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Abstract. We consider a variant of congestion games where every player
i expresses for each resource e and player j a positive externality, i.e.,
a value for being on e together with player j. Rather than adopting a
game-theoretic perspective, we take an optimization point of view and
consider the problem of optimizing the social welfare.
We show that this problem is NP-hard even for very special cases, notably
also for the case where the players’ utility functions for each resource are
affine (contrasting with the tractable case of linear functions [3]). We
derive a 2-approximation algorithm by rounding an optimal solution of
a natural LP formulation of the problem. Our rounding procedure is
sophisticated because it needs to take care of the dependencies between
the players resulting from the pairwise externalities. We also show that
this is essentially best possible by showing that the integrality gap of the
LP is close to 2.
Small adaptations of our rounding approach enable us to derive approx-
imation algorithms for several generalizations of the problem. Most no-
tably, we obtain an (r+1)-approximation when every player may express
for each resource externalities on player sets of size r. Further, we derive
a 2-approximation when the strategy sets of the players are restricted
and a 3

2
-approximation when these sets are of size 2.

1 Introduction

Congestion games constitute an important class of non-cooperative games that
model situations in which n players compete for the usage of m resources. Every
player i selects a subset of resources from a collection of resource subsets that are
available to him. The utility ui,e(x) that player i receives for resource e depends
on the total number x of players who have chosen this resource. Rosenthal’s
original definition of congestion games [13] assumes that the utility functions of
the players are identical for each resource, i.e., ui,e = uj,e for every two players
i, j and every resource e. Milchtaich [11] introduced the more general congestion
game model where every player i has a player-specific utility functions ui,e as
described above.

Ever since their introduction in 1973, congestion games have been the sub-
ject of intensive research in game theory and, more recently, in algorithmic game
theory. Most of these studies adopt a distributed viewpoint and focus on issues



like the existence and inefficiency of Nash equilibria, the computational com-
plexity of finding such equilibria, etc. (see, e.g., [12] for an overview). Much less
attention has been given to the study of congestion games from a centralized
viewpoint.

Studying these congestion games from a centralized viewpoint is important
in situations where a centralized authority has influence over the players in the
game. Also, adopting a centralized perspective may help in acquiring insights
about the decentralized setting: if it is hard to find an (approximate) optimum
or near-optimum in the centralized case where all the players are completely
coordinated, it certainly will be hard for the players to reach such a solution in
the decentralized case, where besides lack of coordinated computation, additional
issues related to selfishness and stability arise. Lastly, we believe that studying
this optimization problem is interesting for its own sake, as it can be seen as a
generalization of various fundamental optimization problems.

In this paper, we are interested in the problem of computing an assignment
of players to resources such that the social welfare, i.e., the sum of the utilities
of the players, is maximized. We are aware only of two related articles [3,4] (see
paragraph on related work for more details) that study player-specific congestion
games from an optimization perspective. Both articles assume that the players
are anonymous [3] in the sense that the utility function ui,e of a player i only
depends on the number of players using resource e, but not on their identities.

The assumption that all players are anonymous is overly simplistic in many
situations. We therefore extend the player-specific congestion game model of
Milchtaich [11] to incorporate non-anonymous players. More specifically, let N =
[n] be the set of players1 and suppose that player i’s value for sharing resource
e with player j is vije (possibly j = i). We define the utility of player i for
resource e and player set S ⊆ N as ui,e(S) =

∑
j∈S vije. We refer to these games

as generalized congestion games. The externality vije that player j imposes on
player i on resource e can be negative or positive. We speak of a generalized
congestion game with positive, negative or mixed externalities, respectively, when
the vije’s are positive, negative or arbitrary.

Our Contributions. We study the problem of computing a welfare maximizing
assignment for generalized congestion games. As in [3,4], we concentrate on the
case where each of the n players has to choose one of m available resources
(symmetric players, singleton resource sets).

We first consider the problem with mixed externalities and show that it is
strongly NP-hard and n1−ε-inapproximable for every ε > 0 even for m = 2
resources. We also give a polynomial-time algorithm that solves the problem
when the number of players is constant.

In light of this inapproximability result, we then focus on the problem of
computing an optimal assignment for generalized congestion games with positive
externalities (max-cg-pos-ext). We derive a polynomial-time algorithm that
solves max-cg-pos-ext for m = 2 resources. We show that max-cg-pos-ext

1 We use the notation [k] to denote the set {1, . . . , k} for a positive integer k.



is strongly NP-hard for m ≥ 3 resources and therefore focus on approximation
algorithms.

We derive a deterministic 2-approximation algorithm for max-cg-pos-ext.
Our algorithm computes an optimal solution to a natural LP-relaxation of the
problem and then iteratively rounds this solution to an integer solution, thereby
losing at most a factor 2 in the objective function value. We also show that the
integrality gap of the underlying LP is close to 2 and therefore the approximation
factor of our algorithm is essentially best possible.

Our rounding procedure is sophisticated because it needs to take care of the
dependencies between the players resulting from the pairwise externalities. The
key of our analysis is a probabilistic argument showing that these dependencies
can always be resolved in each iteration. We believe that this approach might
be applicable to similar problems and is therefore of independent interest.

Our approach is flexible enough to extend the algorithm to more general
settings. One such generalization is to incorporate resource-restrictions for play-
ers (non-symmetric players). We show that our 2-approximation algorithm for
max-cg-pos-ext can be adapted to the case where the resources available to
each player are restricted. We also obtain an improved 3

2 -approximation algo-
rithm when every player is restricted to two resources. The proof of the 3

2 -
approximation factor crucially exploits a characterization of the extreme point
solutions of the LP relaxation.

A natural extension of our model are r-generalized congestion games where
each player i specifies externalities viTe for all player subsets T ⊆ N \ {i} of size
at most r. The utility function of player i for resource e and player set S ⊆ N
is defined as ui,e(S) =

∑
T⊆S\{i},|T |≤r viTe. Using this terminology, generalized

congestion games correspond to 1-generalized congestion games. We extend our
rounding procedure to r-generalized congestion games with positive externalities
and derive an (r + 1)-approximation algorithm.

Finally, we settle a question left open by Blumrosen and Dobzinski [3]. The
authors showed that an optimal assignment for player-specific congestion games
with non-negative linear utility functions ui,e(x) = ai,ex can be computed effi-
ciently. We show that this problem becomes NP-hard for affine utility functions
ui,e(x) = ai,ex+ bi,e.

Related Work. There are various papers that study congestion games with
negative or positive externalities. For example, negative externalities are stud-
ied in routing [14], scheduling and load balancing [2]. Positive externalities are
studied in the context of cost sharing [7], facility location [1] and negotiations
[5,6].

Meyers and Schulz [10] studied the complexity of finding a minimum cost
solution in congestion games (according to Rosenthal’s classical congestion game
model [13]). They study several variants of the problem and prove NP-hardness
results, as well as inapproximability results for some cases and polynomial time
computability results for some other cases.

Chakrabarty, Mehta, Nagarajan and Vazirani [4] were the first to study
player-specific congestion games from a centralized optimization perspective.



The authors study the cost-minimization variant of the problem where each
player has a non-negative and non-decreasing cost function associated with each
resource.2 They show that computing an assignment of minimum total cost is
NP-hard. The authors also derive some positive results for certain special cases
of the problem (see [4] for details).

Most related to our work is the paper by Blumrosen and Dobzinski [3]. They
study the problem of welfare maximization in player-specific congestion games
with non-negative utility functions. Among other results, they give NP-hardness
and inapproximability results for positive and negative externalities. They also
provide a randomized 18-approximation algorithm for arbitrary (non-negative)
utility functions.

The problem of computing a welfare maximizing assignment for generalized
congestion games can also be interpreted as the following graph coloring problem:
We are given a complete undirected graph on n vertices and m colors [m]. Every
edge (i, j) (including self-loops) has a weight wije = vije + vjie for each color
e ∈ [m]. The goal is to assign a color to every node such that the total weight
of all monochromatic edges, i.e., edges whose endpoints have the same color, is
maximized. The weight of a monochromatic edge (i, j) is defined as wije, where
e is the color of the endpoints. The minimization variant of this problem with
identical weights wije = wij for all e ∈ [m] and every edge (i, j) is also known as
the generalized graph coloring problem [9], graph k-partitioning [8], and k-min
cluster [15].

2 Preliminaries

A generalized congestion game is given by Γ = (N,E, {Σi}i∈N , {ui,e}i∈N,e∈E),
where N = [n] is the set of players, E = [m] is the set of facilities (or resources),
Σi ⊆ 2E is the strategy set of player i, and ui,e : 2N → R is the utility func-
tion that player i associates with facility e. Unless stated otherwise, we assume
throughout this paper that Σi = E for every player i (symmetric players, sin-
gleton resource sets). The set Σ = ×ni=1Σi is called the joint strategy set, and
elements in it are strategy profiles. Each player chooses a strategy si ∈ Σi from
his strategy set, which gives rise to a strategy profile s = (s1, . . . , sn) ∈ Σ . A
player tries to maximize his utility ui(s) = ui,si

({j : sj = si}).
The utility functions ui,e that we consider in this paper are of a specific

form: Each player i associates with each facility e and player j a non-negative
value vije. Then ui,e is given by S 7→

∑
j∈S vije. The idea behind this is that for

(i, j) ∈ N2 and e ∈ E, vije specifies player i’s value of being on facility e together
with player j. Here, viie is the value of player i for facility e, independently of the
other players. We speak of a generalized congestion game with positive, negative
or mixed externalities, respectively, when the vije’s are positive, negative or
arbitrary. Note that allowing players to remain unassigned would not result in a
more expressive model, as this is equivalent to assigning a player to an artificial
facility for which the player always has utility 0.
2 Equivalently, the utility functions are assumed to be non-positive and non-increasing.



Associated to Γ is a social welfare function Π : Σ → R defined by
s 7→

∑n
i=1 ui(s). We are interested in the problem of finding an optimal strategy

profile for a given generalized congestion games Γ , i.e., a strategy profile s∗ ∈ Σ
that maximizes Π. We use max-cg-xxx-ext as a short to refer to this opti-
mization problem, where xxx ∈ {pos,neg,mix} indicates the respective type of
externalities.

Due to space limitations, many proofs are omitted and will be included in
an extended version of this paper.

3 Mixed Externalities

We start off by studying the problem max-cg-mix-ext of optimizing the social
welfare in generalized congestion games with mixed externalities. It turns out
that this problem is highly inapproximable, even for 2 facilities.

Theorem 1. max-cg-mix-ext is strongly NP-hard and is not n1−ε-
approximable in polynomial time for every ε > 0, unless P 6= NP, even for
m = 2 facilities.

As it turns out, the problem can be solved efficiently if the number of players
is fixed.

Proposition 1. max-cg-mix-ext can be solved in polynomial time for a fixed
number of players.

4 Positive Externalities

Given the strong inapproximability result for mixed externalities (Theorem 1),
we focus on the case of positive externalities in the remainder of this paper.
Central to our study of this problem is the following integer program (IP) for
the problem:

max
m∑
e=1

( n∑
i=2

i−1∑
j=1

(vije + vjie)x{i,j},e +
n∑
i=1

viiexi,e

)
(1)

s.t.
m∑
e=1

xi,e = 1 ∀i ∈ N (2)

x{i,j},e − xi,e ≤ 0 ∀i, j ∈ N, ∀e ∈ E (3)
x{i,j},e ∈ {0, 1} ∀i, j ∈ N, ∀e ∈ E (4)

Recall that N = [n] and E = [m]. The variables are interpreted as follows:
xi,e is the 0-1 variable that indicates whether player i ∈ N is assigned to resource
e; x{i,j},e is the 0-1 variable that indicates whether both players i, j ∈ N , i 6= j,
are assigned to resource e ∈ E. There are thus (n2 +n)/2 variables in total. Note
that we exploit in the above formulation that all externalities are positive.



In the LP relaxation the constraints (4) are replaced by “0 ≤ x{i,j},e ≤
1,∀i, j ∈ N, ∀e ∈ E”. We can show that the LP relaxation of IP (1) is totally
unimodular for m = 2. This implies the following positive result, which is in
stark contrast with Theorem 1.

Theorem 2. max-cg-pos-ext can be solved in polynomial time for m = 2
facilities.

Unfortunately, the problem becomes strongly NP-hard for m ≥ 3.

Theorem 3. max-cg-pos-ext is strongly NP-hard for m ≥ 3 facilities.

4.1 A 2-Approximate LP-Rounding Algorithm

In this section, we derive a 2-approximation algorithm for max-cg-pos-ext. We
first need to introduce some more notation.

We extend Π to the domain of fractional solutions of the LP relaxation of IP
(1) and use the term social welfare to refer to the objective function of IP (1).

For a congestion game Γ = (N,E, {Σi}i∈N , {ui,e}i∈N,e∈E) with positive ex-
ternalities {vije}i,j∈N,e∈E , we define for e ∈ E and a ∈ Q≥1 the (e, a)-boosted
game as the game obtained by introducing a copy e′ of facility e which all play-
ers value a times as much as the original e. Formally, the (e, a)-boosted game
of Γ is the game Γ ′ = (N,E ∪ {e′}, {Σi ∪ {e′}}i∈N , {ui,f}i∈N,f∈E∪{e′}) where
ui,e′(S) =

∑
j∈S avije for all i ∈ N . In an (e, a)-boosted game, we refer to the

introduced facility e′ as the boosted facility.
We fix for each facility e ∈ E a total order �e on N which satisfies i ≺e j

whenever xie < xje. Using �e, we define P (e, k) as the player set N ′ for which it
holds that |N ′| = k and i ∈ N ′ if j ∈ N ′ and i �e j. Informally, P (e, k) consists
of the k players with the highest fractional assignments on e.

Finally, for a fractional solution x for Γ , we define the (e, a, k)-boosted as-
signment as the fractional solution to the (e, a)-boosted game where players
P (e, k) are assigned integrally to the boosted facility and the remaining players
are assigned according to x.

Our algorithm, boost(a), is a rounding algorithm that takes as its starting
point the fractional optimum of the relaxation of IP (1), and iteratively picks
some facility e ∈ E and assigns a set of players to the boosted facility in the
(e, a)-boosted game. The formal description of boost(a) is given in Algorithm 1.

Theorem 4. Algorithm boost(2) is a deterministic polynomial time 2-
approximation algorithm for max-cg-pos-ext.

Proof. The hard part of the proof is to show that in each iteration there exist e
and k such that Step 2.1 is feasible. This is done in Lemma 1 given below.

The algorithm clearly outputs a feasible solution. It is straightforward to
check that the algorithm runs in polynomial time: For Step 1, solving an LP
to optimality can be done in polynomial time using the ellipsoid method or an
interior point method. For Step 2, there are only nm (e, k)-pairs to check. Lastly,



in each iteration, at least one player will be assigned to a boosted facility, hence
removed from [m], so there are at most n iterations.

It is also easy to prove that Algorithm 1 outputs a solution for which the
social welfare is within a factor 1

2 from the optimal social welfare: In the solution
x′ at the beginning of Step 3, every player i ∈ [n] is assigned to a copy e′ of a
facility e ∈ [m] for which it holds that vije′ = 2vije for all j. So by assigning all
players on such facilities e′ to the original facility e decreases the social welfare
at most factor 2. If we denote by SOL the social welfare of the strategy profile
found by Algorithm 1, and if we denote by OPT the optimizal social welfare,
then the following sequence of inequalities proves that the algorithm outputs a
2-approximate solution:3

SOL = ΠΓ (x′′) ≥ 1
2
ΠΓ ′(x′) ≥ 1

2
ΠΓ (x) ≥ 1

2
OPT.

ut

We come to the proof of the following lemma.

Lemma 1. Suppose that x′ is a solution to IP (1) for a congestion game Γ ′

with positive externalities. Denote by E the facility set of Γ ′ and assume that
E = [m] ∪ E′, where E′ is a set of facilities such that x{i,j},e′ ∈ {0, 1} for all
i, j ∈ [n], e′ ∈ E′. Then there is a facility e ∈ [m] and a number k ∈ [n] such that
the social welfare of the (e, 2, k)-boosted assignment is at least the social welfare
of x′. Moreover, e and k can be found in polynomial time.

For the proof of Lemma 1, we need the following technical result:

Lemma 2. Let a1, a2, . . . , an ∈ R≥0, be a non-increasing sequence of non-
negative numbers with a1 positive, and let b1, . . . , bn ∈ R. Suppose that∑n
i=1 aibi ≥ 0. Then, there is a k ∈ [n] such that

∑k
i=1 bi ≥ 0.

Proof. Let n′ be the highest index such that an′ > 0. There are two cases: either
there is a k < n′ for which the claim holds, or there is not such a k. For the
latter case, we show that the claim must hold for k = n′. It follows from the
following derivation:

0 ≤
n′∑
i=1

aibi =
n′−1∑
j=1

(aj − aj+1)
j∑
i=1

bi + an′

n′∑
i=1

bi ≤ an′

n′∑
i=1

bi.

ut

Proof (of Lemma 1). It suffices to only show existence of the appropriate e and
k, as finding them in polynomial time can then simply be done by complete
enumeration of all (e, k)-pairs (because there are only mn such pairs).

3 The function Π is subscripted with the game of which it is the social welfare function.



Algorithm 1 boost(a): An LP rounding algorithm for max-cg-pos-ext.

1. Solve the relaxation of IP (1) for congestion game Γ , and let x be the optimal
fractional solution. Let Γ ′ := Γ and x′ = x.

2. Repeat the following until x′ is integral:

2.1. Find a facility e ∈ [m] and a number k ∈ [n] such that the social welfare
of the (e, a, k)-boosted assignment is at least the social welfare of x′.

2.2. Let Γ ′ be the (e, a)-boosted game and let x′ be the (e, a, k)-boosted as-
signment.

3. For every player i ∈ [n] let ei be the facility of [m] such that i is assigned to a
boosted copy of ei in x′. Let x′′ be the integral solution of IP (1) for Γ ′ obtained
by assigning every i integrally to the original non-boosted facility ei. Output the
strategy profile for Γ that corresponds to x′′.

For e ∈ E and k ∈ [n], let ∆(e, k) denote the amount by which social welfare
increases when comparing the (e, 2, k)-boosted assignment of x′ to the (e, 2, k−
1)-boosted assignment of x′. Let p(e, k) be the single player in P (e, k)\P (e, k−1).
We can express ∆(e, k) as ∆+(e, k)−∆−(e, k), where ∆+(e, k) is the increase in
social welfare due to the additional utility on the boosted facility, and ∆−(e, k)
is the loss in utility due to setting the assignment for player p(e, k) to 0 on all
facilities in [m]. For notational convenience, we define w{i,j},e = vije + vjie and
wi,e = viie. Then we can write ∆+(e, k) and ∆−(e, k) as follows:

∆+(e, k) = 2wp(e,k),e +
∑

j:j�ep(e,k)

2w{p(e,k),j},e

∆−(e, k) =
∑
f∈[m]

(
xp(e,k),fwp(e,k),f +

∑
j:j≺ep(e,k)

x{p(e,k),j},fw{p(e,k),j},f

)
.

Clearly, if we move for some e ∈ [m] and k ∈ [n] the players P (e, k) to
the boosted facility e′ in the (e, 2)-boosted game, then the change in utility is∑k
i=1∆(e, i). We therefore need to show that there is a facility e ∈ E and k ∈ [n]

such that
∑k
i=1∆(e, i) ≥ 0.

To show this, let X be a random variable that takes on the values {∆(e, k) :
e ∈ [m], k ∈ [n]}, of which the distribution is given by

Pr[X = ∆(e, k)] =
xp(e,k),e∑

e∈[m],i∈[n] xp(e,i),e
∀e ∈ [m], k ∈ [n].

Define Y =
∑
e∈[m],i∈[n] xp(e,i),e.

We derive the following bound on the expectation of X:

E[X] =
∑

(e,k):e∈[m],k∈[n]

Pr[X = ∆(e, k)]∆(e, k)

=
1
Y

∑
e∈[m],k∈[n]

xp(e,k),e

(
2wp(e,k),e +

∑
j:j�ep(e,k)

2w{p(e,k),j},e



−
∑
f∈[m]

(
xp(e,k),fwp(e,k),f +

∑
j:j≺ep(e,k)

x{p(e,k),j},fw{p(e,k),j},f

))
=

1
Y

( ∑
e∈[m],k∈[n]

2xp(e,k),ewp(e,k),e

+
∑

e∈[m],k∈[n]

∑
j:j�ep(e,k)

2xp(e,k),ew{p(e,k),j},e

−
∑

f∈[m],k∈[n]

( ∑
e∈[m]

xp(e,k),e

)
xp(e,k),fwp(e,k),f

−
∑

e∈[m],k∈[n]

xp(e,k),e
∑
f∈[m]

( ∑
j:j≺ep(e,k)

x{p(e,k),j},fw{p(e,k),j},f

))
=

1
Y

( ∑
e∈[m],i∈[n]

2xi,ewi,e +
∑

{i,j},i6=j

∑
e∈[m]

2x{i,j},ew{i,j},e

−
∑

e∈[m],i∈[n]

xi,ewi,e −
∑

e∈[m],i∈[n]

xi,e
∑
f∈[m]

∑
j:j≺ei

x{i,j},fw{i,j},f

)
=

1
Y

( ∑
e∈[m],i∈[n]

xi,ewi,e +
∑

{i,j},i6=j

∑
e∈[m]

2x{i,j},ew{i,j},e

−
∑

{i,j},i6=j

( ∑
f∈[m]

x{i,j},ew{i,j},e

)( ∑
e∈[m]

max{xi,e, xj,e}
))

(5)

≥ 1
Y

∑
e∈[m],i∈[n]

xi,ewi,e ≥ 0.

In the above derivation we make use of the following facts that hold for
all e ∈ [m], i, j ∈ [n]: (i)

∑
f∈[m] xi,f = 1 (for the fourth equality), (ii) xi,e =

max{xi,e, xj,e} if i �e j (for the fifth equality), (iii)
∑
f∈[m] max{xi,f , xj,f} ≤ 2

(for the first inequality).
We can express E[X] as the sum of the m terms {Te =

∑
k∈[n]∆(e, k)Pr[X =

∆(e, k)] : e ∈ [m]}. Because the expectation is non-negative, it holds that Te is
non-negative for at least one e ∈ [m]. We take this e and apply Lemma 2 to
Te (take ∆(e, i) for bi and Pr[X = ∆(e, i)] for ai). We conclude that there is a
k ∈ [n] such that

∑k
i=1∆(e, k) ≥ 0. ut

4.2 A Matching Integrality Gap Example

In this section, we show that the integrality gap of IP (1) is very close to 2.
This implies that no algorithm based on the LP relaxation of IP (1) can achieve
an approximation factor better than 2 and thus the approximation factor of
boost(2) is essentially best possible.

We construct a family of generalized congestion games, parameterized by
the number of players n, for which we determine optimal integral and fractional
solutions to IP (1) and its LP relaxation, respectively. It can be verified computa-
tionally that the integrality gap approaches 2 as n increases. We are convinced



that the integrality gap can be shown to approach 2 analytically, but at this
point of time lack a formal proof of this.

Fix two parameters m and k with k ≤ m and let H(m, k) be the k-uniform
hypergraph on [m]. The instance I(m, k) is then defined as follows: there are
m facilities and

(
m
k

)
players. We identify each player with a distinct edge of

H(m, k). The externality vije is set to 1 if the hyperedge of i and the hyperedge
of j both contain facility e, and 0 otherwise. The value viie is set to 1 if the
hyperedge of i contains facility e.

We define OPTfrac(m, k) as the feasible fractional solution for I(m, k), where
each player is assigned with value 1/k to each of its facilities. For each facility
e ∈ [m] there are k

m

(
m
k

)
=
(
m−1
k−1

)
players that have e in their hyperedge and thus

the social welfare of OPTfrac(m, k) is m
k

(
m−1
k−1

)2
.

Using induction on m, one can straightforwardly prove that the social welfare
of an optimal integral solution OPTint(m, k) for this instance is

∑m−1
i=k−1

(
i

k−1

)2
.

Subsequently, evaluating by computer the expression OPTfrac(m, k)/OPTint for
particular choices of m and k indicates that the integrality gap approaches 2k−1

k
as m gets larger. The largest integrality gap that we computed explicitly is
1.972013 for m = 5000 and k = 71.

5 Variations on the Problem

We study in this section two generalizations and one special case of the problem.

Restricted Strategy Sets. Up to this point, we assumed that the strategy
set Σi of each player i equals the facility set E (symmetric players, singleton
strategy sets). We now show that our algorithm boost(2) generalizes to the
case where every player i has a strategy set Σi ⊆ E (non-symmetric players,
singleton strategy sets). The modification is easy: in Step 1, the algorithm solves
a modified version of IP (1) with the additional constraints xi,e = 0 for all
i ∈ N, e 6∈ Σi. The rounding procedure that follows after Step 1 of the algorithm
then clearly puts every player i on a facility for which xi,e 6= 0, so it produces a
feasible integral solution. The rest of the proof of Theorem 4 remains valid.

Corollary 1. There is a polynomial time 2-approximation algorithm for max-
cg-pos-ext with restricted strategy sets.

For the special case that each player’s strategy set is of size 2, we can improve
the approximation factor.

Proposition 2. There is a polynomial time 3
2 -approximation algorithm for

max-cg-pos-ext with restricted strategy sets of size 2.

The proof of this proposition relies on a characterization result for the ex-
treme point solutions of the LP relaxation of the modified IP, that we omit here.
Moreover, one can show by a simple example that the integrality gap of the
modified IP for strategy sets of size 2 is 3

2 .



Externalities on Bigger Sets of Players. Instead of restricting the players
to express their externalities on pairs consisting of a single player and a facil-
ity, we can fix an arbitrary number r ∈ N and allow players to express their
externalities on pairs consisting of a set of at most r players and a facility. We
refer to such congestion games as r-generalized congestion games. When each
player i is allowed to express externalities viTe for sets T ⊆ N\{i}, |T | ≤ r, we
will show that a simple adaptation of the algorithm boost(r + 1) returns an
(r + 1)-approximate solution. The only change that needs to be made is that
the relaxation of the following generalization of IP (1) is solved in Step 1 of
boost(r + 1): For each player i and facility e, this generalized LP has again
the variable xi,e that indicates whether i is assigned to e. Moreover, for every
facility e and set S of at most r + 1 players, there is a variable xS,e that indi-
cates whether all players in S are assigned to e. For notational convencience, let
wS,e =

∑
i∈S vi,S\{i},e for all sets S ⊆ N, |S| ≤ r. The generalized LP reads as

follows:

max
m∑
e=1

∑
S:S⊆[n],|S|≤r+1

wS,exS,e

s.t.
m∑
e=1

xi,e ≤ 1 ∀i ∈ N

xS,e − xi,e ≤ 0 ∀S ⊆ [n], S ≤ r + 1,∀i ∈ S, ∀e ∈ E,
x{i,j},e ∈ {0, 1} ∀i, j ∈ [n],∀e ∈ E

We can show that the adapted version of boost(r+ 1) is a valid polynomial
time (r + 1)-approximation algorithm.

Proposition 3. There is a polynomial time (r+1)-approximation algorithm for
computing a social welfare maximizing strategy profile for r-generalized conges-
tion games with positive externalities.

A Special Case: Affine Externalities. In this section, we study the special
case of our problem where the utility functions ui,e(S) are affine non-negative
functions of |S|, i.e., for every i ∈ N and each e ∈ E, ui,e(S) = aie|S| + bie
for non-negative rational numbers aie, bie. It is straightforward to see that this
type utility functions falls within our positive externalities model. We refer to
the respective optimization problem as max-cg-aff-ext.

The motivation for studying this is that Blumrosen and Dobzinski show in
[3] that if bie = 0 for all i ∈ N , e ∈ E then the optimal solution can be found
in polynomial time. Allowing bie to be non-zero is thus one of the simplest
generalizations that comes to mind.

In contrast to the polynomial time result in [3], we show that this problem
is strongly NP-hard.

Theorem 5. max-cg-aff-ext is strongly NP-hard.

One could use the algorithm boost(2) to find a 2-approximate solution to
this affine special case of the problem. However, it is easy to see that there is a



much simpler and faster 2-approximation algorithm for this case: The algorithm
simply chooses the maximum among the strategy profiles s and t defined as
follows: for i ∈ N , si = arge max{bie : e ∈ E} and ti = arge max{

∑
j∈N naje :

e ∈ E}.
It is shown in Proposition 4.3 of [3] that if bie = 0 for all i ∈ N , e ∈ E, then

the strategy profile t is optimal. It is obvious that if aie = 0 for all i ∈ N , e ∈ E,
then the strategy profile s is optimal. Therefore, for the case that neither aie nor
bie is necessarily 0, the maximum of these two joint strategies must be within a
factor of 2 from the optimal strategy profile.
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