ P2. This follows inductively if we

prove that for any graph H = ([m], F ), for some m ∈ N, it holds that ϕi(vMG(H)) =
ϕi(vMG(([m+1],F ))) for all i ∈ [m], which follows from the following derivation:

ϕi(vMG(H))

= 1
m!

∑
P :P⊆[m]\{i}

|P |!(m− |P | − 1)!(v(P ∪ {i})− v(P ))

= 1
(m+1)!

∑
P :P⊆[m]\{i}

(|P |+ 1 +m− |P |)|P |!(m− |P | − 1)!(v(P ∪ {i})− v(P ))
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= 1
(m+1)!

∑
P :P⊆[m]\{i}

(|P |+ 1)!(m− |P | − 1)!(v(P ∪ {i})− v(P ))

+ 1
(m+1)!

∑
P :P⊆[m]\{i}

|P |!(m− |P |)!(v(P ∪ {i})− v(P ))

= 1
(m+1)!

∑
P :P⊆[m+1]\{i},m+1∈P

|P |!(m+ 1− |P | − 1)!(v(P ∪ {i})− v(P ))

+ 1
(m+1)!

∑
P :P⊆[m+1]\{i},j 6∈P

|P |!(m+ 1− |P | − 1)!(v(P ∪ {i})− v(P ))

= 1
(m+1)!

∑
P :P⊆[m+1]\{i}

|P |!(m+ 1− |P | − 1)!(v(P ∪ {i})− v(P ))

= ϕi(vMG([m+1],F )).

It is rather straightforward to see that a vertex has a Shapley value zero if and only
if it is not connected to any other vertex.

Observation 223. A player in a matching game has a non-zero Shapley value if and
only if there is an edge (with non-zero weight) in the graph that contains the player. It
can thus be decided in linear time whether a player in a matching game has a Shapley
value of zero.

Next, we present another lemma concerning the Shapley value of unweighted match-
ing games.

Lemma 224. Let (n, v) be an unweighted matching game. If for each s ∈ [n− 1], the
number of coalitions of size s for which player i is pivotal in (n, v) can be computed in
time f(n) for some function f : N→ R≥0, then the Shapley value of i can be computed
in time nf(n).

Proof. Let ηsi be the number of coalitions of size s ∈ [n − 1] for which a vertex i is
pivotal in (n, v).

ϕi(n, v) =
1

n!

∑
P :P⊆[n]\{i}

|P |!(n− |P | − 1)!(v(P ∪ {i})− v(P ))

=
1

n!

∑
s∈[n−1]

∑
P :P⊆[n]\{i}
|P |=s

s!(n− s− 1)!(v(P ∪ {i})− v(P ))
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=
1

n!

∑
s∈[n−1]

s!(n− s− 1)!
∑

P :P⊆[n]\{i})
|P |=s

(v(P ∪ {i})− v(P ))

=
1

n!

∑
s∈[n−1]

s!(n− s− 1)!ηsi .

Therefore, the problem of computing the Shapley value reduces to computing ηsi
for all s ∈ [n− 1].

10.4 Exact Algorithms for Restricted Graph Classes
Some classes of matching games for which computing the Shapley value is trivial are
symmetric graphs (e.g. cliques and cycles), and graphs with a constant number of
vertices. We proceed to prove this for two additional special cases: weighted graphs
that admit constant size (co)clique modular decompositions, and unweighted graphs
with degree at most two.

10.4.1 Graphs with a Constant Number of Clique or Coclique
Modules

An important concept in the context of undirected graphs is that of a module. A subset
of vertices P ⊆ [n] is a module iff all members of P have the same set of neighbors in
[n] \P . We can extend this notion to weighted graphs by requiring that all members of
P are connected to the same set of neighbors, by edges of the same weight. A modular
decomposition is a partition of the vertex set into modules.

A clique module (resp. coclique module) of a weighted graph is a module of which
the vertices are pairwise connected by edges of the same weight (resp. pairwise discon-
nected). Note that every graph has a trivial modular decomposition into cliques (and
cocliques): the partition of [n] into singletons.

We prove that if a weighted graph G has a size k modular decomposition con-
sisting of only cliques or only cocliques, for some fixed k ∈ N≥1, then the Shapley
value of MG(G) can be found in polynomial time. In fact, we will show that this
holds for the more general class of subgraph-based games: We call a cooperative game
(n, v) subgraph-based if there exists a weighted graph (G = ([n], E), w) such that for
P1, P2 ⊆ [n], it holds that v(P1) = v(P2) if the weighted subgraphs of (G,w) induced
by P1 and P2 are isomorphic.
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Theorem 225. Let k ∈ N≥0. Consider a subgraph-based cooperative game (n, v).
Then, the Shapley value of (n, v) can be computed in polynomial time if the following
three conditions hold:

• the weighted graph (G = ([n], E), w) associated to (n, v) is given, or can be
computed in time polynomial in the size of the representation of (n, v).

• there exists a modular decomposition γ(G,w) into k cocliques or k cliques, and
G is unweighted in the latter case (i.e., w(e) = 1 for all e ∈ E).

• v(P ) can be computed in polynomial time for all P ⊆ [n].

Proof. For (G,w), first note that one can find in polynomial time a minimum car-
dinality modular decomposition into cocliques: simply check for each pair of vertices
whether they are disconnected and connected to identical sets of vertices through edges
with identical weights. If so, then they can be put in the same module. Similarly, a min-
imum cardinality modular decomposition into cliques can be found in polynomial time
in case the graph is unweighted, by finding a minimum cardinality modular decompo-
sition into cocliques in the complement of G (i.e., the graph that contains only those
edges not in E).

Next, we make use of the definition of a player type: Definition 201 given in Chap-
ter 9. We first show that all players in the same module of γ(G,w) are of the same
player type. Let i, i′ be two players in the same module M in γ(G,w). Then, for every
coalition P ⊆ [n]\{i, i′}, the weighted subgraphs of (G,w) induced by P ∪ {i} and
P ∪ {i′} are isomorphic (because the weighted subgraph of (G,w) induced by M is a
clique or coclique), so v(P ∪{i}) = v(P ∪{i′}). Therefore, the players can be divided
into a constant number k of player types.

Ueda et al. [2011] showed that any cooperative game (n, v) in which the value of
a given coalition can be computed in polynomial time, and there is known partition of
the players into sets of the same player type of size at most k, then the Shapley value of
(n, v) can be computed in polynomial time via dynamic programming. The number of
player types in our game is k. Therefore the result of Ueda et al. [2011] can be applied,
and this proves our claim.

For matching games, the function v can be evaluated using any polynomial time
maximum weight matching algorithm. Therefore, the above result implies that com-
puting the Shapley value can be done in polynomial time for classes of graphs where
we can find efficiently a size k modular decomposition into cliques or cocliques. This
includes the class of complete k-partite graphs and any strong product1 of an arbitrary

1The strong product of two graphs G1 = (V,E1) and G2 = (U,E2) is defined as the graph (V ×
U,E′), where E′ = {{(iV , iU ), (jV , jU )} ⊆ V × U | iU = jU ∧ {iV , jV } ∈ E1 ∨ {iU , jU} ∈ E2}.
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size clique (or coclique) with a graph of k vertices.

Corollary 226. For matching games based on complete k-partite graphs, where k is a
constant, the Shapley value can be computed in polynomial time.

Theorem 225 also applies to cooperative games such as (s, t)-vertex connectivity
games and min-cost spanning tree games [Deng and Fang, 2008, Deng et al., 1999], as
these are subgraph-based games.

10.4.2 Graphs of Degree at Most Two
We first examine linear graphs (or: “paths”), i.e., unweighted connected graphs in
which two vertices have out-degree one and the remaining vertices have out-degree
two.

Lemma 227. The Shapley value of a player in a matching game (n, v) on an un-
weighted linear graph can be computed in O(n4) time.

Proof. Assume without loss of generality that the vertex set is [n] and the edge set is
{{j, j + 1} | j ∈ [n− 1]}, and that i ∈ [n] is the player of which we want to compute
the Shapley value. Fix any s ∈ [n− 1], and let ηsi be the number of coalitions of size s
for which i is pivotal. We compute ηsi by subdividing in separate cases and taking the
sum of them:

• The number ηs,left
i = |{P∪{i+1} | P ⊆ [n]\{i, i−1, i+1}, i is pivotal for P}|.

Intuitively: the number of coalitions P where i is pivotal such that adding i to P
extends the left of a line segment.

• The number ηs,right
i = |{P∪{i−1} | P ⊆ [n]\{i, i−1, i+1}, i is pivotal for P}|.

• The number ηs,connect
i = |{P ∪ {i − 1, i + 1} | P ⊆ [n]\{i, i − 1, i + 1}, i is

pivotal for P}|. Intuitively: the number of coalitions P where i is pivotal, such
that i connects two line segments.

• ηs,isolated
i = |{P | P ⊆ [n]\{i, i− 1, i+ 1}, i is pivotal for P}|.

It is immediate that ηs,isolated
i = 0, since adding i to a coalition P not containing

i+ 1 nor i−1 results in a coalition forming a subgraph in which i is an isolated vertex.
For the remaining three values, ηs,left

i , ηs,right
i , and ηs,connect

i , we show below how to
compute them efficiently.
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• For ηs,left
i , observe that adding a vertex to the left of a (non-empty) line seg-

ment L increases the cardinality of a maximum matching if and only if L has an
even number of edges (and thus an odd number of vertices). Therefore, define
ηs,left
i (k) to be the number of coalitions P of size s for which i is pivotal such

that P contains the line segment {i + 1, . . . , i + k + 1}, and does not contain
{i− 1, i+ k + 2}. The number ηs,left

i (k) is easy to determine:

ηs,left
i (k) =

{
0 if k is odd,( |[n]\{i−1,...,i+k+2}|
s−|{i−1,...,i+k+1}∩[n]|

)
otherwise.

We can then express ηs,left
i as

∑
k∈[max{n−i−1,s−1}] η

s,left
i (k). There is only a

linear number of terms in this sum, and all of them can be computed in linear
time.

• ηs,right
i is computed in an analogous fashion.

• For ηs,connect
i , observe that adding a vertex i to a coalition such that i connects two

line segmentsL1 andL2, increases the cardinality of a maximum matching if and
only if L1 and L2 do not both have an odd number of edges (or equivalently: not
both have an even number of vertices). Therefore, define ηs,connect

i (k1, k2) to be
the number of coalitions P of size s for which i is pivotal such that P contains
the line segments {i− k1 − 1, . . . , i− 1} and {i+ 1, . . . , i+ k2 + 1}, and does
not contain {i − k1 − 2, i + k2 + 2}. The number ηs,connect

i (k1, k2) is easy to
determine:

ηs,connect
i (k1, k2) =

{
0 if k1 and k2 are both odd,( |[n]\({i−k−2,...,i+k+2}|
s−|{i−k−1,...,i+k+1}∩[n]|

)
otherwise.

We can then express ηs,connect
i as∑

k1∈[max{i−2,s−1}]

∑
k2∈[max{n−i−1,s−k1−2}]

ηs,left
i (k1, k2).

The number of terms in this sum is quadratic, and all of these terms can be
computed in linear time. We can thus compute ηs,connect

i in O(n3) time.

The claim now follows from Lemma 224.

Theorem 228. The Shapley value of a matching game on a unweighted graph with
maximum degree 2 can be computed in polynomial time.
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Proof. An unweighted graph with degree at most two is a disjoint union of cycles and
linear graphs. From Lemma 222, we can compute the Shapley value of the connected
components separately. From Lemma 227, we know that the Shapley value of linear
graphs can be computed in polynomial time. Due to the anonymity property of the
Shapley value, the Shapley value of a cycle is uniform.

The above proof for linear graphs demonstrates that computation of the Shapley
value of a matching game already becomes involved for even the simplest of graph
structures. We would be interested in seeing an extension of this result that enables us
to exactly compute the Shapley value in any non-trivial class of graphs that contains a
vertex of degree at least three.

10.5 Computational Complexity of the General
Problem

In this section, we examine the computational complexity of the general problem of
computing the Shapley value for matching games. As we mentioned in Section 10.3,
SHAPLEY is equivalent to the problem of counting the number of pivotal permutations
for a player in an unweighted matching game, and is therefore a counting problem. It
is moreover easy to see that this counting problem is a member of the complexity class
#P.2

For certain cooperative games such as weighted voting games [Elkind et al., 2009],
intractability of computing the Shapley value can be established by proving that even
checking whether a player gets non-zero Shapley value is NP-complete. Proposition
223 tells us that this is not the case for matching games. Before we proceed, we estab-
lish some notation. Let G = ([n], E) be a graph. Let αk(G) be the number of vertex
sets P ⊆ [n] such that |P | = k and the subgraph G(P ) of G induced by P admits a
perfect matching. Then αk(G) =

(
n
k

)
− αk(G) is the number of subsets P ⊆ [n] of

size k such that G(P ) does not admit a perfect matching. In order to characterize the
complexity of SHAPLEY, we first define the following problem.

#MATCHABLESUBGRAPHSk
Instance: Undirected and unweighted graph G = ([n], E) and a number k ∈ N≥0.
Question: Compute αk(G).

2Informally: #P is the class of computational problems that correspond to counting the number of
accepting paths on a non-deterministic Turing machine. We refer the reader to any introductory text on
complexity theory.
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Lemma 229. #MATCHABLESUBGRAPHSk is #P-complete.

Proof. In Colbourn et al. [1995] it is proved that the following problem is #P-complete:
Given an undirected and unweighted bipartite graphG = (S∪I, E), compute the num-
ber of subsets B ⊆ S, such that G(B ∪ I) admits a perfect matching.3 The problem is
equivalent to #MatchableSubgraphs2|I|.

Theorem 230. Computing the Shapley value of a matching game on an unweighted
graph is #P-complete.

Proof. We give a polynomial time Turing reduction from #MATCHABLESUBGRAPHSk
to SHAPLEY. We show that if there exists a polynomial time algorithm for SHAPLEY,
then we can solve #MATCHABLESUBGRAPHSk for a given graph G in polynomial
time, by solving SHAPLEY on a set of graphs that we construct from G. For each of
these graphs, we show that a linear equation holds that relates the Shapley value of a
vertex of G to the values αk and αk. The coefficient matrix of the resulting system of
linear equations will then turn out to be invertible, hence it can be solved in polynomial
time via Gaussian elimination in order to compute the values αk and αk. We remind
the reader that the symbol κ is used to denote the raw Shapley value, as defined in
Section 10.3.

LetG = ([n], E) be the given graph, and letG0 be the graph in which a new vertex
y0 is added to G that is connected to all vertices in [n]. For i > 0, let Gi be G0 with i
additional vertices y1, y2, . . . , yi and i additional edges {{yj , yj−1} | j ∈ [i]}.

The first part of the proof consists of showing that the following set of equations
hold:

κyi(MG(Gi)) =

{
C(i) +

∑n
k=0(k + i)!(n− k)!αk(G) if i is even,(10.1)

C(i) +
∑n
k=0(k + i)!(n− k)!αk(G) if i is odd,(10.2)

where

C(i) =
∑

k∈[bi/2c]

n+1−2k∑
j=0

(j + 2k − 1)!(n+ i− j − 2k + 1)!

(
n+ i− 2k

j

)
.

Define a type 1 pivotal coalition for yi in MG(Gi) as a pivotal coalition for i
in MG(Gi) that does not contain all players y0, . . . , yi−1. Define a type 2 pivotal
coalition for yi in MG(Gi) as a pivotal coalition for yi in MG(Gi) that does contain

3The proof of Colbourn resolved “an exceptionally difficult problem” [Colbourn et al., 1995]. Interest-
ingly, the corresponding decision problem of checking whether there exists a subgraph of size k that does
not admit a perfect matching, appears to be open.
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all players y0, . . . , yi−1. Denote by H type 1
i (s) (resp. H type 2

i (s)) the set of type 1 (resp.
type 2) pivotal coalitions for i in MG(Gi) that are of size s. From (1.9), Definition 31,
it follows that

κyi(MG(Gi)) =
∑

s∈[n+i]

s!(n+ i− s)!|H type 1
i (s)|+

∑
s∈[n+i]

s!(n+ i− s)!|H type 2
i (s)|.

(10.3)
First we characterize the coalitions in H type 2

i (s).

Lemma 231. If i is even, a coalition P of MG(Gi) is in H type 2
i (s) if and only if

G(P ∩ [n]) is not perfectly matchable (and {y0, . . . , yi−1} ⊆ P, |P | = s). If i is odd, a
coalition P of MG(Gi) is in H type 2

i (s) if and only if G(P ∩ [n]) is perfectly matchable
(and {y0, . . . , yi−1} ⊆ P, |P | = s).

Proof. Case of even i. (⇒) LetM be a maximum matching forGi(P ). P is pivotal, so
M is not a perfect matching. We can assume though, that all vertices {y0, . . . , yi−1} are
matched to each other in the matched graph (Gi(P ),M), because Gi({y0, . . . , yi−1})
is a linear graph with an even number of vertices, and is thus perfectly matchable. It
follows that the exposed nodes of (Gi(P ),M) are all in [n], and therefore the matching
M restricted to [n] is a maximum matching for G(P \ {y0, . . . , yi−1}) = G(P ∩ [n])
that is non-perfect.

(⇐) Let M be a maximum (non-perfect) matching for G(P ∩ [n]) and let y be an
exposed vertex of (G(P ∩ [n]),M). Then M ′ = M ∪ {{yi′ , yi′+1} | i′ even ∧ i′ < i}
is a maximum matching for Gi(P ), by Berge’s lemma (Lemma 221), as it is clear that
there is no augmenting path in (Gi(P ),M ′). Moreover, observe that in (Gi(P ),M ′)
there is an even-length alternating path from y to yi−1. Therefore, there is in (Gi,M

′)
an augmenting path from y to yi, and it follows again by Berge’s lemma that P is
pivotal.

Case of odd i. (⇒) Let M ′ be a maximum matching for Gi(P ). Coalition P is
pivotal, so in (Gi(P ),M ′) there is an even-length alternating path P from an exposed
node y to yi−1. Obtain the matching M by augmenting M ′ along P . Matching M is
then a maximum matching for Gi(P ) in which yi−1 is exposed. Gi({y0, . . . , yi−1})
is a linear graph and M is maximum, so it follows that yi−1 is the only exposed node
in (Gi(P ),M) among {y0, . . . yi−1}. Therefore P ∩ [n] must be matched to each
other in (G(P ),M) (for otherwise, in (Gi(P ),M) there would be an augmenting path
from yi−1 to an exposed node of P ∩ [n], contradicting the fact that M is a maximum
matching for Gi(P )). It follows that G(P ∩ [n]) is perfectly matchable.

(⇐) LetM be a maximum perfect matching forG(P ∩ [n]). LetM ′ be a maximum
matching for Gi({y0, . . . , yi−1}) in which yi−1 is the only exposed node. Then M ∪
M ′ is a matching forGi(P ) in which yi−1 is the only exposed node. M ∪M ′ is clearly
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a maximum matching, and in (Gi,M ∪M ′) the edge {yi−1, yi} is exposed. So P is
pivotal.

From the above lemma, it follows that the coalitions in H type 2
i (s) are precisely the

coalitions of the form P ∪{y0, . . . , yi−1}, where P ⊂ [n] is such that for even i, G(P )
is not perfectly matchable, and for odd i, G(P ) is perfectly matchable. Therefore
|H type 2

i (s)| = αs−i(G) for even i and |H type 2
i (s)| = αs−i(G) for odd i, and this

implies:

∑
s∈[n+i]

s!(n+ i− s)!|H type 2
i (s)| =

{∑n
k=0(k + i)!(n− k)!αk(G) if i is even,∑n
k=0(k + i)!(n− k)!αk(G) if i is odd.

In words: the second summation of (10.3) equals the summation of (10.1) when i is
even, and the summation of (10.2) when i is odd. Therefore, it suffices to prove that
the first summation of (10.3) equals C(i).

For this sake, define H type 1
i (s, k) for k ∈ [bi/2c] as {P ∈ H type 1

i (s) | yi−2k 6∈
P ∧ {yi−1, . . . , yi−2k+1} ⊆ P}. Observe that {H type 1

i (s, 1), . . . ,H type 1
i (s, i/2)} is a

partition of H type 1
i (s). For a given k and s, note that the set H type 1

i (s, k) consists of all
coalitions of the form P ∪ {yi−1, . . . , yi−2k+1}, where P ⊆ [n] ∪ {y0, . . . , yi−2k−1},
|P | = s − 2k + 1. Hence, |H type 1

i (s, k)| =
(
n+i−2k
s−2k+1

)
(defining

(
a
b

)
= 0 whenever

b < 0 or b > a). Therefore:

∑
s∈[n+i]

s!(n+ i− s)!|H type 1
i (s)| =

∑
k∈[bi/2c]

n+i−1∑
s=2k−1

s!(n+ i− s)!
(
n+ i− 2k

s− 2k + 1

)

=
∑

k∈[bi/2c]

n+i−2k∑
j=0

(j + 2k − 1)!(n+ i− j − 2k + 1)!

(
n+ i− 2k

j

)
.

This shows that (10.1) and (10.2) hold.
The second part of the proof consists of showing that all αk(G), k ∈ [n] can

be computed from κyi(MG(Gi)) in polynomial time, using (10.1) and (10.2), for
i ∈ [n] ∪ {0}. This is sufficient to complete the proof, because the graphs G0, . . . , Gn
can clearly be constructed from G in polynomial time, hence a polynomial time algo-
rithm that computes αk from κyi(MG(Gi)), i ∈ [n] yields a polynomial time Turing
reduction.

Let βi(G) = αi(G) for even i and let βi(G) = αi(G) for odd i. We can represent
(10.1) and (10.2) for i ∈ [n] ∪ {0} as the following system of equations:
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0!n! 1!(n− 1)! · · · n!0!
1!n! · · · (n+ 1)!0!

...
...

. . .
...

n!n! · · · (2n)!0!

×

β0(G)
β1(G)

...
βn(G)

 =


κy0(MG(G0))− C(0)
κy1(MG(G1))− C(1)

...
κyn(MG(Gn))− C(n)


(10.4)

Denote byA the (n+1)×(n+1) matrix in the above equation. Recall that a scalar
multiplication of a column by a constant c multiplies the determinant by c. Therefore,
A is non-singular if and only if non-singularity also holds for the (n + 1) × (n + 1)
matrix B, defined by Bij = (i + j)!. B is a matrix that is related to Pascal’s triangle,
and it is known that its determinant is equal to

∏n
i=0 i!

2 6= 0 [Bacher, 2002, Aziz
et al., 2009]. It follows that A is nonsingular, so our system of equations (10.4) is
linearly independent and has a unique solution. Note that all entries in the system can
be computed in polynomial time (assuming that the Shapley value of a matching game
is polynomial time computable): The constants C(i) consist of polynomially many
terms, and all factorials and binomial coefficients that occur in (10.4) are taken over
numbers of magnitude polynomial in n.

Therefore, we can use Gaussian elimination to solve (10.4) in O(n3) time. It fol-
lows that for all i ∈ [n], βi(G) can be computed in polynomial time, and hence αi(G)
can be computed in polynomial time. Therefore, if there exists an algorithm that solves
SHAPLEY in polynomial time, then it can be used to solve #MATCHABLESUBGRAPHSk
in polynomial time.

10.6 An Approximation Algorithm
In this section, we show that although computing exactly the Shapley value of matching
games is a hard problem, approximating it is much easier.

Let Σ be a finite alphabet in which we agree to describe our problem instances
and solutions. A fully polynomial time randomized approximation scheme (FPRAS)
for a function f : Σ∗ → Q is an algorithm that takes input x ∈ Σ∗ and a parameter
ε ∈ Q>0, and returns with probability at least 3

4 a number in between f(x)/(1+ ε) and
(1 + ε)f(x). Moreover, an FPRAS is required to run in time polynomial in the size
of x and 1/ε. The probability of 3

4 is chosen arbitrarily: by a standard amplification
technique, it can be replaced by an arbitrary number δ ∈ [0, 1]. The resulting algorithm
would then run in time polynomial in n, 1/ε, and log(1/δ).

We will now formulate an algorithm that approximates the raw Shapley value of
a player in a weighted matching game, and show that it is an FPRAS. Note that we
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cannot utilize approximation results in [Liben-Nowell et al., 2011] and [Bachrach et al.,
2010a] since matching games are neither convex nor simple. Our FPRAS is based on
Monte Carlo sampling, and works as follows: Let ((G = ([n], E), w), i, ε) be the input,
where (G,w) is the weighted graph representing matching game MG(G,w), i ∈ [n]
is a player in MG(G), and ε is the precision parameter. For notational convenience,
we write κi as a shorthand for κi(MG(G)). The algorithm first determines whether
κi = 0 (using Observation 223). If so, then it outputs 0 and terminates. If not, then it
samples d4n2(n−1)2/ε2e permutations of the player set uniformly at random. Denote
this multiset of sampled permutations by P . The algorithm then outputs the average
marginal contribution of player i over the permutations in P , and terminates. Note that
this average marginal contribution is efficiently computable: it is given by 1/d4n2(n−
1)2/ε2e times the sum of the marginal contributions of player i to each of the sampled
permutations. Determining these marginal contributions can be done in polynomial
time, using any maximum weight matching algorithm. Denote our sampling algorithm
by MATCHINGGAME-SAMPLER.

MATCHINGGAME-SAMPLER resembles the algorithms given in [Mann and Shap-
ley, 1960, Liben-Nowell et al., 2011]: the differences are that the algorithm takes a dif-
ferent number of samples, and that it determines whether the Shapley value of player
i is 0 prior to running the sampling procedure. Moreover, its proof of correctness re-
quires different insights.4

Theorem 232. MATCHINGGAME-SAMPLER is an FPRAS for computing the raw
Shapley value in a weighted matching game.

Proof. Let ((G = ([n], E), w), i, ε) be the input. Denote by κ̄i the output of the al-
gorithm. If κi = 0, then MATCHINGGAME-SAMPLER is guaranteed to output the
right solution, so assume that κi > 0. Let wmax

i be the maximum weight among
the edges attached to i, and let emax

i ∈ E be an edge that is attached to i such that
w(emax

i ) = wmax
i . Let X be a random variable that takes the value of n! times the

marginal contribution of player i in a uniformly randomly sampled permutation of the
players. Note that E[X] = κi. Note that the marginal contribution of a player in any
permutation is at most wmax

i , so X is at most wmax
i n!.

Let j be the neighbor of i connected by emax
i . Observe that any permutation in

which j is positioned first, and i is positioned second, is a permutation for i in which
the marginal contribution of i is wmax

i . There are (n − 2)! such permutations, so the
raw Shapley value κi of i is at least wmax

i (n − 2)!. For the variance of X we derive
that Var[X] = E[X2]−E[X]2 ≤ E[X2] ≤ (wmax

i )2n!2 ≤ n2(n− 1)2κ2
i .

4To be precise, this applies only to [Liben-Nowell et al., 2011]. For the sampling algorithm in Mann and
Shapley [1960], no proof or approximation-quality analysis of any kind is given.
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Observe that κ̄i is a random variable that is equal to
∑
j∈[d4n2(n−1)2/ε2e]Xj

d4n2(n−1)2/ε2e , where
Xj are independent random variables with the same distribution as X . From this we
obtain that E[κ̄i] = E[X] = κi. The desired approximation guarantee then follows
from Chebyshev’s inequality,5 and completes the proof:

Pr[|κ̄i − κi| ≥ εκi] ≤
Var[κ̄i]

ε2κ2
i

=
Var

[
1

d4n2(n−1)2/ε2e
∑
j∈[d4n2(n−1)2/ε2e]Xj

]
ε2κ2

i

=

(
Var[X]

d4n2(n−1)2/ε2e

)
ε2κ2

i

≤ n2(n− 1)2κ2
i

(4n2(n− 1)2/ε2) · ε2κ2
i

≤ 1

4
.

Corollary 233. The algorithm that runs MATCHINGGAME-SAMPLER and returns
its output scaled down by 1/n!, is an FPRAS for computing the Shapley value of a
weighted matching game.

Observe that MATCHINGGAME-SAMPLER is an FPRAS in the strong sense that its
running time does not depend on the weights of the edges. Due to the #P-completeness
result stated in Theorem 229, this FPRAS is the best one can hope for, and provides us
(based on our best judgment) with a complete answer to the precise complexity of this
problem.

10.7 Conclusions
In this chapter, we examined the structure, algorithms, and computational complexity
for the problem of computing the Shapley value in a matching game. There are many
special cases of the problem that have not been treated in this chapter, but nonethe-
less are potentially worthwhile to analyze: trees, bipartite graphs, connected regular
graphs, and series-parallel graphs. Among these, bipartite graphs are especially inter-
esting, since they model two-sided markets. One may pursue the same questions for
fractional matching games in which the value of a coalition is the maximum size of a
fractional matching [Chen et al., 2012]. Moreover, our study motivates exploring the
connections with some objects in matching theory. The matching polytope is one of
the most well-studied objects in polyhedral combinatorics [Plummer, 1992]. It will
be interesting to identify any relation between the matching polytope of a graph and

5Here, one could also choose to apply Hoeffding’s inequality instead of Chebyshev’s inequality, but this
will not result in an asymptotically better bound.
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the Shapley value of the corresponding matching game. Secondly, network flows are
fundamentally connected to matchings for the case of bipartite graphs. An interest-
ing research direction is to explore the connection of network flow games [Kalai and
Zemel, 1982] with matching games and check whether computing the Shapley values
for these game classes reduce to each other.
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List of Symbols

The following list gives a short description of the symbols used throughout this thesis.

Symbol Description

R The set of real numbers.
Q The set of rational numbers.
N The set of natural numbers (including 0).
R≥a,Q≥a,N≥a The sets of real, rational, and natural numbers greater than or

equal to a.
R>a,Q>a,N>a The sets of real, rational, and natural numbers greater than a.
e The base of the natural logarithm.
Γ A strategic game or cooperative game.
G A graph.
E The edge set of a graph.
V The vertex set of a graph (usually identified with [n]), or the set

of type vectors of an incomplete information game.
i A player in a game or a vertex of a graph.
j A facility of a congestion game, or a machine in a minsum

scheduling game, or a slot in a generalized second price auction,
or a house in a housing market.

n The number of players of a game or the number of vertices of a
graph.

m The number of facilities of a congestion game, or the number
of machines in a scheduling game, or the number of edges of a
graph.

u The vector of utility functions of a utility maximization game.
c The vector of cost functions of a cost minimization game.
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ui The utility function of player i in a utility maximization game.
ci The cost function of player i in a cost minimization game.
Σ The set of strategy profiles of a strategic game, i.e., the Cartesian

product Σ1 × · · · × Σm.
Σi The strategies of player i in a strategic game.
PEΓ The pure equilibria of game Γ.
NEΓ The Nash equilibria of game Γ.
ClEΓ The correlated equilibria of game Γ.
PBNEΓ The pure Bayes-Nash equilibria of incomplete information game

Γ.
MBNEΓ The mixed Bayes-Nash equilibria of incomplete information

game Γ.
U A social welfare function.
C A social cost function.
Vi The set of type vectors of player i in an incomplete information

game.
π The type distribution of an incomplete information game.
πi The type distribution of player i in an incomplete information

game.
P A set of players in a game.
Pj(s) The set of players (in a congestion game) that choose facility j

under strategy profile s.
d The vector of delay functions of a congestion game.
dj The delay function of facility j in a congestion game.
Φ A potential function for a game.
v A vertex of a graph or the characteristic function of a cooperative

game.
vi The valuation function of player i in an auction game.
σ A probability distribution (i.e., a probability mass function or

probability density function), typically on the strategy profiles
of a game; or a permutation on the set of players of a game.

∆(X) The set of probability distributions on the set X .
s A strategy profile of a game.
si The strategy chosen by player i.
s−i The vector s excluding its i’th element.
s−P The vector s excluding the indices in P .
(s′i, s−i) The vector obtained from vector s by replacing its i’th element

by s′i.
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(s′P , s−P ) The vector obtained from vector s by replacing the elements on
indices P by the elements of the |P |-dimensional vector s′P .

α An altruism vector or social context.
α̌ The lowest altruism level of altruism vector α.
α̂ The highest altruism level of altruism vector α.
ϕ The Shapley value of a cooperative game or the golden ratio.
ϕi The Shapley value of player i in a cooperative game.
κi The raw Shapley value of player i in a cooperative game.
W The Lambert W function.
W−1 The lower branch of the Lambert W function.
� A relation, or a partial order, or a tie-breaking rule, or a vector

of player preferences of a housing market.
pi,j The processing time of job i on machine j in a scheduling game.
aj The speed of machine j in a scheduling game with related ma-

chines.
wi The length of job i in a scheduling game with related machines,

or the weight of player i in a weighted voting game.
β The vector of click-through rates of a generalized second price

auction.
βj The click-through rate of slot j in a generalized second price

auction.
r(s) The ranking under strategy profile s in a generalized second

price auction, or the runner-up in a second price generalized pro-
curement auction.

µi The penalty multiplier of player i in a generalized procurement
auction.

w(s) The winner under s in a generalized procurement auction.
ε-PEΓ The pure ε-equilibria of game Γ.
LE The set of limit equilibria of a generalized procurement auction.
P A coalition structure of a cooperative game.
q The quota of a weighted voting game.
[q;w1, . . . , wn] A weighted voting game with quota q and player weights

w1, . . . , wn.
H A housing market.
�i The preferences of player i in a housing market.
ω The initial endowment of a housing market.
MG(G) The matching game associated to graph G.
MG(G,w) The matching game associated to weighted graph (G,w).
(G,M) A matched graph, whereG is a graph andM is a matching ofG.
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Summary

This Ph.D. thesis discusses research in algorithmic game theory, carried out by the au-
thor and various collarborators. Algorithmic game theory is an area of research that
lies in the intersection of economics, mathematics and computer science. The field en-
compasses the combination of game theory (the study of strategic decision making and
models of conflict) with theoretical computer science. The central object of study in the
thesis is a game, which is an abstraction of a situation in which multiple autonomous
entities (called players) participate by making autonomous decisions.

The topics discussed are roughly centered around the notions of cooperation, ex-
ternalities, and in general “other-regarding behavior”. The study of these topics is
motivated by the observation that the usual assumption that players act perfect rational,
and in isolation (classically assumed in strategy game theory) is often inaccurate: in
many realistic scenarios, players are embedded into some sort of social context and/or
are able to cooperate with eachother.

In this thesis we investigate models that include (or allow for the inclusion of)
the aspects of cooperation and externalities in games. We will be interested in the
impact of this inclusion to various established notions and results in algorithmic game
theory; most prominently the price of anarchy, which measures the worst-case quality
of an equilibrium (i.e., roughly a “stable outcome”) of a game. Another prominent
theme is the study of the consequences to algorithmic problems, that the presence of
externalities induces. Some related topics are studied as well: various problems in
cooperative game theory in the final chapters of the thesis, and the price of anarchy of
multi-unit auctions in the second chapter of the thesis.

The most important results and insights obtained in this thesis that are related are
summarized as follows:

• Lower bounds and upper bounds on the price of anarchy of multi-unit auctions.
The upper bounds are shown to be optimal with respect to the currently known
techniques.
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• An asymptotic characterization of the price of anarchy of linear bottleneck con-
gestion game when cooperation among the players can occur. Linear bottleneck
congestion games form a class of games that model e.g. load balancing scenarios
in which multiple autonomous participants have to schedule their jobs on a set
of machines.

• The price of anarchy of various games may deteriorate when players behave
more altruistically, and it is possible to derive good upper bounds on the price of
anarchy of some important classes of games, by extending a known technique.

• The same ideas may be used for a more general scenario in which players have
particular, player-specific, attidudes towards other players. For many such so-
cial contexts, some broad classes of games can be shown to have a low price of
anarchy.

• It is possible to characterize the set of equilibria and the price of anarchy of
procurement auctions in a precise way, in the presence of players that behave
spitefully.

• There exist efficient algorithms that find a good-quality profile of strategies for
congestion games in which players have positive externalities for sets of other
players, from which they may derive additional utility. Congestion games form
a class of games of central importance, and model all sorts of situations in which
there are resources of which the performance depends on the set of entities mak-
ing use of it.

• For the setting of housing markets, there exists a broad and simple family of
mechanisms that compute allocations of houses to players, and satisfy a large set
of desirable properties. Moreover, there exists a mechanism that has been pre-
viously proposed and falls within this class, but unfortunately does not compute
an allocation in an satisfying amount of time.

• Computing the best structure for a set of players to cooperate is difficult in gen-
eral, but easy for a number of special cases. Most importantly, there exists an
efficient algorithm for this problem in case the number of types of the players is
bounded and it is known which player has which type.

• The hardness of computing the Shapley value in a matching game can be com-
pletely characterized. The Shapley value provides an important method for di-
viding a value among a set of cooperating players. Matching games form a class
of cooperative games that help understand and model auctions and assignments.



Samenvatting

Nederlandse vertaling titel: Externaliteiten en Samenwerking in Algoritmische
Speltheorie.
Dit proefschrift behandelt onderzoek in algoritmische speltheorie, uitgevoerd door de
auteur en verschillende andere mede-onderzoekers. Algoritmische speltheorie is een
onderzoeksgebied dat in de intersectie van economie, wiskunde, en informatica ligt.
Het gebied omvat de combinatie van speltheorie (de studie van conflictmodellen en het
maken van strategische beslissingen) en theoretische informatica. Het object dat cen-
traal staat in speltheorie is het spel, hetgeen een abstractie is van een situatie waarin
meerdere autonome entiteiten (genaamd spelers) participeren door het maken van au-
tonome beslissingen.

De onderwerpen die in het proefschrift besproken worden draaien om de concepten
van samenwerking, externaliteiten, en algemener gezegd: “met-anderen-
rekeninghoudend gedrag”. De motivatie achter de studie van deze onderwerpen is de
observatie dat de gebruikelijke aanname (in klassieke speltheorie) dat spelers zich per-
fect rationeel gedragen, en in isolatie opereren, vaak inaccuraat is: in veel realistische
scenarios bevinden de spelers zich in een sociale context en zijn de spelers in staat om
met elkaar samen te werken.

We onderzoeken speltheoretische modellen waarin de concepten van samenwerk-
ing en externaliteiten geı̈ncorporeerd zijn, of een dergelijke incorporatie toestaan. We
zijn vervolgens geinteresseerd in de impact die dit heeft op verscheidene gevestigde
begrippen en resultaten binnen de algoritmische speltheorie. Een van de meer promi-
nente noties die we bestuderen is de prijs van anarchie: een manier om de slechtst
mogelijke kwaliteit van een evenwicht (i.e., grof weg een “stabiele uitkomst”) van een
spel te meten. Een ander prominent thema wordt gevormd door de gevolgen van ex-
ternaliteiten op algoritmische problemen. Er worden bovendien enkele gerelateerde
onderwerpen bestudeerd: verschillende problemen in coöperatieve speltheorie staan
centraal in de laatste hoofdstukken van het proefschrift, en de prijs van anarchie in
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multi-unit veilingen in het tweede hoofdstuk van het proefschrift.
De belangrijkste resultaten en inzichten die verkregen worden in dit proefschrift

zijn hieronder geschetst.

• Bovengrenzen en ondergrenzen op de prijs van anarchie van multi-unit veilin-
gen. We bewijzen dat de bovengrenzen optimaal zijn met respect tot de huidig
bekende technieken.

• Een asymptotische karakterisatie van de prijs van anarchie van lineaire bottle-
neck congestiespellen wanneer samenwerking tussen de spelers mogelijk is. Lin-
eaire bottleneck congestiespellen vormen een klasse spellen die onder andere
taakverdelingsscenarios modelleren, waarin meerdere autonome deelnemers een
aantal taken moeten plannen op een verzameling machines.

• The prijs van anarchie van verscheidene spellen kan slechter worden wanneer
spelers zich altruistischer gedragen, en het is mogelijk om scherpe bovengrenzen
af te leiden op de prijs van anarchie, voor enkele belangrijke spelklasses, door
middel van een extensie op een bekende en veelgebruikte techniek.

• Dezelfde ideeën kunnen gebruikt worden voor een algemener scenario waarin
spelers een bepaalde speler-specifieke houding hebben naar andere spelers. Voor
vele van zulke sociale contexten kunnen we aantonen dat enkele grote spelk-
lasses een lage prijs van anarchie hebben.

• Het is mogelijk om de verzameling van evenwichten en de prijs van anarchie van
inkoopveilingen op precieze wijze te karakteriseren, in situaties waar de spelers
in de veiling een afgunstige houding tegen elkaar hebben.

• Er bestaan efficiënte algoritmes die strategieprofielen van hoge kwaliteit vin-
den in congestiespellen waarin spelers positieve externaliteiten hebben voor sets
van andere spelers. Congestiespellen vormen een spelklasse die allerlei situ-
aties modelleren waarbij er sprake is van een verzameling hulpbronnen waar de
spelers gebruik van kunnen maken. De kwaliteit van de prestatie van deze hulp-
bronnen hangt af van de verzameling spelers die er gebruik van maken.

• Voor huizenmarkten bestaat er een grote en eenvoudige familie van mechanismes
die allocaties genereren van huizen aan spelers, met een grote verzameling be-
langrijke goede eigenschappen. Bovendien bestaat er een eerder geintroduceerd
mechanisme voor huizenmarkten die binnen deze klasse valt, waarvan we kun-
nen bewijzen dat hij helaas geen goede tijdscomplexiteit heeft.
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• Het berekenen van de beste structuur waarin een groep van spelers met elkaar
kan samenwerken is moeilijk in het algemeen, maar makkelijk voor een aantal
speciale gevallen. Een van de belangrijkere van zulke gevallen is wanneer het
aantal spelertypes begrensd is, en het bekend is welke speler van welk type is.

• De moeilijkheid van het berekenen van de Shapley-waarde in een matchingspel
kan volledig gekarakteriseerd worden. De Shapley-waarde biedt een belangrijke
methode voor het verdelen van een waarde onder een set van samenwerkende
spelers. Matchingspellen vormen een klasse coöperatieve spellen die inzicht
bieden in verscheidene veilingen en scenarios die betrekking hebben op het
toewijzen van taken en andere objecten.
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