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Abstract
Parity games play an important role in model checking and synthesis. In their paper, Calude et al. have recently shown that
these games can be solved in quasi-polynomial time. We show that their algorithm can be implemented efficiently: we use
their data structure as a progress measure, allowing for a backward implementation instead of a complete unravelling of the
game. To achieve this, a number of changes have to be made to their techniques, where the main one is to add power to the
antagonistic player that allows for determining her rational move without changing the outcome of the game. We provide
a first implementation for a quasi-polynomial algorithm, test it on small examples, and provide a number of side results,
including minor algorithmic improvements, a quasi-bi-linear complexity in the number of states and edges for a fixed number
of colours, matching lower bounds for the algorithm of Calude et al., and a complexity index associated to our approach,
which we compare to the recently proposed register index.

Keywords Parity games · Progress measure · Quasi-polynomial

1 Introduction

Parity games are two-player zero-sum games played on a
finite graph. The two players, named Even and Odd, move a
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token around the graph until a cycle is formed. Each vertex is
labelled with an integer colour, and the winner is determined
by the parity of the largest colour that appears on the cycle:
player Even wins if it is an even colour, and player odd wins
otherwise.

Parity games have been the focus of intense study [3–7,10,
11,13,20–22,25,27–29,31,34–36,39,41], in part due to their
practical applications. Solving parity games is the central
and most expensive step in many model checking [1,8,9,11,
24,40], satisfiability checking [24,33,38,40], and synthesis
[19,30,32] algorithms.

Parity games have also attracted attention due to their
unusual complexity status. The problem of determining the
winner of a parity game is known to lie in UP ∩ co-UP [23],
so the problem is very unlikely to be NP-complete. However,
despite much effort, no polynomial time algorithm has been
devised for the problem. Determining the exact complexity
of solving a parity game is a major open problem.

Three main classes of algorithms have been developed
for solving parity games in practice. The recursive algorithm
[28,41], which despite being one of the oldest algorithms, has
been found to be quite competitive in practice [15]. Strategy
improvement algorithms use a local search technique [39],
similar to the simplex method for linear programming and
policy iteration algorithms for solving Markov decision pro-
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cesses. Progress measure algorithms define a measure that
captures the winner of the game, and then use value iter-
ation techniques to find it [22]. Each of these algorithms
has inspired lines of further research, all of which have con-
tributed to our understanding of parity games. Unfortunately,
all of them are known to have exponential worst-case com-
plexity.

Recently, Calude et al. [6] have provided a quasi-
polynomial time algorithm for solving parity games that runs
in time O(n�log(c)+6�), where c denotes the number of prior-
ities used in the game. Previously, the best known algorithm
for parity games was a deterministic sub-exponential algo-
rithm [21], which could solve parity games in nO(

√
n) time,

so this new result represents a significant advance in our
understanding of parity games.

Their approach is to provide a compact witness that can be
used to decide whether player Even wins a play. Tradition-
ally, one must store the entire history of a play, so that when
the players construct a cycle, we can easily find the largest
priority on that cycle. The key observation of Calude et al. [6]
is that a witness of poly-logarithmic size can be used instead.
This allows them to simulate a parity game on an alternat-
ing Turing machine that uses poly-logarithmic space, which
leads to a deterministic algorithm that uses quasi-polynomial
time and space.

This new result has already inspired follow-up work. Jur-
dziński and Lazić [20] have developed an adaptation of the
classical small progress measures algorithm [22] that runs in
quasi-polynomial time. Their approach is to provide a suc-
cinct encoding of a small progress measure, which is very
different from the succinct encoding developed by Calude et
al. [6]. The key advantage of using progress measures as a
base for the algorithm is that it avoids the quasi-polynomial
space requirement of the algorithm of Calude et al., instead
providing an algorithm that runs in quasi-polynomial time
and near linear space.

Our contribution In this paper, we develop a progress
measure-based algorithm for solving parity games that uses
the succinct witnesses of Calude et al. [6]. These witnesses
were designed to be used in a forward manner, which means
that they are updated as we move along a play of the game.
Our key contribution is to show that these witnesses can also
be used in a backward manner, by processing the play back-
ward from a certain point. This allows us to formulate a value
iteration algorithm that uses (backward versions of) the wit-
nesses of Calude et al. [6] directly.

The outcome of this is to provide a second algorithm for
parity games that runs in quasi-polynomial time and near lin-
ear space. We provide a comprehensive complexity analysis
of this algorithm, which is more detailed than the one given
by Calude et al. [6] for the original algorithm. In particular,
we show that our algorithm provides

1. a quasi-bi-linear running time for a fixed number of
colours, O(mn log(n)c−1);

2. a quasi-bi-linear FPT bound, e.g. O(mna(n)log log n),
where any other quasi-constant function can be used to
replace the inverse Ackermann function a; and

3. an improved upper bound for a high number of colours,
O(m · h · nc1.45+log2(h))

for parity games with m edges, n vertices, and c colours,
where h = �1+c/ log(n)� and the constant c1.45 = log2 e <

1.45. We also provide an argument that parity games with
O(log n) colours can be solved in polynomial time.

The complexity bounds (1) of our algorithm only match
the bounds for the algorithm of Jurdziński and Lazić [20],
while (2) and (3) are new. Moreover, we believe that it is
interesting that the witnesses of Calude et al. [6] can be
used in this way. The history of research into parity games
has shown that ideas from the varying algorithms for parity
games can often spur on further research. Our result and the
work of Jurdziński and Lazić show that there are two very
different ways of succinctly encoding the information that
is needed to decide the winner in a parity game, and that
both of them can be applied in value iteration algorithms.
Moreover, implementing our progress measure is easier, as
standard representations of the colours can be used. We have
implemented our algorithm, and we provide some experi-
mental results in the last section.

We introduce additionally a natural index, the au-index,
which serves as a measure of complexity for solving a parity
game using our progress measure. We present a variation of
ourmain algorithm that runs in polynomial timewhen the au-
index is taken as a fixed parameter of the instance. Moreover,
we compare the au-index with the recently introduced regis-
ter index introduced by Lehtinen [26]. The latter is another
complexity index for parity games. Through this index, an
alternative quasi-polynomial time algorithm for solving par-
ity games was constructed by the author. We show that our
au-index always exceeds the register index, which yields an
alternative proof for the fact that the register index is at most
log n + 1, as shown previously in [26] through an entirely
different argument.

Finally, we present a lower bound for our algorithm, and
for the algorithm of Calude et al. [6]. We derive a fam-
ily of examples upon which both of the algorithms achieve
their worst-case—quasi-polynomial—running time. These
are simple single player games.

Since the present paper has appeared in a preliminary form
as [12], we briefly outline the contribution of this paper with
respect to the preliminary conference version: The paper has
been extended with a detailed analysis (and a correction) on
how to compute an update of a witness in both the basic
update game and the antagonistic update game. Section 9 is
also entirely new, which considers the length of the witness
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that is required for determining the winner of a parity game
as a measure of complexity for solving said parity game.
This complexity measure is compared in particular with the
register index, and an alternative proof is given for why the
register index is at most �log n�+1. Lastly, additional exper-
iments have been done, which are reported on in Sect. 11,
where the algorithm described in the proof of Theorem 7 (in
the new Sect. 9) is evaluated.

2 Preliminaries

N denotes the set of positive natural numbers {1, 2, 3, . . .}.
Parity games are turn-based zero-sum games played between
two players—Even and Odd, or maximiser and minimiser—
over finite graphs. A parity game P is a tuple (Ve, Vo, E, C,

φ), where (V = Ve∪Vo, E) is a finite directed graphwith the
set of verticesV partitioned into a setVe of vertices controlled
by player Even and a set Vo of vertices controlled by player
Odd, E ⊆ V ×V is the set of edges,C = {1, . . . , c} is the set
of the first c natural numbers for some c ∈ N, which we refer
to as the colours, and φ : V → C is the colour mapping. We
require that every vertex has at least one outgoing edge.

A parity game P is played between the two players, Even
and Odd, by moving a token along the edges of the graph.
A play of such a game starts by placing a token on some
initial vertex v0 ∈ V . The player controlling this vertex then
chooses a successor vertex v1 such that (v0, v1) ∈ E and the
token is moved to this successor vertex. In the next turn, the
player controlling the vertex v1 chooses the successor vertex
v2 with (v1, v2) ∈ E and the token is moved accordingly.
Both playersmove the token over the arena in thismanner and
thus form a play of the game. Formally, a play of a gameP is
an infinite sequence of vertices 〈v0, v1, . . .〉 ∈ V ω such that,
for all i ≥ 0,wehave that (vi , vi+1) ∈ E .WewritePlaysP (v)

for the set of plays of the game P that start from a vertex
v ∈ V and PlaysP for the set of plays of the game. We omit
the subscript when the arena is clear from the context. We
extend the colourmapping φ : V → C from vertices to plays
by defining the mapping φ : Plays→ Cω as 〈v0, v1, . . .〉 �→
〈φ(v0), φ(v1), . . .〉.

A play 〈v0, v1, . . .〉 is won by player Even if lim supi→∞
φ(vi ) is even, by player Odd if lim supi→∞ φ(vi ) is odd.

A strategy for player Even is a function σ : V ∗Ve → V
such that

(
v, σ (ρ, v)

) ∈ E for all ρ ∈ V ∗ and v ∈ Ve. A
strategy σ is called memoryless if σ only depends on the last
state (σ(ρ, v) = σ(ρ′, v) for all ρ, ρ′ ∈ V ∗ and v ∈ Ve).
A play 〈v0, v1, . . .〉 is consistent with σ if, for every initial
sequence ρn = v0, v1, . . . , vn of the play that ends in a state
of player Even (vn ∈ Ve), σ(ρn) = vn+1 holds.

It is well known that the following conditions are equiv-
alent: Player Even wins the game starting at v0 if she has a
strategy σ that satisfies that
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Fig. 1 An example parity game with 8 vertices, where the label of
a vertex indicates its colour. The shapes of the vertices denote which
player controls it: squares for playerEven, and circles for playerOdd. In
this parity game, the three top vertices form a directed triangle in which
player Odd wins the parity game, as player Odd can ensure that colour
3 is the highest colour occurring infinitely often, by always moving
the token to a vertex within the triangle. On the other hand, for the
remaining five vertices we observe that the subgraph induced by these
vertices contains three cycles, and 6 is the highest colour in each of
these cycles. Therefore, since player Even can make sure that the token
does not escape these five vertices, player Even can guarantee a win if
the token is located in either of these vertices

1. all plays 〈v0, v1, . . .〉 consistentwithσ satisfy lim supi→∞
φ(vi ) (i.e. the highest colour that occurs infinitely often
in the play) is even;

2. all plays 〈v0, v1, . . .〉 consistent with σ contain a win-
ning loop vi , vi+1, . . . , vi+k , that satisfies vi = vi+k and
φ(vi ) ≥ φ(vi+ j ) for all natural numbers j ≤ k, where
φ(vi ) is even;

3. as (1), and σ must be memoryless; or
4. as (2), and σ must be memoryless.

We use different criteria in the technical part, choosing the
one that is most convenient.

An example of a parity game is depicted in Fig. 1, which
depicts a game arena where the vertices are labelled by their
colours, and the controlling player of a vertex is indicated
by its shape: squares for player Even, and circles for player
Odd.

3 QP algorithms

We discuss a variation of the algorithm of Calude et al. [6].
In a nutshell, the algorithm keeps a data structure, the wit-

nesses, that encodes the existence of sequences of “good”
events. This intuitively qualifies witnesses as a measure of
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progress in the construction of a winning cycle. This intu-
ition does not fully hold, as winning cycles are not normally
identified immediately, but it gives a good intuition of the
guarantees the data structure provides.

In [6], witnesses are used to track information in an alter-
nating machine. As they are quite succinct (they have only
logarithmically many entries in the number of vertices of the
game, and each entry only requires logarithmic space in the
number of colours), this entails the quasi-polynomial com-
plexity.

Wehavemade this data structure accessible for value itera-
tion, using it in a similar way as classical progress measures.
This requires a—simple—argument that witnesses can be
used in a backward analysis of a run just as well as in a for-
ward analysis. This, in turn, requires a twist in the updating
rule that allows for rational decisions. For this, we equip the
data structure with an order and show that the same game is
still won by the same player if the antagonist can increase
the value in every step.
i -WitnessesLetρ = v1, v2, . . . , vm be a prefixof a play of the
parity game. An i -witness is a sequence of (not necessarily
consecutive) positions of ρ

p1, p2, p3, . . . , p2i ,

of length exactly 2i , that satisfies the following properties:

– Position: Each p j specifies a position in the play ρ, so
each p j is an integer that satisfies 1 ≤ p j ≤ m.

– Order:The positions are ordered. Sowe have p j < p j+1

for all j < 2i .
– Evenness: All positions other than the final one are even.
Formally, for all j < 2i the colour φ(vp j ) of the vertex
in position p j is even.

– Inner domination:The colour of every vertex between p j

and p j+1 is dominated by the colour of p j , or the colour
of p j+1. Formally, for all j < 2i , the largest colour of
any vertex in the subsequence vp j , vp j+1, . . . , vp j+1 is
less than or equal to max

{
φ(vp j ), φ(vp j+1)

}
.

– Outer domination: The colour of p2i is greater than or
equal to the colour of every vertex that appears after p2i

in ρ. Formally, for all k in the range p2i < k ≤ m, we
have that φ(vk) ≤ φ(vp2i ).

Witnesses We define C_ = C ∪ {_} to be the set of colours
augmented with the _ symbol. A witness is a sequence

bk, bk−1, . . . , b1, b0,

of length k + 1—we will later see that k = �log2(e)� is
big enough, where e is the number of vertices with an even
colour—where each element bi ∈ C_, and that satisfies the
following properties.

– Witnessing There exists a family of i-witnesses, one for
each element bi with bi �= _. We refer to such an i-
witness in the run ρ. We will refer to this witness as

pi,1, pi,2, . . . , pi,2i .

– Dominating colour For each bi �= _, we have that
bi = φ(vpi,2i ). In other words, bi is the outer domination
colour of the i-witness.

– Ordered sequences The i-witness associated with bi

starts after j-witness associated with b j whenever i < j .
Formally, for all i and j with i < j , if bi �= _ and b j �= _,
then p j,2 j < pi,1.

It should be noted that the i-witnesses associated with each
position bi are not stored in the witness, but in order for a
sequence to be awitness, the corresponding i-witnessesmust
exist.

Observe that the dominating colour property combined
with the ordered sequences property imply that the colours
in awitness aremonotonically increasing (as a function of the
index), since each colour b j (weakly) dominates all colours
that appear afterwards in ρ.

Forward and backward witnesses So far, we have described
forward witnesses, which were introduced in [6]. In this
paper, we introduce the concept of backward witnesses, and
an ordering over these witnesses, which will be used in our
main result. For each play ρ = v1, v2, . . . , vm , we define the
reverse play←−ρ = vm, vm−1, . . . , v1. A backward witness is
a witness for←−ρ , or for an initial sequence of it.

Order on witnesses We first introduce an order� over the set
C_ that captures the following requirements: even numbers
are better than odd numbers, and all numbers are better than
_. Among the even numbers, higher numbers are better than
smaller ones,while among theoddnumbers, smaller numbers
are better than higher numbers. Formally, b � c if and only
if one of the following holds:

– c = _;
– b, c are both odd, and b ≤ c;
– b, c are both even, and b ≥ c;
– b is even and c is odd.

Then, we define an order � over witnesses. This order
compares two witnesses lexicographically, starting from bk

and working downwards, and for each individual position
the entries are compared using �. We also define a special
witness won which is � than any other witness.

The value of a witnessAn even chainof lengthm is a sequence
of positions p1 < p2 < p3 < . . . < pm (with 0 ≤ p0 and
pm ≤ n) in ρ that has the following properties:
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– for all j ≤ m, we have that φ(vp j ) is even, and
– for all j < m the colours in the subsequence defined
by p j and p j+1 are less than or equal to φ(p j )

or φ(p j+1). More formally, we have that all colours
φ(vp j ), φ(v(p j )+1), . . . , φ(vp( j+1) ) are less than or equal
to max

{
φ(vp j ), φ(vp j+1)

}
.

For each witness b = bk, bk−1, . . . , b0, we define the func-
tion even(b, i) = 1 if bi �= _ and bi is even. Then we
define the value of the witness b to be value(b) = ∑k

i=0 2
i ·

even(b, i). We can show that the value b corresponds to the
length of an even chain in ρ that is witnessed by b.

Lemma 1 If b is a (forward or backward) witness of ρ, then
there is an even chain of length value(b) in ρ.

Proof Let i be an index such that even(b, i) = 1. By def-
inition, the i-witness pi,1, pi,2, . . . , pi,2i is an even chain
of length 2i in ρ. This holds irrespective of whether b is a
forward or backward witness.

Then, given an index j < i such that even(b, j) = 1,
observe that the outer domination property ensures that
φ(pi,2i ) ≥ φ(vl) for all l in the range pi,2i ≤ l ≤ p j,1.
So, when we concatenate the i-witness with the j-witness
we still obtain an even chain. Thus, ρ must contain an even
chain of length value(b). ��
Let e = |{v ∈ V : φ(v) is even }| be the number of vertices
with even colours in the game. Observe that, if we have an
even chain whose length is strictly greater than e, then ρ must
contain a cycle, since there must be at least one vertex with
even colour that has been visited at least twice. Moreover,
the largest priority on this cycle must be even, so this is a
winning cycle for player Even. Thus, for player Even to win
the parity game, it is sufficient for him to force a play that
has a witness whose value is strictly greater than e.

Lemma 2 If, from an initial state v0, player Even can force
the game to run through a sequence ρ, such that ρ has a
(forward or backward) witness b with value(b) greater than
the number of vertices with even colour, then player Even
wins the parity game starting at v0.

3.1 Updating forward witnesses

We now show how forward witnesses can be constructed
incrementally by processing the play one vertex at a time.
Throughout this subsection, we will suppose that we have
a play ρ = v0, v1, . . . , vm , and a new vertex vm+1 that we
would like to append to ρ to create ρ′. We will use c =
φ(vm+1) to denote the colour of this new vertex. We will
suppose that b = bk, bk−1, . . . , b1, b0 is a witness for ρ, and
we will construct a witness d = dk, dk−1, . . . , d1, d0 for ρ′.

We present three lemmas that allow us to perform this
task.

Lemma 3 Suppose that there exists an index j such that bi

is even for all i < j , and that bi ≥ c or bi = _ for all i > j .
If we set di = bi for all i > j , d j = c, and di = _ for all
i < j , then d is a witness for ρ′.

Proof For the indices i > j , observe that since bi ≥ c, the
outer domination of the corresponding i-witnesses continues
to hold. For the indices i < j , since we set di = _ there are
no conditions that need to be satisfied.

To complete the proof, we must argue that there is a j-
witness that corresponds to d j . This witness is obtained by
concatenating the i-witnesses corresponding to the numbers
bi for i < j , and then adding the vertex vm+1 as the final posi-
tion. This produces a sequence of length 1+∑ j−1

i=0 2i = 2 j

as required. Since all bi with i < j were even, the even-
ness condition is satisfied. For inner domination, observe
that the outer domination of each i-witness ensures that the
gaps between the concatenated sequences are inner domi-
nated, and the fact that b0 dominates sequence vp0,1 , . . . , vm

ensures that the final subsequence is also dominated by b0 or
c. Outer domination is trivial, since vm+1 is the last vertex in
ρ′. So, we have constructed a j-witness for ρ′, and we have
shown that d is a witness for ρ′. ��

Note that, differently from Calude et al. [6], we also allow
this operation to be performed in the case where c is odd.

Lemma 4 Suppose that there exists an index j such that b j �=
_, c > b j , and, for all i > j , either bi = _ or bi ≥ c hold.
Then setting di = bi for all i > j , setting d j = c, and setting
di = _ for all i < j yields a witness for ρ′.

Proof For all i > j , we set di = bi . Observe that this is valid,
since bi ≥ c, and so the outer domination property continues
to hold for the i-witness associated with bi . For all i < j ,
we set di = _, and this is trivially valid, since this imposes
no requirements upon ρ′.

To complete the proof, we must argue that setting d j = c
is valid. Observe that in ρ, the j-witness associated with b j

ends at a certain position p = p j,2 j . We can create a new
j-witness for ρ′ by instead setting p j,2 j = m + 1, that is,
we change the last position of the j-witness to point to the
newly added vertex. Note that inner domination continues to
hold, since c > b j = φ(vp) and since vp outer dominated ρ.
All other properties trivially hold, and so d is a witness for
ρ′. ��

Lemma 5 Suppose that for all j ≤ k either b j = _ or b j ≥ c.
If we set di = bi for all i ≤ k, then d is a witness for ρ′.

Proof Since c ≤ b j for all j , the outer domination of every
i-witness implied by b is not changed. Moreover, no other
property of a witness is changed by the inclusion of vm+1, so
by setting d = b we obtain a witness for ρ′. ��
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When we want to update a witness upon scanning another
state vm+1, we find the largest witness that (according to �)
can be obtained by applying Lemmas 3–5.

For a given witness b and a vertex vm+1, we denote by

– ru(b, vm+1) the raw update of the witness to d, as
obtained by the update rules described above. For con-
venience, we alternatively write this as ru(b, c) where
c = φ(vm+1).

– up(b, vm+1) is either ru(b, vm+1) if value
(
ru(b, vm+1)

)

≤ e (where e is the number of vertices with even colour),
or up(b, vm+1) = won otherwise.

In [6], the above three update rules are used with the only
difference being that the rule corresponding to Lemma 3 is
only appliedwhen c is even. In our version of the update rules,
this operation can also be applied when c is odd. As the raw
update is defined by choosing among all update rules the one
that yields the�-largestwitness, we can prove that the update
rule of Lemma 5, which leaves the witness unchanged, never
needs to be applied to obtain ru(b, c) from b.

Lemma 6 The witness ru(b, c) is obtainable fromb by apply-
ing the update rule corresponding to Lemmas 3 or 4.

Proof It suffices to prove that when the preconditions of
Lemma 5 apply, then applying the update rule of Lemma
3 instead of Lemma 5 yields a �-higher (or equal) witness.
(Note that the other update rule, i.e. the one corresponding
to Lemma 4, is not applicable when the preconditions of
Lemma 5 hold.)

To that end, assume that for all j ≤ k either b j = _
or b j ≥ c. We show that b � b′, where b′ is the witness
resulting from applying the update rule of Lemma 3.

– Suppose first that b0 = _ then b′ = bk, . . . , b1, c. Since
c � _ it holds that b′ � b.

– Supposenext thatb0 is odd.Then againb′ = bk, . . . , b1, c.
The colour b0 is odd and c is either even or an odd number
at most b0, so b0 � c and therefore b′ � b.

– Finally, suppose that b0 is even. Let j be the least index
containing a non-even value (i.e. an odd value or _). Then
b′ = bk, . . . , b j+1, c, _, . . .. Since b j is _ or odd and c
is either even or an odd number at most b j , we have
b′j = c � b j and therefore b′ � b. ��

Updating a witness b through applying the update rule of
Lemmas 3 or 4 always results in a witness of the form
bk, . . . , b j+1, c, _, . . . for some index j . We refer to j as
the index where the update rule is applied.

Let us analyse more precisely at what index we need to
apply the update rules of Lemmas 3 and 4 in order to obtain
ru(b, c) from b. First observe that Lemma 4 can only be

applied at a single index, namely, the unique index j that
satisfies b j < c and c ≤ min({bk, . . . , b j+1} \ {_}).

For the update rule of Lemma 3, there might be multiple
indices in the witness where the rule can be applied. For
example, when b = _, _, 11, 8, 8, 4, 2 and c = 6, the update
rule of Lemma 3 can be applied at indices 1 to 4. The next
lemma shows that in case Lemma 3 can be applied on a
witness, it is always applied at the leftmost index j ′ where
it can be applied, unless b j ′ = c in which case Lemma 4 is
applied at index j ′ − 1.

Lemma 7 Suppose the update rule of Lemma 3 is applicable
on b at least two indices j ′ and j ′′, where j ′ is the highest
index at which the update rule is applicable. Let b′ be the
witness resulting from applying the update rule at j ′ and let
b′′ be the witness resulting from applying the update rule at
j ′′. Then b j ′ ≥ c and moreover

– if b j ′ �= c, then b′ � b′′;
– if b j ′ = c then j ′′ = j ′ − 1, the update rule of Lemma 4

can be applied at index j ′′, and b′′ � b′.

Proof By definition of the update rule of Lemma 3, it holds
that b j ′ is odd or _. Also, the witnesses b′ and b′′ coincide at
indices k to j ′ + 1. Moreover, at index j ′ we have b′j ′ = c

and b′′j ′ = b j ′ .
First let us assume b j ′ �= c. Then in order to determine

whether b′ or b′′ is higher in the�-order, we need to compare
their values at index j ′ with respect to the �-relation.

Given that b′′ is a valid witness, we obtain the inequality
c = b′′j ′′ ≤ b′′j ′ = b j ′ . We now distinguish two cases.

– If c is even then clearly c � b j ′ so that b′ � b′′.
– If c is odd (and by assumption not equal to d j ′ ), then the
fact that c ≤ b j ′ implies c < b j ′ and therefore c � b j ′ ,
so b′ � b′′.

In case c = b j ′ , then all the even numbers b j ′−1, . . . , b j ′′
must be at least c (because b′′ is a valid witness), and since c
is odd we infer that j ′′ = j ′ − 1 where b j ′′ < c. This means
that the update rule corresponding to Lemma 4 is applicable
at index j ′′ and b′′ � b′. ��
The above insights lead to the following corollary, which
characterises which of the two update rules are used in which
cases.

Corollary 1 The witness ru(b, c) is obtained from b as fol-
lows: Let j be the maximum index where the update rule
of Lemma 3 is applicable and let j ′ be the index at which
the update rule of Lemma 4 is applicable (where we define
j ′ = −1 if Lemma 4 is not applicable).

– If j ′ = j − 1 ≥ 0 and b j = c, apply the update rule of
Lemma 4 at index j ′.
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– Else, if j > j ′, apply the update rule of Lemma 3 at index
j .

– Otherwise, apply the update rule of Lemma 4 (at index
j ′).

4 Basic update game

With these update rules, we define a forward and a backward
basic update game. The game is played between player Even
and player Odd. In this game, player Even and player Odd
produce a play of the game as usual: if the token is on a
position of player Even, then player Even selects a successor,
and if the pebble is on a position of player odd, then player
Odd selects a successor.

Player Even can stop any time she likes and evaluate the
game using b0 = _, . . . , _ as a starting point and the update
rule bi+1 = up(bi , vi ). For a forward game, she would pro-
cess the partial play ρ+ = v0, v1, v2, . . . , vn from left to
right, and for the backward game she would process the par-
tial play ρ− = vn, vn−1, . . . , v0. In both cases, she has won
if bn+1 = won.

Theorem 1 If player Even has a strategy to win the (forward
or backward) basic update game, then she has a strategy to
win the parity game.

Proof By definition, we can only have bn+1 = won if at
some point we created a witness whose value was more than
the total number of even colours in the game. As we have
argued, such a witness implies that a cycle has been created,
and that the largest priority on the cycle is even. Since player
Even can achieve this no matter what player Odd does, this
implies that player Even has a winning strategy for the parity
game. ��

5 The data structure for the progress
measure

Recall that there are two obstacles in implementing the algo-
rithm of Calude et al. [6] as a value iteration algorithm. The
first (and minor) obstacle is that it uses forward witnesses,
while value iteration naturally uses backward witnesses. We
have already addressed this point by introducing the same
measure for a backward analysis.

The second obstacle is the lack of an order over witnesses
that is compatible with value iteration. While we have intro-
duced an order in the previous sections, this order is not a
natural order. In particular, it is not preserved under update,
nor does it agree with the order over values. As a simple
example, consider the following two sequences:

– b = _, 4, 2, and

– d = 9, 8, _.

While value(b) = 3 > value(d) = 2, d � b. In particular,
d2 � b2 and d1 � b1 hold. Yet, when using the update
rules when traversing a state with colour 6, b is updated to
b′ = 6, _, _,, while d is updated to d′ = 9, 8, 6.While d � b
held prior to the update, d′ � b′ holds after the update. Value
iteration, however, needs a natural order that will allow us to
choose the successor with the higher value.

We overcome this problem by allowing the antagonist in
our game, player odd, an extra move: prior to executing the
update rule for a valueb, playerOdd may increase thewitness
b in the � ordering. The corresponding antagonistic update
is defined as follows.

au(b, v) = min�
{
up(d, v) | d � b

}
.

Observe that if b � b′ then au(b, v) � au(b′, v) because
the minimum taken in au(b′, v) is over a smaller set than
the minimum taken in au(b, v). For convenience, we may
alternatively write au(b, c) to denote au(b, v), where c =
φ(v).

We will from now on refer to the raw update rules of Sect.
3.1 as follows.

Definition 1 We name the update rules corresponding to
Lemmas 3 and 4 as follows.

– We use the term update rule 1 for the update rule corre-
sponding to Lemma 3;

– We use the term update rule 2 for the update rule corre-
sponding to Lemma 4;

– If ru(b, c) can be obtained from b both by an application
of update rule 1 and 2 (i.e. applying either update rule
yields the same result), then we will regard this as an
application of update rule 2.

For the remainder of this section, let b be a witness, v be a
vertex, and c = φ(v).Wewill establish away to conveniently
compute au(b, c) from b and c. Note that by Corollary 1,
Definition 1 implies the following, which we will use in the
proofs below:

Corollary 2 Update rule 1 is solely applied on an index that
contains _ or an odd value exceeding c. Hence applying rule
1 to a witness results in a witness that is �-higher.

We will first study in which cases it holds that au(b, v) �=
up(b, v). For this to hold, it must be that the “antagonist”
can choose some value d such that up(d, v) � up(b, v).
The following lemma is straightforward and shows that we
can resort to studying the raw update ru rather than up.

Lemma 8 It holds that au(b, c) � up(b, c) if and only if
there exists a witness d such that d � b and au(b, c) =
ru(d, c) � ru(b, c).
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Proof ⇐. Assume there exists a witness d such that d �
b and au(b, c) = ru(d, c) � ru(b, c). Then au(b, c) �
ru(b, c) � up(b, c).
⇒. Assume au(b, c) � up(b, c). Let d be the witness

such that d � b, and au(b, c) = up(d, c). We distinguish
two cases.

– If up(d, c) �= won and up(b, c) �= won we derive
ru(b, c) = up(b, c) � au(b, c) = ru(d, c).

– If up(d, c) �= won and up(b, c) = won then value
(ru(b, c)) > e,up(d, c) = ru(d, c) andvalue(ru(d, c)) ≤
e, where e is the number of vertices with an even
colour. Our choice of k = �log(e)� and the defini-
tion of the �-relation the bounds on value(ru(d, c)) and
value(ru(b, c)) imply that ru(d, c) � ru(b, c).

This finishes the proof. ��
The next lemma shows that if au(b, v) �= up(b, v), the
choice d of the antagonist can be assumed to be a witness
that differs from b at an index that exceeds 0.

Lemma 9 Suppose that au(b, c) � up(b, c) and let d � b
be a witness that satisfies ru(d, c) � ru(b, c). Let h be the
highest index such that dh � bh. Then h > 0.

Proof First note that d exists per Lemma 8. Suppose next for
contradiction that h = 0. Let j be index on which the update
rule (i.e. update rule 1 or 2) is applied to obtain ru(d, c) from
d, let i be index applied when updating b. Since antagonist
h = 0 and ru(d, c) �= ru(b, c) it holds that i �= j . Because
h = 0, d = bk, . . . , b1, d0 where d0 � b0. We distinguish
two cases.

– If i > j , the situation is that

ru(b, c) = bk, . . . , bi+1, c, _, . . .

� bk, . . . , bi , . . . , b j+1, c, _, . . .

= ru(d, c).

If update rule 2 would have been used to obtain ru(b, c)
from b, then di = bi < c, so then neither rule 1 nor 2
could have been used to update d on any index j < i ,
which is a contradiction. This means that update rule 1
was used to obtain ru(b, c) from b, and particularly that
b0 is even and d0 � b0 is even. In turn, this means that
applying update rule 1 on d results in ru(b, c) which is
by assumption�-larger than ru(d, c). This is a contradic-
tion, as ru(d, c) is defined as the �-largest witness that
can be obtained by applying any of the two update rules.

– If j > i , the situation is that

ru(b, c) = bk, . . . , b j , . . . , bi+1, c, _, . . .

� bk, . . . , b j+1, c, _, . . . = ru(d, c).

If rule 1 was applied to obtain ru(b, c) from b then d0
is even hence applying rule 1 on d would yield ru(b, c)
which is�-better than ru(d, c), a contradiction. If di < c
and rule 2 was applied to obtain ru(b, c) from b, then
applying rule 2 on d would yield ru(b, c) which is �-
better than ru(d, c), a contradiction. Lastly, if di ≥ c and
rule 2 was applied to obtain ru(b, c) from b, then i = 0
and rule 1 was applied to obtain ru(d, c) from d to update
index j ≥ 1 so that c � b j , by Corollary 2. The latter
implies ru(d, c) � ru(b, c), a contradiction.

This finishes the proof. ��
The following lemma states that if au(b, v) �= up(b, v), the
choice d of the antagonist can be assumed to be a witness
where the value at only one index h ofb is raised (with respect
to �), and the value at indices less than h is set to _.

Lemma 10 Suppose that au(b, c) � up(b, c) and let d � b
be a witness that satisfies au(b, c) = ru(d, c) � ru(b, c).
Then there exists an index h such that the witness d′ =
bk, . . . , bh+1, dh, _, . . . also satisfies d′ � b and au(b, c) =
ru(d′, c) � ru(b, c).

Proof First note that the existence of d is guaranteed
by Lemma 8. We now construct d′ from d: Let h be
the highest index such that dh � bh and define d′ =
bk, . . . , bh+1, dh, _, . . ., so that d′ and d differ only at the
indices 0 to h − 1. Note that h ≥ 1 by Lemma 9 above, so
that d′ end in _. We will show that ru(d′, c) � ru(d, c).

Suppose for contradiction that ru(d′, c) � ru(d, c). Then
d �= d′, i.e. the suffix dh−1, . . . , d0 of d is not equal to _, . . ..
Let j be the index at which update rule 1 or 2 is applied to
obtain ru(d, c) from d and let i be the index at which update
rule 1 or 2 is applied to obtain ru(d′, c) from d′.

If j = i and j ≥ h, then clearly ru(d′, c) = ru(d, c)
which contradicts our assumption. If j = i and j < h, then
it must be that j = i = 0, as the values at indices 0 to
h − 1 of d′ are all _, so only update rule 1 on index 0 can be
used on d′. Hence, ru(d′, c) = dk, . . . , dh, _, . . . , _, c and
ru(d, c) = dk, . . . , dh, . . . , d1, c. If dh−1, . . . , d1 are all _
then ru(d, c) = ru(d′, c) which contradicts our assumption.
Otherwise, let x be the highest index among h−1, . . . , 1 such
that dx �= _. Observe now that ru(d′, c) and ru(d, c) agree
on indices k to x + 1 and on coordinate x of ru(d, c) and
ru(d′, c) it holds that dx � d ′x = _, so ru(d′, c) � ru(d, c),
which again contradicts our assumption.

Therefore, j �= i . Suppose first that i = 0 so that j > i .
Then rule 1 is used to obtain ru(d′, c) from d ′, and ru(d′, c)
is of the form bk, . . . , bh+1, dh, _, . . . , _, c where all values
bk, . . . , bh+1 are each at least c or _ and dh is at least c. If
j < h, then let x be the highest index among h − 1, . . . , 1

123



An ordered approach to solving parity games in quasi-polynomial time and quasi-linear space 333

such that dx �= _, and note that x > 0 by Lemma 9. Now
observe that ru(d′, c) and ru(d, c) agree on indices k to x+1,
and at index x we have that dx � d ′x = _. Thus, ru(d, c) �
ru(d′, c), which is a contradiction. If j ≥ h then rule 2 is used
to obtain ru(d, c) from d, and d j = b j �= _. However, this is
in contradictionwith our earlier conclusion that bk, . . . , bh+1

are each at least c or _, fromwhich it follows that d j = b j ≥ c
and hence rule 2 cannot be applied at index j on d.

Suppose next that i > 0 and i �= j . Then i ≥ h, as neither
update rule 1 nor 2 can be applied at indices h − 1 to 1 on
d ′. Moreover, update rule 2 is used to obtain ru(d′, c) from
d ′. If j < i , then dk ...dh are all at least c, which means
that it is impossible to apply update rule 2 to d′ at index i , a
contradiction. If j > i then the update of d′ at index i implies
that dk, . . . , di+1 are all at least c, so that ru(d, c) is obtained
from d through update rule 1. By Corollary 2, index j of
ru(d, c) has the value c � b j , and b j is the value at index j
of ru(d′, c), so ru(d, c) � ru(d′, c), a contradiction. ��
Using the above lemma, we may now provide a concrete
efficient way to compute au(b, c).

Definition 2 Let c be either a colour or _. We denote by
succ�(c) the immediate successor of c in the �-ordering.

Let b be a witness, j be an index, and v j = min({bk, . . . ,

b j+1} \ {_}), i.e. v j is the least colour occurring in b at any
index exceeding j . The minimal raisable index of b is the
minimal index j ≥ 1 such that succ�(b j ) exists (i.e. b j

is not the highest even colour) and v j ≥ succ�(b j ). The
corresponding minimal raisable colour s is defined as the�-
minimal colour s such that s � b j and bk, . . . , b j+1, s, _, . . .
is a valid witness. Note that if b j is a colour, then s =
succ�(b j ), and if b j = _ then s = max{s′ : s′ ≤
v j and s′ is an odd colour}.
Let j be the minimal raisable index of b and let s
be the corresponding minimal raisable colour. Let d =
bk, . . . , b j+1, s, _, . . .. We will prove through the follow-
ing lemmas that au(b, c) is the �-minimum of ru(d, c)
and up(b, c), unless the exceptional case holds that c is
odd, c is not the lowest colour, and there is a maximal
index h such that bh = c. In the latter case it holds that
au(b, c) = bk, . . . , bh+1, c, _, . . ..

We start by proving our claim for the exceptional case.

Lemma 11 Suppose c is odd and not the lowest colour, and
suppose that there is a maximal index h such that bh = c.
Then au(b, c) = bk, . . . , bh+1, c, _, . . .

Proof Let d = bk, . . . , bh+1, succ�(c), _, . . ., and observe
that under the given preconditions, ru(d, c) = bk, . . . ,

bh+1, c, _, . . .. Therefore au(b, c) � ru(d, c).
Let h′ be the highest index such that bh′ < c or h′ = 0.

Assume first that up(b, c) = au(b, c). Since c is odd,
up(b, c) �= won and therefore up(b, c) = ru(b, c) =

bk, . . . , bh+1, c, . . . , bh′+1, c, _, . . ., where we note that for
the last equality to hold we take into account the first point
of Lemma 1. This yields ru(b, c) � ru(d, c) � au(b, c) and
contradicts up(b, c) = au(b, c).

Therefore, up(b, c) � au(b, c), so by Lemma 8 we may
assume that there exists a witness d′ such that d′ � b and
au(b, c) = ru(d′, c) � ru(b, c) and by Lemma 10 we may
assume that d′ = bk, . . . , b j+1, d ′j , _, . . . for some j ≥ 1
where d ′j � b j .

If ru(d′, c) = ru(d, c), the claim follows. Suppose for
contradiction that ru(d′, c) � ru(d, c). We distinguish three
cases.

– If update rule 1 was used to obtain ru(d′, c) from d′ and
j ≥ h, then the highest indexwhere ru(d′, c) differs from
ru(d, c) is j and the values of the updated witnesses at
index j are d ′j and b j , respectively. From d ′j � b j it fol-
lows that ru(d′, c) � ru(d, c), which is a contradiction.

– If update rule 1 was used to obtain ru(d′, c) from d′ and
j < h, then ru(d′, c) coincides with ru(d, c) at indices
k to h and differs at some maximal index x in the range
h − 1 to 0. The value at index x of ru(d, c) is the �-
minimal value _, which gives us ru(d′, c) � ru(d, c), a
contradiction.

– If update rule 2 was used to obtain ru(d′, c) from d′, then
update rule 2 was applied on d′ at an index at most h−1:
Otherwise c would appear in ru(d′, c) either at an index
x in the range between k and h, which would mean that
d ′ = bk, . . . , bx+1, d ′x , _, . . .where d ′x � bx , d ′x < c and
bx is an odd number exceeding c, which would mean that
ru(d′, c) � ru(d, c) if x > h, and ru(d′, c) = ru(d, c)
if x = h, a contradiction. Given that update rule 2 was
applied on d′ at an index at most h, the values d ′k, . . . , b′h
are all at least c. Therefore, the values of ru(d′, c) and
ru(d, c) coincide at indices k to h. And must differ at
some maximal index x in the range h− 1 to 0. The value
at index x of ru(d, c) is the �-minimal value _, which
gives us ru(d′, c) � ru(d, c), a contradiction.

This finishes the proof. ��

In the following lemma,we show that it suffices for the antag-
onist to consider as an antagonistic choice just the witness
d = bk, . . . , b j+1, s, _, . . . where j is the minimal raisable
index ofb and s is the correspondingminimal raisable colour.

Lemma 12 Suppose that the preconditions of Lemma 11 do
not hold. If au(b, c) �= up(b, c), then au(b, c) = ru(d, c),
where d = bk, . . . , b j+1, s, _, . . ., and where j is the min-
imal raisable index of b and s the corresponding minimal
raisable colour.
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Proof By Lemma 8, there exists a d′ such that au(b, c) =
ru(d′, c) � ru(b, c), and by Lemma 10 we may assume that
d′ = bk, . . . , bh+1, d ′h, _, . . . for some h ≥ 1, where d ′h �
bh .

We assume that d′ �= d and prove that ru(d′, c) �
ru(d, c). This will imply that ru(d, c) � au(b, c), and since
d � b it will follow that ru(d, c) = au(b, c) which settles
the claim. To prove that ru(d′, c) � ru(d, c), we distinguish
two cases in which d′ could differ from d: Either j �= h or
j = h and d ′j �= d j = s.
First, let us assume that j �= h. Then by the definition of

j being the minimal raisable index, h > j . So the highest
index where d′ differs from d is h, where d ′h � bh = dh .

If rule 1 is used to obtain ru(d′, c) from d′ then
ru(d′, c) = bk, . . . , bh+1, d ′h, _, . . . , _, c. Since this means
all of bk, . . . , bh+1 are _ or at least c, the value of ru(d, c)
at index h is either bh or c (where the latter may happen
in case ru(d, c) is obtained from b through applying rule 2,
and bh < c). If ru(d, c)h = bh then by bh ≺ d ′h it holds
that ru(d′, c) � ru(d, c). If ru(d, c)h = c then rule 2 rather
than rule 1 has been used at index h to obtain ru(d, c) from
d (where we emphasize that we consider the case c �= bh ,
as if c = bh , then this was already taken care of), which
means that c � bh = dh . If d ′h is odd, then bh is a larger
odd number or _, and in both these cases rule 2 cannot
be applied to obtain ru(d, c) from d, so d ′h is even and at
least c. If d ′h > c then d ′h � c so ru(d′, c) � ru(d, c).
If d ′h = c then ru(d′, c) = bk, . . . , bh+1, c, _, . . . , _, c and
ru(d, c) = bk, . . . , bh+1, c, _, . . .. So ru(d′, c) � ru(d, c)
by comparing the values of the two witnesses at index 0.

If rule 2 is used to obtain ru(d′, c) from d′ then ru(d′, c) =
bk, . . . , bx+1, c, _, . . . for some index x ≥ h > j . We dis-
tinguish various cases.

– If rule 2 is used to obtain ru(d, c) from d and x >

h, then rule 2 is applied at the same index x on d,
and ru(d′, c) = ru(d, c), which implies our claim that
ru(d′, c) � ru(d, c).

– If rule 2 is used to obtain ru(d, c) from d at index h and
if x = h, then ru(d, c) = ru(d′, c) as well.

– If rule 2 is used to obtain ru(d, c) from d at an index
i > h and if x = h, then c > di = bi = d ′i and rule 2
must also have been applied at index i to obtain ru(d′, c)
from d′, i.e. i = x , a contradiction.

– If rule 2 is used to obtain ru(d, c) fromd at an index i < h
and if x = h then ru(d, c) = bk, . . . , bh, . . . , bi+1, c, _,
. . . and ru(d′, c) = bk, . . . , bh+1, c, _, . . .. Because bh ≺
d ′h , bh ≥ c ≥ d ′h , it follows that dh is _ or odd and at
least c. We know that dh �= c by assumption that the
preconditions of Lemma 11 do not apply, so dh is _ or
odd and greater than c. Therefore, c � bh and ru(d′, c) �
ru(d, c).

– If rule 1 is used to obtain ru(d, c) from d, then
ru(d, c) = bk, . . . , bh, . . . , b j+1, s, _, . . . , _, c. This
means that each of bk, . . . , bh, . . . , b j+1 is either _ or
at least c, and therefore x = h, d ′h � bh and d ′h < c, so
that bh is odd and not the least colour, and ru(d′, c) =
bk, . . . , bh+1, c, _, . . .. If c = bh then c is an odd colour
that is not the least colour and c occurs at index h in b, a
contradiction with the assumption that the preconditions
of Lemma 11 do not hold. If c < bh , then since d ′h is
a successor of bh satisfying d ′h < bh , we know that bh

must be odd, so ru(d′, c) and ru(d, c) agree on indices k
to h + 1 and ru(d′, c)h = c � bh = ru(d, c)h ; therefore
ru(d′, c) � ru(d, c).

The above establishes that ru(d′, c) � ru(d, c) if j �= h.
It remains to prove that also ru(d′, c) � ru(d, c) if j = h
and d ′j �= s. Assuming that j = h and d ′j �= s, it holds that
d ′j � s because of the definition of s as the minimal raisable
colour. We will again distinguish a lot of cases.

– If rule 2 is used to obtain ru(d, c) from d at an index
exceeding j , then rule 2 is used to obtain ru(d′, c) from
d′ at the same index, and ru(d′, c) = ru(d, c).

– If rule 2 is used to obtain ru(d, c) from d at index j , and
d ′j < c, then clearly also ru(d′, c) = ru(d, c).

– If rule 2 is used to obtain ru(d, c) from d at index j
and d ′j ≥ c, then rule 1 is used at index 0 to obtain
ru(d′, c) from d′, hence the highest index where ru(d′, c)
and ru(d, c)maypossibly differ is j , where ru(d, c) j = c
and ru(d′, c) j = d ′j . We see that d ′j must be even, as
d ′j � s and d ′j > s. Therefore, c ≤ d ′j . If c < d ′j , we
infer d ′j � c hence ru(d′, c) � ru(d, c). If c = d ′j then
the highest index where ru(d′, c) differs from ru(d, c) is
0, and ru(d′, c) � ru(d, c) by c � _.

– If rule 1 is used to obtain ru(d, c) from d, then s ≥ c. If
rule 1 is also used to obtain ru(d′, c) fromd′ then ru(d′, c)
and ru(d′, c) agree on indices k to j +1 and ru(d′, c) j =
d ′j � s = ru(d, c) j , so ru(d′, c) � ru(d, c). If rule 2 is
used to obtain ru(d′, c) from d′, then it must be at index
j . So then d ′j < c ≤ s, and by s ≺ d ′j it must be that s is
odd. Thus, if c < s then c � s and ru(d′, c) � ru(d, c)
as ru(d′, c) and ru(d, c) agree at indices k to j + 1 and
ru(d′, c) j = c � s = ru(d, c) j . Lastly, if c = s then
we prove that ru(b, c) � ru(d′, c), which contradicts our
assumption that ru(d′, c) = au(b, c) �= up(b, c):
Since c = s is defined as the minimal raisable colour of
b, it holds that b j is either _ or an odd colour greater than
s = c. The witness ru(b, c) is therefore obtained from b
by applying rule 1 or 2 at an index at most j .
This means that either ru(b, c) j = c = s ≺ d ′j , or it
holds that ru(b, c) j = b j ≺ s = c ≺ d ′j (where this
case distinction holds because of the definition of s as
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the minimum raisable colour). In the former case, we see
that ru(d′, c) j = c = ru(b, c) j and ru(d′, c) agrees with
ru(b, c) on all other indices as well, which would mean
ru(d′, c) = ru(b, c), a contradiction. In the latter case,
ru(d′, c) and ru(b, c) agree at indices k to j + 1 and at
index j it holds that ru(d′, c) j = c � b j = ru(b, c) j , so
that ru(d′, c) � ru(b, c).

This finishes the proof. ��
Combining the lemmas above yields as a corollary an
approach for efficient computation of au(b, c).

Corollary 3 Let j be the minimal raisable index and s
be the minimal raisable colour of b, and define d =
bk, . . . , b j+1, s, _, . . .. If c is odd, not the lowest colour, and
there exists a maximal index h such that bh = c, then

au(b, c) = bk, . . . , bh+1, c, _, . . . .

Otherwise,

au(b, c) = min� {ru(d, c), up(b, c)}.

6 Antagonistic update game

The antagonistic update game is played like the basic update
game, but uses the antagonistic update rule, i.e. player Even
and odd execute a play of the game as usual: if the token
is on a position of player Even, then player Even selects a
successor, and if the token is on a position of player odd,
then player Odd selects a successor.

Player Even can stop any time she likes and evaluate the
game using b0 = _, . . . , _ as a starting point and the update
rule bi+1 = au(bi , vi ). For a forward game, she would pro-
cess the partial play ρ+ = v0, v1, v2, . . . , vn from left to
right, and for the backward game she would process the par-
tial play ρ− = vn, vn−1, . . . , v0. In both cases, she has won
if bn+1 = won.

As an example, consider a prefix 1, 6, 2, 1, 4, 6 of a play
of a parity game with colours 1 to 6. Forward evaluation
of the play would result in the witness (_, 6, _), by starting
from (_, _, _) and following the sequence of antagonis-
tic updates (_, _, 1), (_, _, 6), (_, 5, 2), (_, 3, 1), (_, 4, _),
(_, 6, _). Backward evaluation of the play would result in the
witness (_, 6, 1), by starting from (_, _, _) and following the
sequenceof antagonistic updates (_, _, 6), (_, 5, 4), (_, 3, 1),
(_, 3, 2), (_, 6, _), (_, 6, 1). Note that from the above
sequences of updates it is easy to deduce the witness of a
shorter prefix only in the case of forward evaluation, e.g.
(_, _, 6) is the witness associated to forward evaluation of
prefix (1, 6), which simply occurs as a second element in the

above sequence of antagonistic updates. However, the wit-
ness resulting from backward evaluation of prefix 1, 6 does
not occur in the above sequence and has to be recomputed
(which will result in witness (_, 5, 1)).

Theorem 2 If player Even has a strategy to win the (forward
or backward) antagonistic update game, then she has a strat-
egy to win the parity game.

Proof We first look at the evaluation of a play ρ+ =
v0, v1, v2, . . . , vn or ρ− = vn, vn−1, . . . , v0 in a forward or
backward game, respectively. In an antagonistic game, this
will lead to a sequence a0, a1, . . . , an+1, while it leads to a
sequence b0,b1, . . . ,bn+1 when using the basic update rule.
We show by induction that bi � ai holds.

For an induction basis, b0 = a0 = _, . . . , _.
For the induction step, if bi � ai , then

ai+1 = au(ai , vi ) = min�
{
up(c, vi ) | c � ai

}

�I H up(bi , vi ) = bi+1.

Thus, when player Even wins the (forward or backward)
antagonistic update game, then shewins the (forwardor back-
ward) basic update game using the same strategy. ��

It remains to show that, if playerEven has a strategy towin
the parity games, then she has a strategy to win the antago-
nistic update game. For this, we will use the fact that she can,
in this case, make sure that the highest number that occurs
infinitely often on a run is even. We exploit this in two steps.
We first introduce a ↓x operator, for every even number x ,
that removes all but possibly one entry with numbers smaller
than x , and adjust the one that possibly remains to x − 1.
We then argue that, when there are no higher numbers than
x , this value of the witnesses obtained after this operator
are non-decreasing w.r.t. �, and increase strictly with every
occurrence of x .

Formally we define, for a witness b = bk, bk−1, . . . , b0
and an even number x , the following.

– b ↓x to be b if, for all i ≤ k, bi = _ or bi ≥ x holds.
– Otherwise, let i = max{s ≤ k | bs �= _ and bs < x}.
We define b ↓x= b′k, b′k−1, . . . , b′0 with b′j = b j for all
j > i , b′i = x − 1, and b′j = _ for all j < i .

Lemma 13 The ↓x operator provides the following guaran-
tees:

1. b � a ⇒ b ↓x� a ↓x

2. φ(v) < x ⇒ up(b, v) ↓x� b ↓x

3. φ(v) < x ⇒ au(b, v) ↓x� b ↓x

4. φ(v) = x ⇒ up(b, v) ↓x� b ↓x

5. φ(v) = x ⇒ au(b, v) ↓x� b ↓x
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Proof For (1), let i ≤ k be the highest position with bi �= ai ,
and thus with bi � ai (as b � a). If bi � x or x + 1 � ai ,
the claim follows immediately (and we have b ↓x� a ↓x ).
For the case x � bi � ai � x + 1, this position would be
replaced by x − 1 and all smaller positions by _, through the
↓x operator (and we have b ↓x= a ↓x ).

For (2), the highest position i ≤ k for which a = up(b, v)

and b differ (if any) satisfies ai < x and bi ≺ x (the latter
holds because otherwise v does not overwrite position i by
this update rule). If bi ≺ x + 1, then we get up(b, v) ↓x�
b ↓x ; otherwise we get up(b, v) ↓x= b ↓x .

(3) follows from (1) and (2).
For (4), a = up(b, v) andb differ in some highest position

i ≤ k, and for that position, x = ai � bi holds. Thus,
up(b, v) ↓x� b ↓x .

(5) follows with (1) and (4). ��

This almost immediately implies the correctness.

Theorem 3 If player Even can win the parity game from a
position v, then she can win the (forward and backward)
antagonistic update game from v.

Proof Player Even can play such that the highest colour that
occurs in a run infinitely many times is even. She can thus
in particular play to make sure that, at some point in the run,
an even colour x has occurred more often than the size of
the image of ↓x after the last occurrence of a priority higher
than x . By Lemma 13, evaluating the forward or backward
antagonistic update game at this point will lead to a win of
player Even. ��

These results directly provide the correctness of all four
games described.

Corollary 4 Player Even can win the forward and backward
antagonistic and basic update game from a position v if, and
only if, she can win the parity game from v.

7 Value iteration

The antagonistic update game offers a direct connection to
value iteration. For value iteration, we use a progress mea-
sure, a function ι : V → W, where W denotes the set of
possible backward witnesses. That is, a progress measure
assigns a backward witness to each vertex.

Let bv = max�{au(ι(s), v) | (v, s) ∈ E} for v ∈ Ve and
bv = min�{au(ι(s), v) | (v, s) ∈ E} for v ∈ Vo. We say
that ι can be lifted at v if ι(v) � bv . When ι is liftable at
v, we define by lift(ι, v) the function ι′ with ι′(v) = bv and
ι′(v′) = ι(v′) for all v′ �= v. We extend the lift operation
to every non-empty set V ′ ⊆ V of liftable positions, where
ι′ = lift(ι, V ′) updates all values v ∈ V ′ concurrently.

A progress measure is called consistent if it cannot be
lifted at any vertex v ∈ V . The minimal consistent progress
measure ιmin is the smallest (w.r.t. the partial order in the
natural lattice defined by pointwise comparison) progress
measure that satisfies

– for all v ∈ Ve that ι(v) � max�{au(ι(s), v) | (v, s) ∈
E}, and

– for all v ∈ Vo that ι(v) � min�{au(ι(s), v) | (v, s) ∈
E}.

As an example, consider a very simple parity game with
three colours and three vertices v1, v2, v3, where φ(vi ) = i
for all i . Vertices v3 and v2 are controlled by the even player
and v1 is controlled by the odd player. There are four arcs:
(v1, v3), (v3, v2), (v2, v1), (v3, v1). When starting with the
progressmeasure that assigns all vertices theminimalwitness
(_, _). After the first lift operation, all threewitnesses change,
and we obtain the progress measure ι(v1) = (_, 1), ι(v2) =
(_, 2), ι(v3) = (_, 3). For the second iteration operation, it
is easy to verify that no further vertex can be lifted, so the
minimal consistent progressmeasure is attained after a single
lift. Indeed, the odd player (trivially) wins everywhere in this
parity game.

As au(b, v) is monotone in b by definition and the state
space is finite, we get the following.

Lemma 14 The minimal consistent progress measure ιmin is
well defined.

Proof First, a consistent progress measure always exists: the
function that maps all states to won is a consistent progress
measure.

Second if we have two consistent progress measures ι and
ι′, then the pointwiseminimum ι′′ : v �→ min�{ι(v), ι′(v)} is
a consistent progressmeasure. To see this, we assumew.l.o.g.
that ι(v) � ι′(v).

For v ∈ Ve we get ι′′(v) = ι(v) � max�{au(ι(s), v) |
(v, s) ∈ E} � max�{au(ι′′(s), v) | (v, s) ∈ E}, using that
ι′′(s) � ι(s) holds for all s ∈ V .

Likewise, we get for v ∈ Vo that ι′′(v) = ι(v) �
min�{au(ι(s), v) | (v, s) ∈ E} � min�{au(ι′′(s), v) |
(v, s) ∈ E}, using again that ι′′(s) � ι(s) holds for all s ∈ V .

As the state space is finite, we get the minimal consistent
progress measure as a pointwise minimum of all consistent
progress measures. ��
Moreover, we can compute the minimal consistent progress
measure by starting with the initial progress measure ι0,
which maps all vertices to the minimal witness _, . . . , _, and
iteratively applying lifting.

Lemma 15 The minimal consistent progress measure ιmin

can be obtained by any sequence of lift operations on liftable
positions, starting from ι0.
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Proof We show that, for any sequence ι0, ι1, . . . , ιn of
progress measures constructed by a sequence of lift oper-
ations, for all v ∈ V , and for all i ≤ n, ιi (v) � ιmin(v)

holds.
For the induction basis, ι0(v) is the minimal element for

all v ∈ V , such that ι0(v) � ιmin(v) holds trivially.
For the induction step, let Vi ⊆ V be a set of liftable

positions for ιi and ιi+1 = lift(ιi , Vi ). We now make the
following case distinction.

– For v ∈ Vi ∩ Ve, we have ιi+1(v) = max�{au(ιi (s), v) |
(v, s) ∈ E} �I H max�{au(ιmin(s), v) | (v, s) ∈ E} �
ιmin(v).

– For v ∈ Vi ∩ Vo, we have ιi+1(v) = min�{au(ιi (s), v) |
(v, s) ∈ E} �I H min�{au(ιmin(s), v) | (v, s) ∈ E} �
ιmin(v).

– For v /∈ Vi , we have ιi+1(v) = ιi (v) �I H ιmin(v).

This closes the induction step.
While we have proven that the value of the progress mea-

sures cannot surpass the value of ιmin at any vertex, each
liftable progress measure ιi is succeeded by a progress mea-
sure ιi+1, which is nowhere smaller, and strictly increasing
for some vertices. Thus, this sequence terminates eventually
by reaching a non-liftable progress measure. But non-liftable
progress measures are consistent.

Thus, we eventually reach a consistent progress measure
ιn which is pointwise no larger than ιmin, i.e. we eventually
reach ιmin. ��
Once it is established that ιmin(v) = won holds, it is straight-
forward to obtain a winning strategy of player Even in the
antagonistic update game.

Lemma 16 If ιmin(v) = won, then player Even has a strat-
egy to win the antagonistic update game when starting from
v.

Proof We can construct the strategy in the following way:
starting in state vn = v, where n is the length of the play
we will create, player Even selects for a state vi ∈ Ve with
i > 0 a successor vi−1 such that ιi (vi ) � au(ιi−1(vi−1), vi ).
Note that such a successor must always exist. Note also that,
if vi ∈ Vo with i > 0, then ιi (vi ) � au(ιi−1(vi−1), vi ) holds
for all successors vi−1 of vi by definition.

Assume that player Even selects a successor from her
vertices as described above, and vn, vn−1, . . . , v0 is a play
created this way. Let b0 = _, . . . , _ be the minimal element
ofW, and bi+1 = au(bi , vi+1). Then we show by induction
that bi � ιi (vi ).

For the induction basis, we have b0 = ι0(v0) by def-
inition. For the induction step, we have ιi+1(vi+1) �
au(ιi (vi ), vi+1) �I H au(bi , vi+1) = bi+1.

Thus, we get bn � ιn(vn) = won, and player Even wins
the antagonistic update game. ��

At the same time, player Even cannot win from any vertex v

with ιmin(v) �= won, and ιmin provides a witness strategy for
player Odd for this.

Lemma 17 Player Even cannot win from any vertex v with
ιmin(v) �= won, and ιmin provides a witness strategy for
player Odd.

Proof We recall that the construction of ιmin by Lemma 15
provides

– ιmin(v) � max�{au(ιmin(s), v) | (v, s) ∈ E} for v ∈ Ve,
and

– ιmin(v) � min�{au(ιmin(s), v) | (v, s) ∈ E} for v ∈ Vo.

The latter provides the existence of some particular successor
s of v with ιmin(v) � au(ιmin(s), v). The witness strategy of
player Odd is to always choose such a vertex.

Let ρ = vn, vn−1, vn−2, . . . , v1 be a sequence obtained
by any strategy of player Even from a starting vertex vn with
ιmin(vn) �= won, such that player Even chooses to evaluate
the backward antagonistic update game after ρ, and ρ, v0 an
extension in line with the strategy of player Odd.

We first observe that ιmin(vi+1) � au(ιmin(vi ), vi+1)

holds for all i < n, either by the choice of the suc-
cessor of vi+1 of player Odd if vi+1 ∈ Vo, or by
ιmin(vi+1) � max�{au(ιmin(s), vi+1) | (vi+1, s) ∈ E} �
au(ιmin(vi ), vi+1) if vi+1 ∈ Ve. With ιmin(vn) �= won, this
provides ιmin(vi ) �= won for all i ≤ n.

Let b0 = _, . . . , _ be the minimal element of W, and
bi+1 = au(bi , vi+1). Then b0 � ιmin(v0), and the mono-
tonicity of au in the first element inductively provides bi �
ιmin(vi ) for all i ≤ n. Thus bn �= won, and player Even loses
the update game. ��

8 Complexity

Weuse natural representation for the set of colours as integers
written in binary, encoding the _ as 0. The first observation
is that the number of individual lift operations is, for each
vertex, limited to |W|, the number of witnesses.

Lemma 18 For each vertex, the number of lift operations
is restricted to |W|. The overall number of lift operations
is restricted to |V | · |W|. The number of lift operations an
edge (or: source or target vertex of an edge, respectively) is
involved in is restricted to |W|. Summing up over all edges
and over the number of lift operations, their target or source
vertex is involved in amounts to O(|E | · |W|).
Asimple implementation can track, for each vertex, the infor-
mation which position in the witness is the next one that
would need to be updated to trigger a lift along an edge, and,
using a binary representation in line with �, which bit in
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the representation of this position has to change to consider
triggering an update. (Intuitively the most significant bit that
separates the current value from the next value to trigger an
update.)

Obviously, the most expensive path to ιmin is for each
position to go through all values of |W| in this case. But in
this case, tracking the information mentioned in the previous
section reduces the average cost of an update to O(1). The
information that we store for this is, for each vertex, the
current witness that represents its current value before and
after executing the antagonistic update, and the next value
that would lead to a lift operation on the antagonistic value.

For each incoming edge, the position and bit that need to
be increased to trigger the next lift operation for this vertex
are also stored.

Example 1 We look at a vertex v with one outgoing edge to
its successor vertex s. We have 7 different colours, 2 through
8. Vertex v has colour 2.

We use a representation that follows the�-order and thus
maps _ to 0, 7 to 1, 5 to 2, 3 to 3, 2 to 4, 4 to 5, 6 to 6, 8 to 7.
That is, we use the numbers 0 to 7 in order to represent the
ranking of the colours (and _) in the �-order.

Assume that s has currently a witness b = b2, b1, b0 =
6, _, 2 attached to it, represented as b̃ = b̃2, b̃1, b̃0 = 6, 0, 4.

To obtain a witness for v, we calculate c = au(b, v) =
6, 5, 2, which is represented as c̃ = c̃2, c̃1, c̃0 = 6, 2, 4. The
next higher value a � b such that au(a, v) � au(b, v) is
ã = ã2, ã1, ã0 = 6, 2, 4.

The lowest position i with ãi > b̃i is for position i = 1,
and the difference occurs in the middle bit (̃a1 = 2 = 0102
and b̃1 = 0 = 0002).

For the edge from v to s, we can store after the update that
we only need to consider an update from s if it increases at
least the position b1 of the witness for s. If b1 is changed, we
only have to consider the change if the update is at least to
the value represented as 2 (̃b′1 ≥ 2), and thus b′1 � 5. For all
smaller updates of the witness of s, no update of the witness
of v needs to be considered.

Assuming members ofW can be concisely represented in
a way where the �-order, successor, etc., can be efficiently
found (as is the case for most of our results), we have the
following theorem.

Theorem 4 For a parity game with n vertices and m edges,
the algorithm can be implemented to run in O(m · |W|) time
and O(n · log |W| + m log log |W|) space.

Note that the log log |W| information per edge is only
required to allow for a discounted update cost of O(1). It
can be traded for a log |W| increase in the running time. This
leaves the estimation of |W|.

To improve the complexity especially in the relevant lower
range of colours, we first look into reducing the size of W,

and then look into keeping the discounted update complexity
low. We make three observations that can be used to reduce
the size of W; they can be integrated in the overall proof,
starting with the raw and basic update steps.

The first observation is that, if the highest colour is the odd
colour omax, then we do not need to represent this colour: if
φ(v) = omax and b �= won, then up(b, v) contains only
_ and omax entries. Moreover, _ and omax entries behave in
exactly the same way. This is not surprising: omax is the most
powerful colour, and a state with colour omax cannot occur
on a winning cycle.

The second observation is that, if the lowest colour is the
odd colour omin, then we can ignore it during all update steps
without violating the correctness arguments. (In fact, this
colour cannot occur at all when using the update rules sug-
gested in Calude et al. [6].)

Finally, we observe that, for the least relevant entry b0 of
an witness b, it does not matter if this entry contains _ or an
odd value. We can therefore simply not use odd values at this
position. (Using the third observation has no impact on the
complexity of the problem, but still approximately halves the
size of W, and is therefore useful in practice.)

We call the number of different colours, not counting the
maximal and minimal colour if they are odd, the number r
of relevant colours.

Lemma 19 For a parity game with r relevant colours and e
vertices with even colour, and thus with length l = �log2(e+
1)� of the witnesses, |W| ≤ 1+∑l

i=0

( l
i

)
·
( i + r − 1

r − 1

)
.

Proof The 1 refers to the dedicated value won. For the other
witnesses, the values canbeobtainedby considering the num-

ber i of integer entries. For i integer entries, there are
( l

i

)

different positions in the witnesses that could hold these i

integer values. Fixing these positions, there are
( i + r − 1

r − 1

)

ways to assign non-increasing values from the range of rel-
evant colours. (e.g. these can be represented by a sequence
of i white balls and r − 1 black balls. The number of white
balls prior to the first black ball is the number of positions
assigned the highest relevant colour, the number of white
balls between the first and second black ball is the number
of positions assigned the next lower colour, etc.) ��
This allows for two easy estimations of the size of |W|: If the
number c of colours is small (especially if c is constant), then

we can use the coarse estimate |W| ∈ O
(

e ·
( l + r − 1

l

))
.

In particular, we get the following complexity for a con-
stant number of colours.

Theorem 5 A parity game with r relevant colours, n vertices,
m edges, and e vertices with even colour can be solved in time
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O
(
e ·m · (log(e)+ r)r−1/(r − 1)!) and space O

(
n · log(e) ·

log(r)+ m · log(log(e) · log(r))
)
.

We use that the length l = �log2(e+ 1)� of the witnesses
is logarithmic in e.

This also provides us with a strong fixed parameter
tractability result: whenwe fix the number of colours to some
constant c, we maintain a quasi-bi-linear complexity in the
number of edges and the number of vertices. If we fix, e.g. a
monotonously growing quasi-constant function qc (like the
inverse Ackermann function), then Theorem 5 shows that, as
soon as qc(n) ≥ c, and thus almost everywhere and in partic-
ular in the limit, have (l + r)r−1/(r − 1)! ≤ (log2 n)qc(n), or
(l + r)r−1/(r − 1)! ≤ qc(n)log2(log2(n)) if log2(qc(n) ≥ c).

Corollary 5 Parity games are fixed parameter tractable,
using the number of colours as their parameter, with com-
plexity O

(
m ·n ·qc(n)log log n

)
for an arbitrary quasi-constant

qc, where m is the number of edges and n is the number of
vertices.

For a “high” number of colours, we can improve the estima-
tion: if r ≥ l2, then the case i = l dominates the overall cost,

such that |W| ∈ O
(( l + r − 1

l

))
.

Theorem 6 For a parity game with r relevant colours, m
edges, and e vertices with even colour, and thus length l =
�log2(e+ 1)� of the witnesses, and h = ⌈

1+ r−1
l

⌉
, one can

solve the parity game in time O(m · h · e1+c1.45+log2(h)), and
in time O(m · h · ec1.45+log2(h)) if r > l2.

We use the constant c1.45 = limh→∞ log2(1 + 1/h) · h =
log2 e < 1.45, where e ≈ 2.718 is the Euler number; using
that (1+ 1/h)h < e and thus log2(1+ 1/h) · h < c1.45 holds
for all h ∈ N.

Proof To estimateW, we again start with analysing the size

of
( l + r − 1

l

)
.

We note that l + r − 1 ≤ h · l, such that we can estimate
this value by drawing l out of h · l.

The number of all ways to choose l = �log(e + 1)� out
of h · l numbers can, by the Wikipedia page on binomial
coefficients and the inequality using the entropy in there (also
can be found in [2]), be bounded by

2(log2(e)+1)·h·((1/h)·log2(h)+((h−1)/h)·log2(h/(h−1)))

= 2(log2(e)+1)·(log2(h)+log2(1+1/(h−1))·(h−1))

= (2e)log2(h)+(log2(1+1/(h−1)))·(h−1))

≤ (2e)c1.45+log2(h) ∈ O
(
h · ec1.45+log2(h)

)
.

The estimation uses that log(1+1/(h−1))·(h−1) < c1.45
holds for all h ∈ N.

Theorem 4 now provides O(m · h · e1+c1.45+log2(h)) time
bound. If the number of colours is high (r > l2), then

we observe that |W| ≤ 1 + ∑l
i=0

( l
i

)
·
( i + r − 1

i

)
∈

O
(( l + r − 1

l

))
holds, as the sum is dominated by

( l
l

)
·

( l + r − 1
l

)
. This allows for the second estimate O(m · h ·

ec1.45+log2(h)) of the running time when r > l2 holds. ��
This allows for identifying a class of parity games that can
be solved in polynomial time.

Corollary 6 Parity games where the number c of colours is
logarithmically bounded by the number e of vertices with
even colour (c ∈ O(log e)) can be solved in polynomial time.

9 Witness length as an index of complexity

Lehtinen [26] introduces the notion of register index of a
parity game, which is a natural number associated to a par-
ity game and is intended as a measure of the complexity
of solving it. Lehtinen compares the register index to two
other previously proposed measures of complexity for par-
ity games: entanglement and the Rabin index. Moreover, the
author proves that the register index of every parity game is
at most log n + 1, and that a parity game of register index k
with n vertices is equivalent to a parity game that has 4n|C |k
vertices with 2k + 1 colours, where C is the set of colours of
the original parity game. Together with, e.g. Theorem 4, this
yields an alternative proof of the quasi-polynomial time solv-
ability of parity games. The space complexity of Lehtinen’s
method is rather high, as it works by reducing a parity game
to a much bigger one, where the magnitude of the increase
depends on the register index of the parity game under con-
sideration.

In this section, we propose two new complexity measures
that are naturally derived from the update statistics games dis-
cussed in this paper. We call these the forward au-index and
the backward au-index. These indices are informally defined
as the minimum length � of the witness that we need to track
in order to establish whether one of the two players wins the
antagonistic update game (using, respectively, forward and
backward evaluation of the witness). For the backward au-
index, we show that we may then slightly adapt our progress
measure algorithm such that (roughly stated) it lifts only up
to witnesses that do not use the indices exceeding �. Using
Theorem 4, taking for |W| the upper bound |C |�, we estab-
lish that we can solve such a game in time O(n�m|C |�) and
space O(n�2 log |C | + m� log � + m� log log |C |). For the
forward au-index, we relate it to the register index by show-
ing that it is always at least as high as the register index. As
the forward au-index is at most �log n� + 1, this yields an
alternative proof of the upper bound of �log n� + 1, which
was shown in [26] using an entirely different argument.
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Let us first precisely define the antagonistic update index.
This index is naturally obtained by considering that the roles
of players even and odd can be swapped, and that the antag-
onistic update game defined in Sect. 6 can be run relative
to player Odd just as well as player Even. We refer to these
two games as the even antagonistic update game and the odd
antagonistic update game. If player Even cannot force a win
in the even antagonistic update game, then player Odd has
a strategy such that every play results in a witness b where
value(b) ≤ e. In particular, something even stronger may
be the case: The odd player may have a strategy such that
every play results in a witness with a value much lower than
e. When the odd player uses such a strategy, every play will
result in a witness where the highest indices of the witness
are always set to _. A symmetric situation occurs in the odd
antagonistic update game when the odd player cannot force
a win. The antagonistic update index is defined as the least
index � such that the winning player has a strategy such that
in either the odd or even antagonistic update game it holds
that every play results in a witness b where b� = _.

Definition 3 Let P be a parity game with a specified starting
vertex. The backward (forward) antagonistic update index
(au-index) � of P is defined as follows.

– If player Odd wins P , then � is defined as the least index
for which odd has a strategy σ such that for each prefix
p of each play ρ that is consistent with σ , the backward
(forward) evaluation of p using the antagonistic update
rule au results in a witness b where b� = _.

– Similarly, if player Even wins P , then � is defined as the
least index for which even has a strategy σ such that for
each prefix p of each play ρ that is consistent with σ , the
backward (forward) evaluation of ρ using the odd player
equivalent of the antagonistic update rule au results in a
witness b where b� = _.

The global backward (forward) au-index of a parity game
is defined as the highest backward (forward) au-index with
respect to any starting vertex.

Let us first give an example of a parity game for which
it holds that there are many vertices and colours, but has a
low global forward and backward au-index: Let our parity
game consist of an arbitrary number of disjoint directed 4-
cycles, all with disjoint colours such that the i th cycle has
colours 4i, 4i + 1, 4i + 2, 4i + 3 on its respective vertices,
so that the maximum colour of each cycle is odd. Since each
vertex has a single outgoing arc, in this parity game it is
irrelevant which player controls which vertex. It can now
straightforwardly be shown that when playing the forward
antagonistic update game from any starting vertex, the values
of the witness at indices exceeding 1 always remain _. Due
to the various details in the definition of the antagonistic

update rule, showing this formally would require a somewhat
analysis, although the core reason for this being true lies in
the fact that the dominating colour of the play is encountered
once every four vertices in any prefix of any play of this parity
game. A similar argument can moreover be made for the
backward version of the antagonistic update game. This leads
us to the conclusion that the global forward and backward
au-index of this family of example parity games is 2.

We will use the symbol � to refer to the forward or back-
ward au-index of a parity game. By definition of �, there
exists a strategy for the winning player that prevents the los-
ingplayer’s update statistics from reaching awitness inwhich
any index of � or higher is used.We refer to such a strategy as
a certificate strategy for the (forward or backward) au-index.

Definition 4 Let P be a parity game with a specified starting
vertex and let � (�′) be the forward (backward) au-index of
P . A certificate strategy for the forward (backward) au-index
is a strategy τ of the winning player such that for all plays
ρ in agreement with τ , for every prefix p of ρ, the forward
(backward) evaluation of p according to the losing player’s
antagonistic update rule results in a witness b satisfying bi =
_ for all i ≥ � (i ≥ �′).

The following theorem shows that parity games with a low
global backward au-index can be solved in a time that ismuch
faster than the quasi-polynomial worst-case bounds given in
Sect. 8.

Theorem 7 A parity game P where the colour set is C
and the global backward au-index is � can be solved in
time O(n�m|C |�) and space O(n�2 log |C | + m� log � +
m� log log |C |).
Proof If we know �, wemay run the value iteration algorithm
of Sect. 7, with the following adaptation: when in an iteration
i we encounter a vertex v with ιi (v)� �= _, we lift the vertex
immediately to the witness won in iteration i + 1. Observe
that the resulting progressmeasure at iteration i+1 is still less
than ιmin with respect to the partial order in the lattice defined
by pointwise comparison, thus the final progress measure
found by the algorithm will still be the minimal consistent
progress measure. Observe that since all witnesses encoun-
tered in the algorithm have the value _ on indices at least �,
the number of witnesses |W|with which the algorithm effec-
tively works is (|C | + 1)�, so it runs in time O(nm|C |�) and
space O(n� log |C | + m log � + m log log |C |) by Theorem
4.

If � is unknown, we may proceed as follows. We run the
above adaptation of the progress measure algorithm itera-
tively for all possible values of �, starting at � = 1 and
incrementing � at each iteration. In each iteration, we run
two instances Ieven and Iodd of this algorithm in parallel:
The witnesses of Ieven are witnesses of the even antagonistic
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update game and the witnesses of Iodd are witnesses of the
odd antagonistic update game. Let the respective outputs of
these two algorithms be ιmin,even and ιmin,odd, which are, by
definition, the minimum consistent progress measures cor-
responding to the even and odd antagonistic update games
under the assumption that the global au-index of P is �.

It is now easy to check whether we have run our progress
measure algorithm for the correct choice of �: from the out-
put of the algorithms we may define two sets of vertices
Vodd and Veven, where Vodd is the set of vertices v such that
ιmin,even �= won, and Veven is the set of vertices v such that
ιmin,odd �= won. If � is chosen correctly, then ιmin,even is
the minimum consistent progress measure with respect to
the even antagonistic update statistics, so Vodd is the set of
vertices where player Odd wins and the proof of Lemma 17
provides a constructive linear time algorithm for obtaining
a memoryless winning strategy σ for player Odd on Vodd.
Likewise, from imin,odd we may obtain a memoryless win-
ning strategy τ for player even on Veven. If (Veven, Vodd) is
not a partition of V or if (σ, τ ) is not a valid pair of mem-
oryless winning strategies, then � is not the correct value of
the global au-index, so we may increment � and repeat the
process. Otherwise, we have found the correct pair of memo-
ryless winning strategies and thereby solved the parity game
and found the correct value of �.

For completeness, wemention that it is easy to algorithmi-
cally check whether a memoryless strategy for a given player
on a given set of vertices V ′ is winning: just remove from the
graph all the arcs that are controlled by the player but that
are not in the strategy. Clearly, the strategy is winning if and
only if the subgraph induced by V ′ contains no cycle where
the highest priority corresponds to the opposing player.

The time complexity of this procedure is as follows. Let
� now be the correct progress measure. This algorithm runs
through 2� executions of the adapted version of our progress
measure algorithm, where in each iteration it uses at most
(|C |+1)� witnesses. Therefore, by Theorem 4, the complete
procedure takes time O(n�m|C |�) and space O(n�2 log |C |+
m� log �+ m� log log |C |). ��

Note that the above proof also implies that there always
exist memoryless strategies for the players that are certifi-
cate strategies for the global backward au-index of a parity
game,which can be foundwithin the specified time and space
bounds.

Lehtinen’s register index provides an alternative measure
of complexity for solving a parity game, and it is defined as
follows. First, we define a register game with k registers on
a given parity game. In such a game, play proceeds as usual,
and additionally one of the players, say even, has some con-
trol over k registers, each containing a colour or the value−1
and are re-ordered at each step of the game. Initially all regis-
ters contain the value−1 and are sorted arbitrarily. Each time

the token is moved (either by the even or the odd player) to a
new vertex having some colour c, the content of each register
r is set to max{c, b}, where b is the current content of register
r . Each time the token moves, the even player may addition-
ally choose one of these registers and reset it to −1. At each
step, registers are re-ordered non-decreasingly according to
their content, breaking ties arbitrarily, effectively meaning
that the register that is reset gets taken out of the ordering
and gets inserted at the lowest position (i.e. position 1) in
the ordering. The winning condition is as follows, assum-
ing player Even controls the registers (otherwise, switch the
roles of even and odd): Player Odd wins if player Even only
resets registers finitely often. If player Even resets registers
infinitely often, then let r be the highest rank in the ordering
at which registers are reset infinitely often and let x be the
number of times that a register with an odd number is reset
at rank r . Player Even wins the register game if and only if
x is finite.

The register index for a parity game (with specified start-
ing position) is defined as the least number of registers k
such that the winning player of the parity game wins the k-
register game in which the winning player is in control of the
registers.

Lehtinen shows that the k-register game, for any k, is in
turn equivalent to a parity game of 2k+1 colours and 4n|C |k
vertices. The author also shows that k ≤ log(n+1) and these
facts together imply that parity games can be solved in quasi-
polynomial time.

The register index has been introduced with the purpose
of providing a measure of complexity of solving a parity
game. Therefore, we are interested in the question whether
the register index relates in some way to the required size of
the witness generated by our antagonistic update rule, and
to that end we prove next that the register index is always at
most the value of both the forward and backward au-indices.

The first lemma we need involves the witnesses generated
by forward evaluation of the play. It shows the following,
informally stated: In the forward antagonistic update statis-
tics game corresponding to the losing player, if we inspect
the value at the largest index of the witness where update
rule 2 (according to Definition 1) is applied infinitely often
with a colour of the winning player, the highest colour that
is encountered infinitely often at that index is the winning
colour of the play.

Lemma 20 Let ρ be a play on a parity game and consider the
infinite sequence of witnesses resulting from the sequence of
updates of the losing player’s antagonistic update statistics.
Let c be the highest colour that occurs infinitely often in ρ, let
j be the highest index of the witness that is modified infinitely
often, and let c′ be the highest colour such that update rule 2
(recall Definition 1) is applied infinitely often on index j of
the witness, either on witness b directly or on an antagonistic

123



342 J. Fearnley et al.

choice d � b (i.e. resulting in value c′ on the j th index after
applying the update rule). Then c′ = c.

Proof Wemay assume without loss of generality that we are
given a parity game in which the winning player is odd, and
we consider evaluating a play ρ = (v1, v2, . . .)with the even
antagonistic update statistics. The play ρ induces an infinite
sequence of witnesses (b1,b2, . . .), where bi is the witness
obtained after forward evaluation of the prefix (v1, . . . , vi )

of ρ, starting from witness (_, . . . , _).
The definition of the antagonistic update rule and Defini-

tion 1 together with Corollary 1 imply that at each step i of
the play, the witness bi is updated by selecting a �-higher
witness di and subsequently applying update rule 1 or 2 on it.
FromCorollary 2, it follows that if update rule 1 is applied on
di , then for the resultingwitness bi+1 it holds that bi+1 � bi .

Our sequence of witnesses resulting from ρ never attains
the value won, which implies that for generating the infinite
sequence of witnesses (b1,b2, . . .), update rule 2 is used
infinitely often. (If update rule 2 would only be used finitely
often, then there would be some point in the sequence after
which solely update rule 1 is used, but by the strong mono-
tonicitywe just established for the latter operation, thatwould
mean that the value won is reached after a finite number of
iterations, which is a contradiction.)

Let c be the highest colour occurring infinitely often in ρ,
which must be an odd colour. Let j be the maximal index for
which update rule 2 is applied at index j infinitely often. Note
that the definition of j implies that there is a point i in the
play such that in the suffix of the play from element i onward,
no index exceeding j is ever modified: First there certainly
exists a point i ′ such that from step i ′ onward rule 2 is never
applied at any index exceeding j . Thus from i ′ onward, any
modification of the witness at any index exceeding j must be
at steps i ′′ such that rule 1 is used on di ′′ . We then combine
the following:

– the definition of the �-relation,
– the fact that at such a step i ′′ there is an index exceeding

j at which the value �-increases (using the definition of
update rule 1 and the definition of the antagonistic choice
di ′′ ),

– the fact that applications of rule 2 do not modify any
index exceeding j ,

from which we conclude that steps where update rule 1 is
used, and where an index exceeding j is modified, cannot
occur infinitely often. This implies the existence of i . We
may also assume that there is a step after which no colour
higher than c ever occurs, hence we may assume that i also
satisfies that property. Next, let c′ be the highest colour such
that rule 2 is applied infinitely often on c′ at index j . We may
assume that there is a step after which rule 2 is never applied

at index j on any colour higher than c′, and we assume that i
also satisfies that property. We refer to steps where rule 2 is
applied on c′ at index j as dominant. Finally, we assume that
at iteration i , the witness bi does not hold value _ at index
j and a dominant step has occurred at least once. Note that
this implies that at every point after i , index j does not hold
the value _ and holds either an even value or an odd value of
c′ or less. We restrict our attention to the suffix of ρ starting
at step i .

Suppose for contradiction that c′ < c. Then, after each
step i ′ ≥ i where c occurs, there is a colour c′′ ≥ c at
index j of the witness, which must be an even colour, as we
established that index j cannot hold odd colours greater than
c′ from step i onward. Since after such a step eventually a
dominant step i ′′ > i ′ occurs, this means that in between i ′
and i ′′, the value at index j decreases to a value c′′ < c′,
which can only be achieved through some minimal step i ′′′
with i ′ ≤ i ′′′ < i ′′, where update rule 1 is applied at index j
and bi ′′′ = di ′′′ . Since index j of the witness contains an even
value of c′′ at step i ′, we conclude that the value of index j
is even and at least c′′ at step i ′′′; a contradiction with the
fact that update rule 1 is only applied on indices where the
witness contains a non-even value. Therefore, c = c′, which
proves the claim.1 ��
The following lemma shows that the register index of a par-
ity game is at most the forward au-index �. Its proof makes
use of Lemma 20 in order to design a strategy for the associ-
ated register game with � registers controlled by the winning
player.

Theorem 8 Let P be a parity game with specified starting
vertex and let � be the forward au-index of P . Then the reg-
ister index of P is at most �.

Proof We show that the winning player of P can force a
win in the register game on P with � registers. Assume that
player Odd is the winning player, and let τ be a certificate
strategy of player Odd for the forward au-index. We define a
strategy for playerOdd in the register game overP , where the
odd player controls � registers: Player Odd moves the token
through the graph exactly as τ prescribes. For each move,
player Odd tracks how the witness resulting from the even
forward antagonistic update rule is updated. Depending on
the antagonistic update rule applied at the last move, player
Odd resets a register as follows, where we recall that indices
of the witness are numbered starting from 0 and registers are
numbered starting from 1:

– If update rule 2 was applied, and the colour c to which the
token was moved was odd, then let j ′ < � be the index of

1 We recall Definition 1, which state when rules 1 and 2 are defined to
be applied.
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the witness that was updated to colour c. The odd player
resets register j ′ + 1.

– Otherwise, (if the colour c to which the token was moved
was even, or if update rule 1 was applied), the odd player
does not reset any register.

Using Lemma 20, it is quite straightforward to establish
that this strategy forces the odd player a win in the register
game: Consider any play ρ that agrees with τ and let the
index j < � be defined as in Lemma 20. The lemma states
that index j of the witness is updated infinitely often to the
highest infinitely often occurring colour of ρ by means of
applications of update rule 2. By our definition of the strategy
of player Odd in the register game, register j + 1 is reset
infinitely often with the highest infinitely often occurring
colour in it, which is an odd colour. Moreover, no register
exceeding j + 1 is reset infinitely often by definition of j .

It remains to prove that register j+1 is not reset an infinite
number of times when it contains an even colour. To prove
that, we define t as the earliest point in the play ρ such that
up to step t there has been at least one update of type 2 at
index j of thewitness on the highest infinitely often occurring
colour, and moreover, from t onward there occurs no colour
exceeding the highest infinitely often occurring colour, and
no index of the witness that exceeds j is ever modified. We
now need the following insight about the play ρ.

Proposition 1 Suppose that x ≥ t is a time step at which an
even colour c is held at index j of the witness, and let x ′ > x
be the earliest time step at which update rule 2 is used at
index j on an odd colour c′. Then c′ > c.

Proof By definition of the antagonistic update rule and by
the fact that in between x and x ′, update rule 2 is not used
at index j on an odd number, we conclude that any update
of the witness in between x and x ′ either leaves the value at
index j unchanged or�-increases the value of the witness at
index j to a higher even number. Therefore, at time step x ′
update rule 2 is applied on an odd colour c′ > c.

Let i and i ′ be two steps where t ≤ i < i ′ such that τ

prescribes to reset register j +1 in steps i and i ′, and register
j + 1 is not reset in between i and i ′. Let c′ be the colour
occurring at step i ′. Suppose for contradiction that there is a
even colour c′′ occurring in between steps i and i ′ such that
c′′ > c′, and let i ′′ be the corresponding step at which this
happens. Index j of the witness at step i ′′ (after updating it
with colour c′′) must then contain a colour of c′′ or higher,
but by the proposition above that would imply that c′ > c′′; a
contradiction. We therefore establish the following: For any
colour c′′ occurring after t in between two consecutive type
2 updates at index j of the witness on odd colours c and c′,
respectively, it holds that c′′ is not even if c′′ > c′. From the
definition of the register resetting strategy τ it then directly

follows that after time step t , the number of times register
j+1 is reset with an even number containing it is 0, and thus
the total number of times that register j + 1 is reset with an
even number containing it is t , which is finite.

Therefore, register j+1 is the highest register that is reset
infinitely often and register j+1 is reset only a finite number
of times with an even number contained in it. This implies
that player Odd is guaranteed to win the register game with
strategy τ . The number of registers used is atmost the number
� of indices of the witness that are modified throughout the
play, which proves the claim. ��
The above bound additionally provides us with an alter-
native proof of the fact that the register index is at most
�log n�+ 1: Because the highest index of a witness does not
exceed �log n�, the forward au-index � is at most �log n�+1,
which means that the register index is at most �log n�+ 1 by
Theorem 8.

Corollary 7 The register index of a parity game with n ver-
tices is at most �log n� + 1.

In relation to the register index, we leave open a few inter-
esting problems: First of all, we wonder if it is possible to
complement our lower bound on the forward au-index by a
corresponding upper bound in terms of the register index.
Secondly, we hope to achieve a similar result for the back-
ward au-index, which would be insightful with respect to
the value iteration algorithm of Sect. 7, where the progress
measure was defined using backward evaluation. The chal-
lenge for obtaining such a result seems to be to obtain useful
insights by which we can conveniently relate a backward
play (forming thewitness) to the corresponding forward play
(forming the register configuration).

10 Lower bounds

In this section, we introduce a family of examples, on which
the basic update game from [6] is slow. (Recall that these
original rules restrict the use of Lemma 3 to even colours.
Adjusting the example is not hard, but effectively disallows
to make effective use of b0.)

The example is a single player game, which is drawn best
as a ring. In this example, the losing player, player Odd, can
draw out his loss. The vertices of the game have name and
colour 1, . . . , 2n. They are all owned by player Odd. There
is always an edge to the next vertex (in the modulo ring).
Additionally, there is an edge back to 1 from all vertices with
even name (and colour). Figure 2 depicts the example for
n = 2.

Obviously, all runs are winning for player Even. We show
how player Odd can, when starting in vertex 1, produce a
play, such that forward updates produce all witnesses that
use only _ and even numbers.
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Fig. 2 The lower bound
example for n = 2 1

2

3

4

Wefirst observe that every value 2i−1 is overwritten after
the next move in a play by 2i in a witness b.

The strategy of player Odd to create a long path is simple.
We consider three cases.

If, in the current witness b = bk, . . . , b0, we have b0 = _
and the token is at a position 2i , then moving to 1, and thus
next to 2, results in the nextwitnesswithout odd entries larger
than b.

If b0 �= _, then we have that b0 = 2i , and b has no smaller
entries than 2i . If all of these entries are consecutively on the
right of b, thenwe obtain the next witness without odd entries
larger than b by going through 2i + 1 to 2i + 2. Player Odd
therefore chooses to continue by moving the token to vertex
2i + 1 in this case.

Otherwise, there is a rightmost b j = _, such that right of
it are only entries 2i (for all h < j , bh = 2i), and there is
also a 2i value to the left (for some h > j , bh = 2i). Then
the next witness without odd entries larger than b is obtained
by replacing b j by 2 and all entries to its right by _. This can
be obtained by going to vertex 1 and, subsequently, to vertex
2. Player Odd therefore chooses to continue by moving the
token to vertex 1 in this case.

11 Implementation

We implemented our algorithm in C++ and tested its per-
formance on Mac OS X with 1.7 GHz Intel Core i5 CPU
and 4 GB of RAM. We then compared it with the small
progress measure algorithm [22], Zielonka’s recursive algo-
rithm [41], the classic strategy improvement algorithm [39]
as implemented in the PGSolver version 4.0 [14,16], and
the implementation [37] of an alternative recently developed
succinct progress measure algorithm from [20]. We tested
their performance,with timeout set to twominutes, on around
250 different parity games of various sizes generated using
PGSolver. These examples include the following classes.

– Friedmann’s trap examples [17], which show exponential
lower bound for the classic strategy improvement algo-
rithm;

– random parity games of size s, ranging from 100 to
10,000 that were generated using PGSolver’s command
steadygame s 1 6 1 6 (for each s we generated ten
instances);

– recursive ladder construction [18] generated using
PGSolver’s command recursiveladder.

PGSolver implements several optimisation steps before the
algorithm of choice is invoked. These include SCC (Strongly
Connected Component) decomposition, detection of spe-
cial cases, priority compression, and priority propagation
as described in [16]. To illustrate this, the small progress
measures algorithm in PGSolver was able to solve all
Friedmann’s trap examples in 0.01 s when using these opti-
misations. However, without these optimisations, it failed to
terminate within the set timeout of two minutes. As our aim
was to compare different algorithms and not the heuristics or
preprocessing steps involved, we invoked PGSolver with
options “-dgo -dsd -dlo -dsg” to switch off some
of these optimisation steps. We believe this gives a better
and fairer picture of the relative performance of these algo-
rithms. Some of these optimisations are embedded in the
algorithms themselves and cannot be switched off. For exam-
ple, the small progress measure algorithm implemented in
PGSolver starts off with the computation of maximal val-
ues that may ever need to be considered [16]. In future, we
plan to include these optimisation preprocessing techniques
into our tool as well.

The more interesting results of our tests are presented
in Table 1. As expected, our algorithm is outperformed by
strategy improvement and recursive algorithm on randomly
generated examples. Our algorithm is very fast on Fried-
mann’s trap examples, because player Odd wins from all
nodes and a fixed point is reached very quickly using a small
number of entries in the witnesses; see Fig. 3 at the end of the
paper. Finally, we tested the algorithms on the recursive lad-
der construction, which is a class of examples for which the
recursive algorithm runs in exponential time. As expected,
the small progress measure and the recursive algorithm fail
to terminate for examples as small as 250 nodes. Our algo-
rithmaswell as the classic strategy improvement solved these
instances very quickly. Interestingly, the worst performing
algorithm is [20], which currently has the best theoretical
upper bound on its running time. The most likely reason for
this is that their single step of the value iteration is a lot more
complicated than ours. As a result, even if fewer steps are
required to reach a fixed point, the algorithm performs badly
as each step is a lot slower. In conclusion, our algorithm com-
plements quite well the existing well-established algorithms
for parity games and can be faster than any of themdepending
on the class of examples being considered.

The implementation of our algorithm along with all the
examples that we used in this comparison is available at
https://cgi.csc.liv.ac.uk/~dominik/parity/.

Further investigations were done to compare the above
implementation of our basic au-value iteration algorithm
of Sect. 7 with the modified au-value iteration algorithm of
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Table 1 Running times (in seconds) of the four algorithms tested: the
quasi-polynomial time (QPT) algorithm presented in this paper, small
progress measure (SPM), Zielonka’s recursive algorithm (REC), the

classic strategy improvement (CSI), and the implementation [37] of the
quasi-polynomial time algorithm (JL’17) from [20]

Example class Nodes Colours QPT SPM REC CSI JL’17 [20,37]

steadygame 100 100 min: 0.01 min: 0.01 min: 0.01 min: 0.01 min: 10.16

max: 0.02 max: 0.02 max: 0.01 max: 0.01 max: –

steadygame 200 200 min: 0.01 min: 0.01 min: 0.01 min: 0.01 min: –

max: 0.09 max: 0.06 max: 0.01 max: 0.03 max: –

steadygame 1000 1000 min: 0.09 min: 1.55 min: 0.01 min: 0.14 min: –

max: 1.51 max: 1.67 max: 0.04 max: 0.23 max: –

steadygame 5000 5000 min: 1.51 min: 41.49 min: 0.23 min: 1.56 min: –

max: 102 max: – max: 0.44 max: 4.12 max: –

steadygame 10, 000 10, 000 min: 5.1 min: – min: 0.68 min: 3.07 min: –

max: – max: – max: 1.89 max: 8.25 max: –

Friedmann’s trap 77 66 0.01 – 0.01 0.26 –

Friedmann’s trap 230 120 0.01 – 0.01 22.72 –

Friedmann’s trap 377 156 0.01 – 0.01 – –

recursive ladder 250 152 0.01 – – 0.01 0.66

recursive ladder 1000 752 0.02 – – 0.01 –

recursive ladder 25, 000 15, 002 0.45 – – 0.56 –

Entry “–” means that the algorithm did not terminate within the set timeout of two minutes. For the steadygame examples, we state the minimum
and the maximum measured execution time for the ten examples generated for each size

Sect. 9 (as described in Theorem 7). This modified algorithm
takes a value �, starting at � = 0 and in each iteration runs
the basic au-value iteration algorithm from the perspective
of both players, with witnesses of length � (i.e. the progress
measure used has � indices at each vertex). If the twominimal
progress measures that are output yield a consistent pair of
winning strategies for the two players, then the algorithm
terminates and this pair of strategies is output. Otherwise, �
is incremented and the next iteration starts. We focus on how
the basic algorithm behaves on examples similarly to those
from Sect. 10 and whether the improvements in the modified
algorithm overcome this problem.

The experimental data below have been obtained by run-
ning our modified algorithm on a virtual machine (Solaris
zone) running on an Oracle Sparc T7-1 with an 1 M7 CPU
and 256 GB RAM. In the below tables, the runtime is
rounded upwards to the next full number of seconds. The
corresponding C programs were compiled with the option
gcc -O3 progname.c on UNIX.

In Sect. 10, we established that the original quasi-
polynomial time algorithm as well as our basic version of
the au-value iteration algorithm do not perform well on cer-
tain types of games. Indeed, even a gamewith a large number
of colours partitioned over the set of vertices into singletons
is already difficult for these algorithms to handle, as Table 2
shows.

If a game has 30 even-coloured nodes, then this implemen-
tation of the basic au-value iteration algorithm tracks in the

winning statistics awitness that has one indexmore thanwith
29 even-coloured nodes, which explains the runtime differ-
ence for the gamewith 60 nodes and 55 colours, compared to
the gamewith 60 nodes and 40 colours. For a comparison, the
modified au-value iteration algorithm of Sect. 9 has a much
better performance: For this modified algorithm, the task is
almost trivial (as for most other parity game solvers), even
when the number of nodes is much larger than the instances
used in Table 2, as shown in Table 3:

Next, let us study our algorithms on the games from
Sect. 10, and let k be the number of colours for each player,
so that the number of nodes and number of colours is n = 2k.
The number of colours is also 2k. This game is more difficult
than the above and for k = 16, 17, 18, . . . , 30, that is, for
n = 32, 34, 36, . . . , 60, the runtimes for our basic au-value
iteration algorithm are given in Table 4.

Another experimental question we are interested in is
whether a high register index is harmful, as Lehtinen’s quasi-
polynomial time algorithm [26] is an XP algorithm with
respect to the register index of the game. The results of Sect.
9 (where we show that the forward au-index is always at least
the register index) seem to suggest that indeed games with a
high register index will be hard to solve using our progress
measure algorithms. To test this hypothesis, we converted
Lehtinen’s examples for small gameswith high register index
into a form where the weights are on the nodes and not the
edges (which was the case in the original examples of [26]).
In this family of examples, all nodes are controlled by player
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Fig. 3 The fixed point reached when using the QPT algorithm to solve
the Friedmann’s trap example with 20 nodes. Square nodes belong to
playerOdd and circle nodes to player Even. The label of a node consists

of its name, followed by its colour (in parentheses), and after a colon
its witness for ιmin (colour figure online)
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Table 2 Experimental results for our basic au-value iteration algorithm
on instances consisting of singleton vertices with a large number of
colours

Nodes Colours Even-coloured nodes Time (s)

30 30 15 1

40 40 20 1

50 50 25 2

60 30 30 3

60 35 29 1

60 40 30 11

60 45 29 2

60 50 30 27

60 55 29 3

60 60 30 56

Table 3 Experimental results for our modified au-value iteration algo-
rithm on instances consisting of singleton vertices with a large number
of colours

Nodes Colours Even-coloured nodes Time (s)

1000 1000 500 0.004

10,000 10,000 5000 0.024

Odd, and they formed by taking as a basis instance a node
with a self-loop of the lowest even colour 0. Then, the follow-
ing operation is performed a number of times: A copy of the
current instance along with two new colours are introduced
that are higher than all previous colours (one even colour
and one odd colour, where the even colour exceeds the odd
colour), and the two copies are connected by two edges of
which the colours are the two respective newly introduced
colours. Let κ be the number of times that this operation is
repeated, then there are O(2κ ) nodes and 2κ+1 colours in the
resulting instance. Even wins this parity game from all start-
ing positions, as all cycles are dominated by an even colour.
We refer to [26] for the precise details of this construction,
where it is shown that for this instance the register index is
κ + 1, where indeed, κ is the number of repetitions of the
“expansion operation” we just sketched. Of course, instances
that are edge-coloured are easy to convert to instances that
are node-coloured by subdividing each edge and assigning
its colour to the newly introduced node. The results of these
experiments are presented in Table 5.

Here n = 3·2κ−2 and the colours are either 1, . . . , 2κ+1
or 2, . . . , 2κ + 2. There are two variants of the game; the
second game “g2” is obtained from the first game “g1” by
switching the player and incrementing all colours by one.
The essential difference between the two versions is which
player is tracked by the basic au-value iteration algorithm
and this makes a huge difference; however, the modified au-
value iteration algorithm performs on both with only slight
differences that are not visible in the above table at all (except
for a small difference in the κ = 14-instance). The invari-
ance against player swapping is expected and stems from the
fact that the modified au-value iteration algorithm in either
case tracks witnesses from the perspective of both players in
parallel.

However, what we do find surprising to see is the very fast
runtime of our adapted au-value algorithm and our basic au-
value iteration from the perspective of the losing player (the
t(bas,g2)-column), for the higher choices of κ . Our Theorem
8 states that the forward au-index exceeds the register index,
meaning that under forward evaluation, κ is a lower bound
on the number of fields required in our witness for determin-
ing that player Even is the winner in these examples. If the
forward au-index is close to the (global) backward au-index
(which is the relevant one for our value iteration algorithms),
then that would imply that our value iteration algorithms will
have to go through roughly 213 iterations before any vertex
is assigned a witness with any colour in its 13th coordinate,
which should takemuchmore time that the times stated in the
table. A potential explanation of this phenomenon could thus
be that in general the backward au-index can be very different
from the forward au-index, and that in general it is not true
that the register index is a lower bound on the backward au-
index (contrary to the relationship we established between
the register index and the forward au-index). Other factors
that may contribute to the faster runtime is the asymmetry
between the players with respect to the lifting operation used
in the algorithm: For the “primary” player, the lifting oper-
ation is defined by taking a maximum over the antagonistic
updates of the neighbouring witnesses, while for the “oppos-
ing” player, this is a minimum. Thus, swapping the roles of
the two players may cause the lifting operation to progress
faster through the �-order on the witnesses.

One can alternatively regard Lehtinen’s construction of
games with high register index as a scheme where one
expands any given parity game roughly by a factor 2κ by

Table 4 Experimental results
for our basic au-value iteration
algorithm running on examples
of Sect. 10. Reported times are
expressed in seconds

k Nodes Time for: k for k + 1 for k + 2 for k + 3 for k + 4

16 32 1 2 2 2 3

21 42 4 4 5 6 7

26 52 8 10 12 14 256
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Table 5 Experimental results
for our value iteration
algorithms on the examples
formed through the construction
described in [26], to form games
with arbitrarily high register
index

κ Nodes Colours t(bas,g1) (s) t(bas,g2) (s) t(mod,g1) (s) t(mod,g2) (s)

7 382 15/16 1 1 1 1

8 766 17/18 2 1 1 1

9 1534 19/20 9 1 1 1

10 3070 21/22 39 1 1 1

11 6142 23/24 183 1 1 1

12 12286 25/26 842 1 1 1

13 24,574 27/28 3910 1 1 1

14 49,150 29/30 19,351 1 6 6

Table 6 Experimental results on a modified class of examples taken
from [26], for both our basic andmodified au-value iteration algorithms

κ Nodes Colours Time(bas) (s) Time(mod) (s)

0 20 20 1 1

1 44 26 2 1

2 92 28 90 3

3 188 30 4227 147

4 380 32 10,000++ 7302

In the table, “10,000++” means that the program needed more than
10,000 s to terminate and was aborted

means of κ rounds of the expansion operation, where in each
round we connect one of the nodes of the two copies through
a bidirected edge with two newly introduced colours. In the
case that one does not start with the one-node game as in
[26], but instead with one of the lower bound games of Sect.
10, one obtains a series of games that is difficult for both ver-
sions of the au-value iteration algorithm. The experimental
results on this class of games are displayed in Table 6.

Note that independently of the starting game, if we inspect
the sequence of instances resulting from repeated applica-
tions of the expansion operation, we observe that the number
of colours behaves linearly in κ and logarithmically in the
number of nodes of the instance. Thus, the overall perfor-
mance of all the quasi-polynomial time algorithms discussed
in this paper will be captured by some fixed polynomial in the
number of nodes of the games of these families of instances.
For finding witnesses on which the modified au-value iter-
ation algorithm exhibits quasi-polynomial time behaviour,
some more sophisticated choice of the examples would be
needed. The authors are confident that this can be done.

12 Discussion

The main contribution of this paper has been to show how
to adapt the quasi-polynomial time approach of [6] so that
its space complexity becomes polynomial, and in particular

quasi-linear. To this end,we adapted thewitnesses introduced
in [6] in order to have them satisfy certainmonotonicity prop-
erties that make them suitable for use as a progress measure.
This in turn allows for a quasi-linear algorithm by comput-
ing a minimal consistent progress measure through a lifting
procedure.

A second contribution has been to consider the length of
a progress measure as a complexity measure for solving a
parity game. Our analysis to this end gave us an adapted
algorithm where the time complexity is parametrised by the
value of the new complexity measure, and also runs in quasi-
polynomial time (and quasi-linear space) in the worst case.
We compared our new complexity measure, the au-index,
to Lehtinen’s register index [26], and provided a proof that
our index always exceeds it. This gives as a corollary an
alternative proof of the fact that the register index is at most
�log n�+1. Our experimental results show that our new algo-
rithms are very efficient on many important classes of parity
games and can outperform the current state of the art.

An interesting specific research question that we leave
open in this work is whether the au-index with respect to
backward (rather than forward) evaluation of a play can in
some way be related to its forward version, or to the register
index. Also, we would like to see an answer to the question
whether the au-index can be upper bounded in terms of the
register index, in addition to the current lower bound that we
proved in the present work.
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