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Abstract

In many real-world decision making settings, situations arise in which the par-
ties (or: players) involved must collectively make decisions while not every player is
supposed to have an equal amount of influence in the outcome of such a decision. The
weighted voting game is a model that is often used to make such decisions. The amount
of influence that a player has in a weighted voting game can be measured by means of
various power indices.

Weighted voting games are part of the more general class of simple games. In this
thesis, we study the problem of finding for a given class of simple games (including
weighted voting games), the game in which the distribution of the influence among
the players is as close as possible to a given target value (i.e. power index). We in-
vestigate the posibilities that we have for exactly solving this problem. For the case
of weighted voting games, we obtain a method that relies on a new efficient procedure
for enumerating weighted voting games of a fixed number of players.

The enumeration algorithm we propose works by exploiting the properties of a
specific partial order over the class of weighted voting games, for which we prove
existence. The algorithm enumerates weighted voting games of a fixed number of
players in time exponential in the number of players, but polynomial in the number of
games output. As a consequence we obtain an exact anytime algorithm for designing
weighted voting games.

We look at various ways to improve on this algorithm. A large improvement fol-
lows by exploiting the properties of two specific types of coalitions, which we refer to
as roof coalitions and ceiling coalitions. The algorithm, together with these improve-
ments, has been implemented in order to measure the practical performance and to
obtain various data on the class of weighted voting games.

Our method for solving the voting game design problem heavily relies on the abil-
ity to transform between different representations of simple games, which we refer to
as voting game synthesis problems. We give an extensive treatment of these synthe-
sis problems, and in particular we prove that there does not exist a polynomial time
algorithm that transforms the list of ceiling coalitions of a game into the list of roof
coalitions. However, we also show that an output-polynomial time algorithm for this
problem actually does exist, by providing one.



Thesis Committee:

Chair: Prof. Dr. Cees Witteveen,
Faculty EEMCS,
Delft University of Technology

University supervisors: Dr. Tomas Klos,
Faculty EEMCS,
Delft University of Technology

Dr. Yingqian Zhang,
Faculty EEMCS,
Delft University of Technology

Committee members: Prof. Dr. Ir. Karen Aardal,
Faculty EEMCS,
Delft University of Technology

Dr. Haris Aziz,
Computer Science Department,
Ludwig-Maximilians-University Munich

ii



Preface

Dear reader of this thesis, please allow me to use a more informal writing style just for this
preface. In this preface I will write in singular first person form (“I”), while the rest of my
thesis is written in plural first person form (“we”), because it just felt more natural to use.

Well, it has been a lot of fun working on this thesis. The research presented in here is
my own, but it definitely would have been impossible without the help of a specific set of
persons, to whom I will give my thanks right here, in this preface. Additionally, I will thank
some other people who are not directly associated with the thesis, but more so with all the
things that happened around it, during the time that I was writing all of this.

So first of all, I will thank Dr. Tomas Klos and Dr. Yingqian Zhang. Tomas and
Yingqian are my supervisors for this project. They gave me lots of very helpful feedback
and support. Next, I must thank Tomas and Yingqian again, for a lot of other things. First of
all, they have been really friendly to me and I think they are really nice people. Also, they
have given me a tremendous amount of support with finding and (succesfully) applying for
a PhD position. I could not have managed it without their help. Next, I thank them for co-
authoring two papers with me, of which one paper (not related to the topic of this thesis) has
been submitted to and got accepted for the Algorithmic Decision Theory 2009 (ADT2009)
conference (for the other paper, the decision of acceptance is still pending as of the time
writing this). It is great that this happened. Also, Tomas and Yingqian, yet more thanks for
all kinds of help I received from you, related to visiting this conference. And finally, many
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to obtain my MSc degree. Additionally, I thank Prof. Dr. Cees Witteveen for having such
a good research group, for allowing me to do this final thesis project within this group, and
for making it possible for me to attend the ADT2009 conference.

Thanks to everyone in the Algorithmics group. I felt welcomed in the group, and every-
one there has been very nice to me.
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Chapter 1

Introduction

In many real-world problems that involve multiple agents, for instance elections, there is
a need for fair decision making protocols in which different agents have different amounts
of influence in the outcome of a decision. Weighted voting games are often used in these
decision making protocols. In a weighted voting game, some quota is given, and each agent
(or also: player) in the game has a certain weight. If the total weight of a coalition of agents
exceeds the quota, then that coalition is said to be winning, and losing otherwise.

Weighted voting games arise in various settings, such as political decision making (de-
cision making among larger, and smaller political parties), stockholder companies (where
people with different numbers of shares are supposed to have a different amount of influ-
ence), and elections (e.g. in the US Presidential Election, where each state can be regarded
as a player, who has a weight equal to its number of electors).

The weight that a player has in a weighted voting game turns out not to be equal to his
actual influence in the outcome of the decisions that are made using the weighted voting
game. Consider for example a weighted voting game in which the quota is equal to the sum
of the weights of all players. In such a game, a player’s influence is equal to the influence of
any other player, no matter what weight he has. In order to measure a player’s influence, or a
priori power, in such weighted voting games, the notion of a power index arose. Computing
a power index however, turns out to be a challenge in many cases, so a lot of research has
been done on how to compute various power indices efficiently.

In this thesis, instead of analyzing the power of each agent in a voting game, we inves-
tigate the problem that has often been referred to as the “inverse problem”. We will call
this problem the power index voting game design problem. In the power index voting game
design problem we are given a target power index for each of the agents, and we study how
to design a weighted voting game for which the power of each agent is as close as possible
to the given power index.

The practical motivation behind our work is obvious: It is desirable to have an algorithm
that can quickly compute a fair voting protocol, given that we want each agent to have some
specified amount of influence in the outcome. When new decision making bodies must be
formed, or when changes occur, such an algorithm may be used to compute a voting method
that is as fair as possible.
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1.1 Contributions Introduction

Only very little work is known which tries to solve this problem. The existing algorithms
are all local search methods that do not guarantee an optimal answer. Surprisingly, no
algorithm is known for generating an exact answer. Such an algorithm to solve the inverse
problem exactly is the topic of this thesis: We are interested in finding the unique game for
which the power index of that game is the closest possible to a certain target power index.

It seems that the most straightforward approach to solve the inverse problem would be
to simply enumerate all possible weighted voting games of n agents, and to compute for
each of these weighted voting games its power index. We can then output the game of which
the power index is the closest to the given one. Unfortunately, it turns out that enumerating
all weighted voting games is not so straightforward.

The problem of designing a weighted voting game that has its power index as close
as possible to a given target power index, is a special case of a more general family of
problems: we can in principle attempt to design a game with any particular property (instead
of just power indices) that we would like it to have. Also, we do not necessarily need to
restrict our attention to weighted voting games; we could also try to design any other type of
cooperative game. We refer to this collection of problems as voting game design problems.
In this work, we will also look into this generalization, and see how our approach for solving
the power index weighted voting game design problem can also be used for many other
variants of voting game design problems.

In the following two sections, we describe respectively what our contributions are, and
how the thesis is structured.

1.1 Contributions

In this thesis, we will present the following contributions:

• We provide a general definition for voting game design problems, and show how
the power index voting game design problem is indeed a specialised case within this
setting.

• We present lower and upper bounds on the cardinalities of various classes of games.
As it turns out, for many of these classes there is a very strong connection with cer-
tain classes of boolean functions; allowing us to borrow many bounds directly from
boolean function theory.

• We investigate thoroughly the problem of transforming various representations for
simple games into each other. We give an overview of known results, and we present
some original contributions:

– We restate within the framework of simple games the Hop-Skip-and-Jump algo-
rithm of [37] (originally intended for regular set cover problems) together with
its correctness proof, and its proof of polynomial runtime.

– We prove that it is not possible to transform within polynomial time the roof-
representation of a game into a ceiling-representation, and vice versa.
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Introduction 1.2 Outline of this Thesis

• We present exact algorithms for solving power index voting game design problems,
first a doubly exponential one, and subsequently we show that it is possible to obtain
a singly exponential algorithm for the special case of weighted voting games. This
can be regarded as the main result of this thesis.

1. At the core of these algorithms lie methods for enumerating classes of games.
Therefore, it actually follows that the same approach can be used for solving
exactly any type of voting game design problem.

2. Moreover, if a voting game design problem can be stated as an optimization
problem (i.e. a problem with an objective function), as is the case for the power
index voting game design problem, then our approach yields an anytime algo-
rithm.

3. The method that we use for enumerating weighted voting games is based on a
new partial order on the class of weighted voting games, that has some specific
interesting properties. We think that this result is also interesting from a non-
computational, mathematical point of view.

• The algorithm for solving the power index voting game design problem for the case
of weighted voting games, mentioned in the previous point, is based on working with
families of minimal winning coalitions. We show how it is possible to improve the
speed of this algorithm by showing that it suffices to only work with a subset of these
minimal winning coalitions: The roof coalitions. Using this idea, we provide vari-
ous techniques to improve our algorithm. Among these improvements is an output-
polynomial time algorithm for outputting the list of ceiling coalitions, given the list
of roof coalitions.

• Finally, we implement the aforementioned enumeration algorithm for weighted vot-
ing games, in order to measure its performance, obtain some interesting data about
the class of weighted voting games, and validate some theoretical results related to
weighted voting games.

1.2 Outline of this Thesis

The thesis is divided into seven chapters, and an appendix. The introduction chapter, Chap-
ter 1, is the current chapter that the reader is probably reading right now.

In Chapter 2, we give a short introduction to cooperative games, with an emphasis on
simple games, since our thesis deals exclusively with simple games. We will also explain
extensively the concept of a power index, because a great part of what motivates the results
of this thesis has to do with a problem related to power indices. We define two of the most
popular power indices, i.e. the Banzhaf index and the Shapley-Shubik index, and we briefly
discuss algorithms for computing them, and the computational complexity of this problem.

We define in Chapter 3 the main problem of interest that we attempt to solve in this
thesis: the problem where we are given a target power index, and where we must find a
game such that its power index is as close as possible to the given target power index. We

3



1.2 Outline of this Thesis Introduction

explain that this specific problem is part of a more general family of problems, which we
coin voting game design problems. This chapter closes with an overview on the existing
literature on voting game design problems.

Before directly trying to solve the problem introduced in Chapter 3, we first discuss in
Chapter 4 the problem of transforming various representations of games into each other.
We give polynomial time algorithms for some of these problems, and also in some cases
impossibility results regarding the existence of polynomial time algorithms. Also, in this
chapter, we make some statements about the cardinality of certain classes of simple games.

Some of the results given in Chapter 4 are necessary for Chapter 5. In Chapter 5, we de-
vise exact algorithms for the power index voting game design problem (our main problem).
We first explain a naive approach for the class of monotone games, and then improve on
this exponentially for the case of weighted voting games. We show how this improvement
is possible by the existence of a certain partial order with some specific desirable properties.
Next, we give various improvements to this algorithm by making use of the concept of roof
and ceiling coalitions.

After that, in Chapter 6 we will show various experimental results of a simple imple-
mentation of this exact algorithm. Because we can also use these algorithms as enumeration
algorithms, we are able to provide some exact information about voting games, such as how
many weighted voting games with a fixed number of minimal winning coalitions exist.

We conclude this thesis in 7, with a discussion and some ideas for future work.
Lastly, the appendix provides some background information on order theory and com-

puter science, which is necessary in order to understand some of our results.
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Chapter 2

Preliminaries

In this chapter, we will discuss some preliminary knowledge that is required in order to
understand the results. Moreover, in Appendix A, we give some additional preliminary
information on order theory and computer science that is needed to understand the results
in this thesis.

Sections 2.1 and 2.2 comprise an introduction to respectively cooperative game theory
and power indices. Not all of the results and definitions in this chapter are necessary to
understand the rest of this thesis: some of the material is included simply to give the reader
a better understanding of the field that this thesis is about.

2.1 Cooperative Game Theory

In this section we give an introduction to cooperative game theory, or coalitional game
theory. We will give special attention to simple games. The class of simple games and its
subclasses that we will introduce, will be the central point of attention in this thesis. Unless
otherwise noted, all of the information in this section can be looked up in an introductory
text on cooperative game theory, for example [38] or in Taylor and Zwicker’s book about
simple games [50].

2.1.1 Cooperative Games in General

Definition 1 (Coalitional game). A coalitional game is a pair (A, v), where A = {a1, . . . , an}
is a set of players and v : 2A → R

+ ∪ {0} is a function mapping subsets of players to non-
negative real numbers, describing how much collective payoff each coalition of players can
gain. In this context, subsets of A are referred to as coalitions.

We will often use simply the word game to refer to a coalitional game.

Definition 2 (Grand coalition & characteristic function). For a coalitional game (A, v), A
is called the grand coalition. v is called the characteristic function or gain function.

Often, a coalitional game is denoted by just the characteristic function v if it is clear
what the set of players is.

5



2.1 Cooperative Game Theory Preliminaries

There exist two important subclasses of games: monotone games and superadditive
games. These are games that satisfy the following two constraints respectively:

Definition 3 (Monotonicity). A game (A, v) is monotone if and only if ∀(S, T ) ∈ (2A)2 :
S ⊂ T → v(S) ≤ v(T ).

We would like to note that in a lot of literature, monotonicity is already assumed in the
definition of coalitional games itself. In this thesis, we do not do this, and we define the
class of monotone coalitional games to be a subclass of the class of coalitional games.

Definition 4 (Superadditivity). A game (A, v) is superadditive if and only if ∀(S, T ) ∈
(2A)2 : S ∩ T = ∅→ v(S ∪ T ) ≥ v(S) + v(T ).

Obviously, if a game is superadditive, it is also monotone. So the superadditive games
form a subclass of the monotone games.

We have now introduced three different classes of games, and we will later on introduce
some more classes. Throughout this thesis, we will be working with these classes exten-
sively. For the discussion, it is therefore convenient to introduce the following notation in
order to denote classes of games that are restricted to a fixed numbers of players n:

Definition 5. Let G be a class of games. Then we use G(n) to denote the class of games
restricted to the set of players {1, . . . , n}. In more formal language:

G(n) = {G | G ∈ G ∧G = ({1, . . . , n}, v)}.

So throughout this thesis, we will also often use the symbol n to refer to the number of
players in a game.

2.1.2 Simple Games

Simple games are the games that we will focus on in the remaining chapters. Informally,
this class consists of the games where a coalition is either winning or losing, and there is
nothing in between.

Definition 6 (Simple coalitional game). A simple coalitional game or simply simple game
is a coalitional game (N, v), where the target set of v is restricted to {0, 1}. If for a subset S
of N , v(S) = 1, then S is called a winning coalition. If v(S) = 0 then S is called a losing
coalition.

Just as with general coalitional games, we can define the class of monotone simple
games and superadditive simple games in the obvious way.

We will now proceed to define some useful properties of simple games.

Definition 7 (Blocking coalition, proper game, strong game & decisive game). In a simple
game (N, v), a coalition S ⊂ N is a blocking coalition if and only if v(N\S) = 0. In a
proper simple game, all winning coalitions are blocking coalitions. In a strong simple game,
all blocking coalitions are winning coalitions. A decisive simple game (or zero-sum simple
game) is a simple game that is both strong and proper.
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Preliminaries 2.1 Cooperative Game Theory

Decisive simple games are important for “yes/no”-voting settings, where it must be
guaranteed that a decision between two alternatives is made If the coalition of yes-voters is
not winning, then the coalition of no-voters should be winning, and vice versa.

Some of the definitions in the remainder of this section are taken or adapted from [2]
and [50]. Next, we turn to some syntactic definitions of certain classes of simple games.
There are various important ways to represent simple games:

Definition 8 (Representations of simple games). Consider the following six ways to repre-
sent coalitional games:

Winning coalition form (N,W ) is a winning coalition form of a simple game (N, v) if
and only if W is the set of all coalitions such that ∀S ⊆ N : v(S) = 1↔ S ∈W .

Losing coalition form (N,L) is a losing coalition form of a simple game (N, v) if and
only if L is the set of all coalitions such that ∀S ⊆ N : v(S) = 0↔ S ∈ L.

Minimal winning coalition form (N,Wmin) is a minimal winning coalition form of a sim-
ple game (N, v) if and only if Wmin is the set of minimal winning coalitions of the
game (N, v), which means that ∀S ⊆ N : v(S) = 1→ (∃T ∈Wmin : S ⊇ T ). This
implies that a simple game has a minimal winning coalition form if and only if it is
monotone.

Maximal losing coalition form (N,Lmax) is a maximal losing coalition form of a simple
game (N, v) if and only if Lmax is the set of maximal losing coalitions of the game
(N, v), which means that ∀S ⊆ N : v(S) = 0 → (∃T ∈ Lmax : S ⊆ T ). This
implies that a simple game can be represented in maximal losing coalition form if
and only if it is monotone.

Weighted form (W, q), where W = (w1, . . . wn) ∈ R
+n and q ∈ R

+, is a weighted form
of a simple game (N = {1, . . . n}, v) if ∀S ⊆ N : v(S) = 1 ↔ ∑

i∈S wi ≥ q. q
is called the quota and wi is called the weight of player i. Simple games that have
a weighted form are called weighted voting games. It is obvious that every weighted
voting game is monotone. However, not every monotone game is a weighted voting
game. It can also be easily seen that a weighted voting game (W, q) is proper if and

only if q >
∑

w∈W w

2 .

Multiple weighted voting game An m-multiple weighted voting game form or weighted
m-majority game form for a simple game (N, v) is a set

{(W1 = (w1
1, . . . w

1
n), q1), . . . , (Wm = (wm

1 , . . . wm
n ), qm)}

of m weighted forms such that it holds that ∀S ⊆ N : v(S) = 1↔ ∀j :
∑

i∈N wj
i ≥

qj . In words, a coalition must win every weighted voting game that constitutes the
multiple weighted voting game.

A weighted voting game is an important type of simple game, because it has a very
compact representation. Also, weighted voting games are important because they are used

7



2.1 Cooperative Game Theory Preliminaries

in a lot of practical situations, i.e., in a lot of real-life decision making protocols. For exam-
ple: elections, political decision making bodies and decision making bodies in stockholder
companies.

There is an important theorem regarding m-multiple weighted voting games.

Theorem 9. Every monotone simple game is representable as an m-multiple weighted vot-
ing game.

The proof is given in the book of Taylor and Zwicker [50]. This proof is constructive.
In the construction, m gets very large, while it is often possible to use a much smaller value
for m.

We will be using the following notational abuse in the remainder of this chapter, and
subsequent chapters: Whenever we are discussing a weighted voting game G with players
N = {1, . . . , n} and weighted form ((w1, . . . , wn), q), then for any subset S of N we use
w(S) to denote

∑
i∈S wi.

Now we will answer the question of which monotone simple games are representable
as a weighted voting game. For this we will have to introduce the following two notions.

Definition 10 (Trade robustness & swap robustness). A simple coalitional game (N, v) is
swap robust if for any two winning coalitions in that game, say S and T , if we swap one
player in S with one player in T , then the resulting two coalitions are not both losing.

A simple game (N, v) is trade robust if for any multiset S of winning coalitions in that
game, any redistribution of players among the coalitions in S never results in all coalitions
becoming losing.

Clearly, trade robustness implies swap robustness. In [50], the following characteriza-
tion theorem is proven:

Theorem 11. A simple coalitional game is a weighted voting game if and only if it is trade
robust.

Another important concept, related to swap robustness and trade robustness is the de-
sirability relation (see [50] and [13]). We define the following desirability relation over the
players in a simple game.

Definition 12 (Desirability relation). In a simple game (N = {1, . . . , |N |}, v), �D is the
desirability relation defined by:

• For any (i, j) ∈ N2 : if ∀S ⊆ N\{i, j} : v(S ∪ {i}) ≥ v(S ∪ {j}), then i �D j. In
this case we say that i is more desirable than j.

• For any (i, j) ∈ N2 : if ∀S ⊆ N\{i, j} : v(S ∪ {i}) = v(S ∪ {j}), then i ∼D j. In
this case we say that i and j are equally desirable.

• For any (i, j) ∈ N2 : if ∀S ⊆ N\{i, j} : v(S ∪ {i}) ≤ v(S ∪ {j}), then i �D j. In
this case we say that i is less desirable than j.

• For any (i, j) ∈ N2 : if i �D j and not i ∼D j, then i �D j. In this case we say that
i is strictly more desirable than j.

8
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• For any (i, j) ∈ N2 : if i �D j and not i ∼D j, then i ≺D j. In this case we say that
i is strictly less desirable than j.

Moreover, if neither i �D j nor j �D i holds for some i, j ∈ N , then we say that i and j
are incomparable.

There exist other variants of the desirability relation, for which different properties hold
[13]. In the context of other desirability relations, the desirability relation that we have de-
fined here is refered to as the individual desirability relation. Since it is the only desirability
relation that we will use in this thesis, we will refer to it as simply the desirability relation.

Using the notion of this desirability relation, it is now possible to define the class of
linear games.

Definition 13 (Linear game). A simple game (N, v) is linear if and only if in (N, v) no
pair of players in N is incomparable with respect to �D. This is equivalent to saying that
in (N, v) the desirability relation over N is complete.

A remarkable result is the following, proved by Taylor and Zwicker in [50]:

Theorem 14. A game is linear if and only if it is swap robust.

And hence we immediately obtain the following corollary by the fact that trade robust-
ness implies swap robustness.

Corollary 15. All weighted voting games are linear games.

This corollary is also easily seen by noting that in a weighted voting game G = (N =
{1, . . . , n}, v) with weighted form ((w1, . . . , wn), q), the desirability order is always com-
plete: for any (i, j) ∈ N2, if wi ≥ wj it must be that i �D j.

This brings us to the definition of two special classes of games that will be convenient
for use in subsequent chapters of this thesis.

Definition 16 (Canonical weighted voting games & canonical linear games). A linear game
G = (N, v) is a canonical linear game whenever N = {1, . . . , n} and the desirability
relation �D satisfies 1 �D · · · �D n. When G is also weighted, then G is a canonical
weighted voting game.

Note that the weight vector of a weighted form of a canonical weighted voting game is
always non-increasing.

It is now time to introduce two special ways of representing canonical linear games.

Definition 17 (Left-shift & right-shift). Let N be the set of players {1, . . . , n} and let S be
any subset of N . A coalition S′ ⊆ N is a direct left-shift of S whenever there exists an i
with 1 ≤ i ≤ n such that S′ = S\{i} ∪ {i − 1}. A coalition S′ ⊆ N is a left-shift of S
whenever there is for some k > 1 a sequence (S1, . . . , Sk) ∈ (2n)k such that

• S1 = S

• Sk = S′

9
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• for all i with 1 ≤ i < k, we have that Si+1 is a direct-left shift of Si.

The definitions of direct right-shift and right-shift are analogous.

Because of the specific desirability order that holds in canonical linear games, a left shift
of a winning coalition is always winning, and a right-shift of a losing coalition is always
losing. This allows us to represent a linear game in one of the following two forms.

Definition 18 (Roof coalition & Roof form). Let G = ({1, . . . , n}, v) be a canonical lin-
ear game. Also, let Wmin be G’s list of minimal winning coalitions. A minimal winning
coalition S ∈ Wmin is a roof coalition whenever every right-shift of S is losing. Let Wroof

denote the set of all roof coalitions of G. (N,Wroof) is called the roof form of G.

Definition 19 (Ceiling coalition & Ceiling form). Let G = ({1, . . . , n}, v) be a canonical
linear game. Also, let Lmax be G’s list of maximal losing coalitions. A maximal losing
coalition S ∈ Wmin is a ceiling coalition whenever every left-shift of S is winning. Let
Wceil denote the set of all ceiling coalitions of G. (N,Wceil) is called the ceiling form of G.

The terminology (“roof” and “ceiling”) is taken from [37], although game theorists have
also been calling it shift-minimal winning coalitions and shift-minimal losing coalitions
[50].

In this thesis we will be using the following symbols to denote specific classes of games:

• Gsim denotes the general class of simple games;

• Gmon denotes the class of monotone simple games;

• Glin denotes the class of linear games;

• Gclin denotes the class of canonical linear games;

• Gwvg denotes the class of weighted voting games;

• Gcwvg denotes the class of canonical weighted voting games.

2.1.3 Representation Languages

Because we will be discussing simple games from a computational perspective, we would
like to introduce the concept of representation languages for simple games. Note that this
is a novel idea that we use for the sake of convenience in this thesis, and is not used in any
other literature.

We have introduced several ways of representing simple games:

• by the set of winning coalitions,

• by the set of losing coalitions,

• by the set of minimal winning coalitions,

• by the set of maximal losing coalitions,

10
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• by the set of roof coalitions,

• by the set of ceiling coalitions,

• by a weighted representation,

The idea is to turn these methods representing simple games into languages: Sets of strings,
such that the strings are a description of a game according to one of the methods in the list
above. This makes it easier to talk about the various ways of representating simple games.

Prior to introducing the languages together with their definitions, we need a way of
describing coalitions. Coalitions can be described using their characteristic vector.

Definition 20. Let N = {1, . . . , n} be a set of n players. The characteristic vector �χ(S)
of a coalition S ⊆ N is the vector (χ(1, S), . . . , χ(n, S)) where

χ(i, S) =

{
1 if i ∈ S

0 otherwise.

Definition 21 (Representation Languages). We define the following langages to represent
simple games.

• LW . Strings � ∈ LW are lists of characteristic vectors of coalitions. � represents a
simple game G if and only if the set of coalitions that � describes is precisely the set
of coalitions that are winning in G.

• LW,min. Strings � ∈ LW are lists of characteristic vectors of coalitions. � represents a
simple game G if and only if the set of coalitions that � describes is precisely the set
of minimal winning coalitions in G.

• LL. Strings � ∈ LW are lists of characteristic vectors of coalitions. � represents a
simple game G if and only if the set of coalitions that � describes is precisely the set
of coalitions that are losing in G.

• LL,max. Strings � ∈ LW are lists of characteristic vectors of coalitions. � represents a
simple game G if and only if the set of coalitions that � describes is precisely the set
of maximal losing coalitions in G.

• Lroof . Strings � ∈ LW are lists of characteristic vectors of coalitions. � represents a
simple game G if and only if the set of coalitions that � describes is precisely the set
of roof coalitions in G.

• Lceil. Strings � ∈ LW are lists of characteristic vectors of coalitions. � represents a
simple game G if and only if the set of coalitions that � describes is precisely the set
of ceiling coalitions in G.

• Lweights. Strings � ∈ LW are lists of numbers 〈w1, . . . , wn, q〉. � represents a simple
game G if and only if G has weighted representation ((w1, . . . , wn), q).

11
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We will use the following convention: With L(n) we mean the set of strings in the
language L restricted to n players. Also, let � be a string from a representation language
L(n). Then we write G� to denote the simple game on players {1, . . . , n} that is represented
by �.

Definition 22. We say that a class of games G is defined by a language L if and only if
∀� ∈ L : ∃G ∈ G : G� = G and vice versa ∀G ∈ G : ∃� ∈ L : G� = G.

Using the above definition, we see that

• Gsim is defined by both LW and LL;

• Gmon is defined by both LW,min and LL,max;

• Glin is defined by both Lroof and Lceil;

• Gwvg is defined by Lweights.

2.1.4 Solution Concepts

Now we will briefly return to the general class of coalitional games that are not necessarily
simple.

Solution concepts are a central topic in coalitional game theory.

Definition 23 (Solution concepts in cooperative games). Let v ∈ G(N). A solution concept
is a value x ∈ R

|N |, representing a payoff to each player.

If the assumption is that eventually the grand coalition will form in a game, then we
need to split up the gains from the grand coalition among the set of all players. This is
a standard assumption in cooperative game theory: games are assumed to be monotone,
and thus the highest gain is obtained by the grand coalition, i.e. the case that everyone
cooperates. Solution concepts are usually defined from this point of view, so if x is a
solution concept for a game v ∈ G(N), then the sum of all items in this vector equals
v(N).

This assumption is not that restrictive though: one can also see a solution concept as a
way to divide the gains of any coalition among its members. If we want a method to divide
the gain of a smaller coalition among its members, then we can just apply the solution
concept on the subgame induced on the players in the smaller coalition.

Below, we will describe the Shapley value solution concept. We give special attention
to the Shapley value, since it is relevant for our discussion about power indices. However,
there are also other popular solution concepts, such as the core [19], the nucleolus [42], and
the kernel [8].

The Shapley Value

One of the most well-known solution concepts is the Shapley value. This solution concept
was introduced by Lloyd S. Shapley in [43].
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Definition 24. Given a coalitional game (A = (a1, . . . , an), v), the Shapley value ϕ for
this game is the payoff vector (ϕ1, . . . , ϕn). For 1 ≤ i ≤ n,ϕi is defined as follows. Let Π
be the set of all permutations of A. Let Preci : Π→ 2A be the function that, given a π ∈ Π,
returns the set of players occurring before ai in π. Then

ϕi =
ϕ′

i

n!
,

and
ϕ′

i =
∑
π∈Π

v(Preci(π) ∪ {i}) − v(Preci(π)).

Remark 25. Whenever we are discussing solution concepts of two or more games simulta-
neously, we will distinguish them for these games by parametrizing them with the specific
game. e.g. for two simple games G′ and G, we use the notation ϕi(G) and ϕi(G′) to denote
the Shapley values for player i in game G and game G′ respectively. Also we sometimes
denote a game G = (N, v) simply by its characteristic function v, so then we write ϕi(v).

In cooperative game theory research, a common practice is to try to axiomatize a solu-
tion concept.

Definition 26 (Axiomatic characterization). An axiomatization or axiomatic characteriza-
tion of a solution concept c for a class of games G is a set of axioms defined using games in
G such that c is the unique solution concept that satisfies all the axioms.

Axiomatic characterizations are useful for assessing the reasonability of solution con-
cepts. For the Shapley value, a lot of axiomatic characterizations have been devised. We
now give a clean one in Definition 27 and Theorem 28, devised by Shapley himself, given
for example in [11]:

Definition 27 (Game permutation & game addition). Let v be a coalitional game on the
players N ; let π : N → N be a permutation of N . Then the game (πv) is defined as

∀S ⊆ N : (πv)(S) = v({π(i) | i ∈ S}).
Let v1 and v2 be two games on the players N ; then the game (v1 + v2) is defined as

∀S ⊆ N : (v1 + v2)(S) = v1(S) + v2(S).

Theorem 28. Let G(N) be the class of general coalitional games on any set of players
N = {1, . . . , |N |}. For any v, v1, v2 ∈ G(N), there is a solution concept c = (c1, . . . , c|N |)
that is the unique solution concept satisfying

A1 (carrier): If any S ⊆ N satisfies ∀T ⊆ N : v(T ) = v(T ∩ S), then
∑

i∈S ci(v) =
v(S);

A2 (permutation): For any permutation π: ci(v) = cπ(i)(πv);

A3 (addition): ci(v1 + v2) = ci(v1) + ci(v2).

Moreover, c is the Shapley value ϕ.
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2.2 Power Indices

We will discuss power indices in this section. Power indices are measures for the amount
of influence that a player has in a simple game. We start in first with a discussion of why
we need power indices, in Section 2.2.1. After that, we will introduce three power indices
in sections 2.2.2, 2.2.3 and 2.2.4. Finally, in Section 2.2.5 we briefly talk about how to
compute these power indices.

2.2.1 Motivation Behind Power Indices

Power indices originally were introduced because it was observed that in weighted vot-
ing games, the weight of a player is not directly proportional to the influence he has in
the weighted voting game. This is actually quite easy to see through the following trivial
example weighted voting game: (

W, q =
∑

w∈W

w

)
.

Here, each agent is in only one winning coalition: the grand coalition. So no matter what
the weights of the agents are, they all have the same power.

Now that we know that the weight of a player is not a good measure for the player’s
power, the question will be: what is a good measure for the player’s power in a weighted
majority game?

Various answers have been given to this question, by various researchers in the area of
coalitional game theory. These answers are in the form of power indices, which are simply
mathematical formulations for values that try to describe the ‘true’ influence that a player
has in a weighted voting game.

Almost all power indices make no assumptions on the true preference of a player in a
voting game. So we say power indices measure a player’s a priori power in a weighted
voting game. That is, we attempt to objectively measure the influence that a player has
in the outcome of a weighted voting game, without having any statistical information on
which votes are likely to be cast by players, or groups of players. To do this, we cannot
avoid making certain assumptions, but we let these assumptions be as neutral as possible.
For example, in the Banzhaf index that we describe below, it is assumed that each coalition
will form with equal probability.

While the need for power indices originally arose from weighted voting games, all of
the power indices that have been devised up till now are also suitable for any other kind of
simple coalitional game. So, for any simple coalitional game, we can use a power index as
a measure of a player’s a priori power in it.

In computer science, the focus of power index research naturally lies most of the times
in finding algorithms that efficiently compute a power index. However, of course power
indices have not only been investigated in computer science: even more research has been
done in the field of game theory. Purely game-theoretical research has mostly focused on
mathematical analysis of the indices: finding mathematical properties and finding axiomatic
characterizations of the power indices, just as has been done for the solution concepts of
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the previous chapter. Analogous to axiomatic characterizations of solution concepts, an ax-
iomatic characterization of a power index p is a set of axioms such that the only formula
satisfying all axioms can only be p. Axiomatizations are helpful for discussions on topics
like the reasonability of a certain power index in a certain situation. And although axiom-
atizations do give us some mathematical properties of the power indices, those properties
are obvious and follow most of the times immediately from the definition. It turns out that
they do not really help us for answering most of the computation-related questions that we
are interested in, so here we will not state explicitly any axiomatic characterizations for the
power indices.

One quick last note before we move on to the actual power indices. Originally, a power
index p was defined to be a vector (p1, p2, . . . , pn) where pi, 1 ≤ i ≤ n is supposed to
be a measure of the power for player i (at least, this is the way most of the classic game
theory papers define a power index). Later on, in more and more papers this definition
was altered a bit, and researchers began to speak of “the power index pi”, i.e. all of the pi’s
themselves were defined to be power indices of individual players. In this document, we use
both definitions, depending on which definition is convenient. We believe that no confusion
will arise from this.

2.2.2 The Shapley-Shubik Index

The very first power index that has been proposed is the Shapley-Shubik index. This is
nothing more than the Shapley value of [43] that we introduced in the previous chapter, but
now restricted to simple coalitional games. So:

Definition 29 (Shapley-Shubik index & raw Shapley-Shubik index). For a simple coali-
tional game (A = {a1, . . . , an}, v), let Π be the set of all permutations of all players.
For all 1 ≤ i ≤ n, let Preci : Π → 2A be the function such that Preci(π ∈ Π) re-
turns the set of players that occur before player ai in π. Then, the Shapley-Shubik index is
ϕ = (ϕ1, . . . , ϕn), where for 1 ≤ i ≤ n:

ϕi =
ϕ′

i

n!
,

and
ϕ′

i =
∑
π∈Π

v(Preci(π) ∪ {i}) − v(Preci(π)).

ϕ′
i is called the raw Shapley-Shubik index.

We can interpret the raw Shapley-Shubik index for i as the number of different orders
of arrival in which the players can join the coalition, such that the arrival of player i changes
a losing coalition into a winning coalition.

Definition 30 (Pivot permutations & pivot players for permutations). Let (A, v) be a simple
game and let π ∈ Π be a permutation of the players in A such that v(Preci(π) ∪ {i}) −
v(Preci(π)) = 1. We call π a pivot permutation for player i. Also, we say that in that case,
i is a pivot player for π.
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The Shapley-Shubik index of player i is the raw Shapley-Shubik index of i divided
by n!. n! is the total number of possible permutations of all n players, and because in each
permutation, exactly one player is a pivot player (if we assume monotonicity), we have

n∑
i=1

ϕi = 1,

which is a nice property. As a corollary, the Shapley-Shubik index of a player is always a
number between 0 and 1. It is easy to see that the Shapley-Shubik index of a player i can
be interpreted as the probability that i will be the player that changes a losing coalition into
a winning coalition, if all players would join the coalition in a random order.

There is an alternative well-known definition of the raw Shapley-Shubik index (for a
player i) that is sometimes convenient to use:

ϕ′
i =

∑
S⊆A\{i}

(|S|!(|A| − |S| − 1)!(v(S ∪ {i})− v(S))) (2.1)

It is not hard to see why this definition is correct: for any S ⊆ A for which it holds that
(v(S ∪ {i}) − v(S)) = 1, there are |S|! ways to permute the players in S, and there are
(|A| − |S| − 1)! ways to permute the |A| − |S| − 1 players outside S ∪ {i}.

The reader may wonder why this power index is called the Shapley-Shubik index if the
Shapley-Shubik index is nothing more than the Shapley value, restricted to simple coali-
tional games. The reason for this is that while Shapley invented the Shapley value, it was
the paper [44] written by Shapley and Shubik, where it was pointed out that the Shapley
value is an excellent way to measure someone’s voting power in a weighted voting game.
As we explained, originally the Shapley value was meant as a solution concept for general
coalitional games, i.e. to allocate fairly the gain of the grand coalition among the set of play-
ers. In this new setting, the Shapley value is used as a way to measure power, so this is a
different purpose than the original purpose of the Shapley value. Hence, the Shapley-Shubik
index was born.

The axiomatic characterization for the Shapley value (that we gave in the previous chap-
ter) holds if we restrict it to simple games, but not if we restrict it to simple superadditive
games or simple monotone games. In general it is not true that an axiomatic characteriza-
tion for a certain value on a certain set G of games also holds for a subset G′ ⊂ G: while
it is always true that in this case the value satisfies the axioms, it needs no longer be so that
the value is the unique value that satisfies the axioms. Shubik states in [11] an axiomatiza-
tion for the Shapley-Shubik value that holds in simple superadditive and simple monotone
games.

2.2.3 The Banzhaf Index

In 1965, two decades after the Shapley-Shubik index, the normalized Banzhaf power index
was proposed, named after its inventor John F. Banzhaf III [20].

Definition 31 (normalized Banzhaf index & raw Banzhaf index). For a simple coalitional
game (A = (a1, . . . , an), v), the normalized Banzhaf index is defined as β = (β1, . . . , βn),
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where for 1 ≤ i ≤ n:

βi =
β′

i∑n
j=1 β′

j

,

and
β′

i = |{S ⊆ A\{i} | v(S) = 0 ∧ v(S ∪ {i}) = 1}|. (2.2)

Here, β′
i is called the raw Banzhaf index for player i.

So the raw Banzhaf index is simply the number of coalitions where i is critical for the
coalition to win the game.

Definition 32 (Swing coalition & critical player). Let S ⊆ W be a coalition such that
v(S) = 0 ∧ v(S ∪ {i}) = 1. We will call S a swing coalition for i. In a swing coalition
for i, i is called a critical player or swing player (because he “swings” the outcome for the
coalition from losing to winning, if he joins).

Note that the definition we use here differs from the definition in some other literature.
Originally, for a simple game (N, v) a swing is defined as a pair (S, S′) for which S, S′ ⊆ N
and S′ ⊂ S with |S′| = |S| − 1. However, we think that for our discussion, Definition 32 is
more convenient.

From the definition we can see that the Banzhaf index for player i is simply the raw
Banzhaf index divided by the sum of all raw Banzhaf indices. This way, βi is always a
number between 0 and 1, and we have the elegant mathematical property that

∑n
i=1 βi = 1.

Coleman reinvented the index in 1971 [6], only after which the index became popular.
For this reason, the normalized Banzhaf index form is also known as the Coleman index or
the Banzhaf-Coleman index. Coleman has some other power indices though, see the next
section for that. Moreover, the normalized Banzhaf index is also known under the name
standardized Banzhaf index.

Later, in 1979, the index was revised by Dubey and Shapley. It was noted that because
of the denominator (

∑n
j=1 β′

j), some useful information was lost. Therefore, Dubey and
Shapley proposed in [12] a modification of the Banzhaf index where the denominator is
replaced by 2n−1. However, this new version of the Banzhaf index is no longer normalized.

Definition 33 (Absolute Banzhaf index). So this modified Banzhaf index β′′i is defined as

β′′
i =

β′
i

2n−1
.

The authors called this index the absolute Banzhaf index.

β′′
i is precisely the fraction of coalitions containing i, for which i is a critical player. So

if each coalition were to form with equal probability, then β′′i is the probability that i is a
critical player for the coalition, given that player i is in the coalition.

In [12], an axiomatic characterization of the raw Banzhaf index is given for the general
class of simple games.

Actually, as it turned out, the absolute Banzhaf index was invented much earlier, even
before the normalized Banzhaf index was proposed. In 1946, the index was described by

17



2.2 Power Indices Preliminaries

Penrose in [39]. So in the literature, the absolute Banzhaf index is sometimes also referred
to as the Penrose index or the Banzhaf-Penrose index.

Compared to the absolute Banzhaf index, the normalized Banzhaf index not only has
some undesirable mathematical properties: from a computational point of view, the normal-
ized Banzhaf index is also harder to compute, since (because of the denominator) we need
to first calculate the raw Banzhaf indices of all players, before we can calculate the normal-
ized Banzhaf index of one player. This is not the case for the absolute Banzhaf value, where
the denominator 2n−1 is easy to compute.

Definition 34 (Banzhaf index). In the literature, usually when one talks about the Banzhaf
index, one means the absolute Banzhaf index. We will also use that convention in this
survey: when we use the term Banzhaf index, we will mean the absolute Banzhaf index.
Moreover, in the remainder of this text, we will not use the symbol β′′i to denote the absolute
Banzhaf index of player i, but instead we use βi, and we will use β to denote the vector of
absolute Banzhaf indices of all players.

Remark 35. If we compare the second definition of the raw Shapley-Shubik index, Equa-
tion 2.1, with Equation 2.2 of the raw Banzhaf index, we see a remarkable resemblance
between the two: in the raw Shapley-Shubik index, for each coalition S ⊆ A\{i} for which
v(S) = 0 ∧ v(S ∪ {i}) = 1, we add |S|!(|A| − |S| − 1)! to the index, while in the raw
Banzhaf index, for the same coalitions we simply add 1 to the index. This is the only
difference between those two indices.

2.2.4 The Deegan-Packel Index

There are a lot of power indices other than the Banzhaf and Shapley-Shubik indices, al-
though they are not used as often. We will explain in this section one such index that is
perhaps the most popular index among these lesser known indices: the Deegan-Packel in-
dex, proposed by Deegan and Packel in [21]. In this index we consider the set of minimal
winning coalitions Wmin of a simple game. Informally, for each minimal winning coalition
S ∈ Wmin, the Deegan-Packel index is obtained by adding 1/|S| to the Deegan-Packel
index of each member in S.

The Deegan-Packel index was proposed for monotone simple coalitional games, but
can also be used for non-monotone simple coalitional games. However, clearly the Deegan-
Packel intuitively would not make any sense for coalitional games that are not monotone.

The Deegan Packel index is justified in situations where the size principle holds [41]:

“In social situations similar to n-person, zero sum games with side payments,
participants create coalitions just as large as they believe will ensure winning
and no larger.”

The formal definition of the Deegan-Packel index is:

Definition 36 (Deegan-Packel index). For a simple coalitional game (A = (a1, . . . , an), v),
the Deegan-Packel index is defined as ρ = (ρ1, . . . , ρn), where for 1 ≤ i ≤ n:

ρi =
1

|Wmin|
∑

S∈2A:ai∈S∧v(S)=1∧∀a∈S:v(S\{a})=0

1
|S| .
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So, if the assumption is made that players will only form minimal winning coalitions,
each minimal winning coalition has an equal probability of forming, and the players in a
coalition divide the gains equally, then the Deegan-Packel index of a player represents the
player’s expected gain.

2.2.5 Computing Power Indices

In this section, we will discuss the problem of computing the three indices introduced so
far. This topic has been very widely studied and there are many algorithms available. The
discussion in this section will be brief. For a survey of complexity results, exact algorithms
and approximation algorithms for computing power indices, see [23].

Computational Complexity

First, we would like to point out that the computation of the Banzhaf and Shapley-Shubik
indices is not very easy in general, if the game is given in a weighted representation. This
is due to the following theorems:

Theorem 37 ([10, 14]). Let (W = (w1, . . . , wn), q) be any weighted representation of a
weighted voting game. Let RAWSHAPLEY : Σ∗ → N be the function that returns the raw
Shapley-Shubik index ϕ′

i for game (W, q) when it is given input 〈W, q, i〉. RAWSHAPLEY is
#P-complete.

Theorem 38 ([40]). Let (W = (w1, . . . , wn), q) be any weighted voting game. Let PIVOT-
WVG : Σ∗ → N be the function that returns the raw Banzhaf index β′i for game (W, q) when
it is given input 〈W, q, i〉. PIVOT-WVG is #P-complete.

Moreover, Aziz points out in [2] that computing the Banzhaf index remains #P-complete
when the game is given as a list of minimal winning coalitions.

Algorithms

Many exact algorithms and approximation algorithms are known for computing power in-
dices of games given in various representations. A very important case is of course when
the game is given in weighted form.

We just pointed out above that the Banzhaf and Shapley-Shubik power indices can prob-
ably not be computed in polynomial time in that case. For the Deegan-Packel index, no
#P-completeness results are known, but for the case that the game is given in weighted
form, no polynomial time algorithm is known either. However, we can trivially obtain a
polynomial time algorithm from the definition of the Deegan-Packel index in the case that
the game is given as a list of minimal winning coalitions. Matsui and Matsui present in [34]
an output-polynomial time enumeration algorithm that outputs the set of minimal winning
coalitions in a game given in weighted form. This then yields an algorithm running in time
polynomial in the number of players and the number of minimal winning coalitions, for
computing the Deegan-Packel index for a weighted representation of a game.
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For the Banzhaf and Shapley-Shubik indices, an important result is known for a special
case of weighted representations of games: In the case that the game is given in weighted
form, and all weights are integers, it is known that the problem can be solved in pseudo-
polynomial time, by using a dynamic programming method based on generating functions
[5, 33].

In the more general case where the game is given in weighted form, but where the
weights are not required to be integers, the fastest known approach for computing the
Banzhaf index or Shapley-Shubik index is by Klinz and Woeginger [25] achieving a runtime
in O∗((

√
2)n).
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Chapter 3

Voting Game Design — The Problem
Statement

In this chapter, we will introduce the problem that we call the voting game design problem:
the problem of finding a simple game that satisfies a given requirement as well as possible.
We will focus on the problem of finding games in which a power index of the game is as
close as possible to a given target power index.

This chapter consists of two sections. In section 3.1, we will state the actual problem
that we are concerned with in this thesis. Moreover, we will introduce a framework that
allows us to discuss the problem in a convenient way. In section 3.2, we will discuss the
work that has already been done on these problems.

3.1 A Framework for Voting Game Design Problems

We define a voting game design problem as an optimization problem where we are given
three parameters f , G and L. In such a voting game design problem we must minimize some
function f : G → R

+∪{0}, with G being some class of simple games. L is a representation
language for G. We require the game that we output to be in the language L.

Definition 39 ((f,G,L)-voting game design ((f,G,L)-VGD)). Let G be a class of simple
games, let L be a representation language for G, and let f : G → R

+ ∪ {0} be a function.
The (f,G,L)-voting game design problem (or (f,G,L)-VGD) is the problem of finding an
� ∈ L such that G� ∈ G and f(G�) is minimized.

Hence, f can be seen as a function indicating the error, or the distance from the game
that we are ideally looking for. By imposing restrictions on the choice of f , and by fixing
G and L, we can obtain various interesting optimization problems. The cases that we will
focus on will be where f is a function that returns the distance from a certain target power
index.

Definition 40 ((g,G, L)-power index voting game design ((g,G,L)-PVGD)). Suppose G is
a class of games, and L is a representation language for a class of games. Furthermore,
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suppose g : G → R
n is a function that computes a certain power index (e.g. the Shapley-

Shubik index or the Banzhaf index) for any game in G. Then, the (g,G, L)-power index
voting game design problem (or (f,G,L)-PVGD) is the (f,G,L)-VGD problem with f
restricted to those functions for which there exists a vector (p1, . . . , pn) such that for each
G ∈ G,

f(G) =

√√√√ n∑
i=1

(g(i,G) − pi)2.

In words, in a (g,G)-PVGD problem we must find a weighted voting game in the class
G that is as close as possible to a given target power index (p1, . . . , pn) according to power
index function g. We measure the error as the square root of the sum of squared errors, i.e.
the euclidian distance in R

n between the power index of a game, and the target power index.
In principle, we could also use alternative rules for this; for our discussion it does not really
matter: We will see that the methods we use to solve these problems work well as long as
the error function is not hard to compute, given g.

We can analyze this problem for various power index functions, classes of games, and
representation languages. So, instances of such problems are then represented by vec-
tors (p1, . . . , pn). A particularly interesting case that we will focus on are the problems
(β,Gwvg,Lweights)-PVGD and (ϕ,Gwvg,Lweights)-PVGD. This is the problem of finding a
weighted voting game in weighted representation, that is as close as possible to a certain
target Banzhaf index or Shapley-Shubik index.

3.2 Known Work

Although some specific variants of (f,G,L)-PVGD problems are mentioned sporadically in
the literature, not many serious attempts to solve this problem are known to us. Often, the
problem is referred to as the inverse problem. We chose deliberately not to use this name
for the problem, since it does not suggest immediately that it is in any way connected to the
theory of simple games. The inverse problem is a name that could in principle be used for
many other problems that do not at all have to do with cooperative game theory.

We know of only a few papers where the authors propose algorithms for ((f,G,L)-
PVGD). One of them is by Fatima et al. for the case of (ϕ,Gwvg,Lweights)-PVGD) [16],
i.e., the case of finding a weighted voting game in weighted representation for the Shapley-
Shubik index. This algorithm works essentially as follows: It first receives as input a target
Shapley-Shubik index and a vector of initial weights. After that, the algorithm enters an
infinite loop where repeatedly the Shapley-Shubik index is computed, and the weight vector
is updated according to some rule. The Shapley-Shubik index is computed using a linear
time randomized approximation algorithm, proposed in [15, 17] by the same authors. For
updating the weights, the authors propose two different rules of which they prove that by
applying the rule, the Shapley-Shubik index of each player cannot get worse. Hence, the
proposed algorithm is an anytime algorithm: an algorithm that can be terminated anytime,
but gets closer to the optimal answer the longer the algorithm runs. No analysis on the
approximation error is done, although the authors mention in a footnote that analysis will
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be done in future work. The runtime of one iteration of the algorithm is shown to be O(n2)
(where n denotes the number of players).

Another attempt is by Aziz et al. for the (β,Gwvg,Lweights)-PVGD variant of the prob-
lem. The approach the authors present here [3] resembles that of Fatima et al. in that their
algorithm repeatedly updates the weight vector in order to get get closer to the target power
index. The algorithm gets as input a target Banzhaf index. As an initial step, an integer
weight vector is guessed according to a normal distribution approximation. Subsequently,
the algorithm enters an infinite loop, and consecutively computes the Banzhaf index and
updates the weight. For computing the Banzhaf index, the generating function method is
used [4, 33, 5]. This is an exact pseudopolynomial time method that works only when the
weights in the weighted representation of a game are integers. Therefore, the output of the
algorithm is always an integer weighted representation, contrary to the method of Fatima et
al. for which the output is a real weighted representation. The updating is done by interpo-
lating a best fit curve. This results in a real weight vector. To obtain integer weights, the
weight vector is rounded to integers, but prior to that it is multiplied by a suitable constant
that reduces the error when rounding to integers. This can be done because of the following
easy theorem, which we mention here because we will use it later on in the discussion of
our own approach:

Theorem 41. Let G ∈ Gwvg(N) be a weighted voting game with N = {1, . . . , n}, and let
� = ((w1, . . . , wn), q) be a weighted representation for G. For any λ ∈ R

+, we have that
�′ = ((λw1, . . . , λwn), λq) is a weighted representation for G.

Proof. For any coalition C ⊆ N such that w�(C) < q:

w�′(C) =
∑
i∈C

λwi = λ
∑
i∈C

wi = λw�(C) < λq,

and for any coalition C ⊆ N such that w�(C) ≥ q:

w�′(C) =
∑
i∈C

λwi = λ
∑
i∈C

wi = λw�(C) ≥ λq.

For Aziz’s approach, nothing is known about convergence, so it is not certain whether
this method is anytime just like Fatima’s algorithm. Also, no approximation guarantee is
given. Moreover, not much is known about the practical performance of this algorithm (one
example is presented of this algorithm working on a specific input). The runtime of an
iteration of the algorithm is not given.

Leech proposes in [29, 31] an approach that largely resembles the method of Aziz et
al.: it is the same, with the exception that a different updating rule is used. The method that
Leech uses for computing the Banzhaf index is not mentioned. The focus in this paper is on
the results that are obtained after applying the method to the 15-member EU council (also
see [30]), and to the board of governors of the International Monetary Fund.

23



3.2 Known Work Voting Game Design — The Problem Statement

Because the three approaches that we just discussed do not give an analysis of various
aspects of the methods they use, we consider these algorithms to be mostly heuristic meth-
ods (with possibly an exeption of the algorithm of Fatima et al., of which it is shown that
the algorithm convergences).

Alon and Edelman observe that we need to know a priori estimates of what power
indices are achievable in simple games, in order to analyze the accuracy of these kinds
of iterative algorithms, i.e. there is a need for information about the distribution of power
indices in the unit simplex1. As a first step into solving this problem, they prove in [1] a
specific result for the case of the Banzhaf index for monotone games.

Also, some applied work has been done on the design of voting games. In two papers,
one by Laurelle and Widgren [28] and one by Sutter [49], the distribution of voting power
in the European Union is analyzed and designed using iterative methods that resemble the
algorithm of Aziz [3].

1The definition of unit simplex is given in Appendix A
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Chapter 4

Voting Game Synthesis

The method that we will propose for solving the power index voting game design problem
involves transforming between different representations for classes of simple games. There-
fore, we will in this chapter first explore in general the problem of transforming representa-
tions into each other. We call these problems Voting Game Synthesis problems, inspired by
the term threshold synthesis used in [37] for finding a weight vector for a so-called threshold
function, to be defined later in this chapter.

In Section 4.1, we will start this chapter by first finding out what we can say about
the number of various types of voting games. We state the synthesis problem formally in
Section 4.2. In Section 4.3 we will look at how to solve it.

4.1 On Cardinalities of Classes of Simple Games

In some variants of the Voting Game Synthesis problem, we want to transform a simple
game into a specific representation language that defines only a subclass of the class of
games that is defined by the input-language. It is interesting to know what fraction of a
class of games is synthesizable in which language, i.e. we are interested in the cardinalities
of all of these classes of simple games. Apart from the synthesis problem, this is probably
an interesting question in its own right, and we will see that we also need this information
in order to analyse the algorithms for the voting game design problems that we will present
in the next chapters.

In Section 4.1.1, we will discuss the amounts of monotone simple games and linear
games on n players. In Section 4.1.2, we will look at the number of weighted voting games
on n players.

4.1.1 Monotone Simple Games and Linear Games

Let us start off with the cardinality of the class of monotone games of n players: Gmon(n).
This class is defined by language LW,min, i.e. each game in this class can be described by a
set of minimal winning coalitions (MWCs), and for each possible set of MWCs Wmin there
is a monotone game G such that the MWCs of G are precisely Wmin. We see therefore that
the amount of monotone games on n players is equal to the amount of families of MWCs
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on n players. In a family of MWCs, there are no two coalitions S and S′ such that S′ is a
superset of S. In other words: all elements in a family of MWCs are pairwise incomparable
with respect to ⊇, or: A family of MWCs on the set of players N = {1, . . . , n} is an
antichain in the poset (2N ,⊇). Hence, the amount of antichains in this poset is equal to
|Gmon(n)|. Counting the number of antichains in this poset is a famous open problem in
combinatorics, known as Dedekind’s problem and |Gmon(n)| is therefore also referred to
as the nth Dedekind number Dn. Dedekind’s problem was first stated in [9]. To the best
of our knowledge, exact values for Dn are known only up to n = 8. We will return to the
discussion of the Dedekind number in Section 5.1, where we will also mention some known
upper and lower bounds for it. For now, let us simply say that Dn grows quickly in n: as n
gets larger, Dn increases super-exponentially, but sub-doubly-exponentially.

For linear games, we know only of the following lower bound on the number of canon-
ical linear games. The prove that we give here is from [37]:

Theorem 42. For large enough n,

|Gclin(n)| ≥ 2(
√

2
3
π2n)/(n

√
n)

.

Proof. |Gclin(n)| is equal to the number of antichains in the poset (2N ,�ssrs), where for two
coalitions S ⊆ N and S′ ⊆ N , we have S �ssls S′ if S is a superset of a left-shift of S′.
(2N ,�ssrs) is a ranked poset: consider the following rank function r

r : 2N → N

S �→
∑
i∈S

n− i + 1.

It can be seen that in (2N ,�ssrs), a coalition S covers another coalition S′ if r(S) = r(S′)−
1, therefore this is a valid rank function. A set of points of the same rank is an antichain
in (2N ,�ssrs). Let Ak denote the set of points of rank k. k is at most n(n+1)

2 . For each
coalition S in Ak, its complement N\S is in An(n+1)/2−k; therefore |Ak| = |An(n+1)/2−k|.
It is shown in [48] that the sequence (|A1|, . . . , |An(n+1)/2|) is unimodal, i.e. first non-
increasing, then non-decreasing. By this fact and the fact that |Ak| = |An(n+1)/2−k |, it must
be the case that the largest antichain is |An(n+1)/4|. |An(n+1)/4| is equal to the number of

points (x1, . . . , xn) satisfying x1 +2x2 + · · ·+nxn = n(n+1)
4 , and this number of points is

equal to the middle coefficient of the polynomial (1 + q)(1 + q2) · · · (1 + qn). It is shown
in [36] that this middle coefficient is asymptotically equal to√

2
3π2n

n
√

n

Since every subset of an antichain is an antichain, there must me more than

2(
√

2
3
π2n)/(n

√
n)

antichains in (2N ,�ssrs).
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4.1.2 Weighted Voting Games

To our knowledge, in game theory literature there has not been any research in the amount
of Weighted Voting Games on n players. Fortunately there is a closely related field of
research, called threshold logic (see for example [35]), that has some relevant results.

Definition 43 (Boolean threshold function, realization, LT). Let f be a boolean function
on n boolean variables. f is a (boolean) threshold function when there exists a weight
vector of real numbers r = (r0, r1, . . . rn) ∈ R

n+1 such that r1x1 + · · · + rnxn ≥ r0 iff
f(x1, . . . , xn) = 1. We say that r realizes f . We denote the set of threshold functions of n
variables {x1, . . . , xn} by LT(n).1

Threshold functions resemble weighted voting games, except for that we talk about
boolean variables instead of players now. Also, an important difference between thresh-
old functions and weighted voting games is that r0, r1, . . . , rn are allowed to be negative
for threshold functions, whereas q, w1, . . . , wn, must be non-negative in weighted voting
games.

Zunic presents in [54] an upper bound on the number of threshold functions of n vari-
ables |LT(n)|:

|LT(n)| ≤ 2n2−n+1. (4.1)

Also, the following asymptotic lower bound is known, as shown in [53]: For large enough
n, we have

|LT(n)| ≥ 2n2(1− 10
log n

). (4.2)

From these bounds, we can deduce some easy upper and lower bounds for |Gwvg|. First
we observe the following property of the set of threshold functions on n variables.

Definition 44 (Non-negative threshold function, non-negative weight vector). Let LT+(n)
be the set of non-negative threshold functions of variables {x1, . . . , xn}: threshold functions
f ∈ LT(n) for which there exists a non-negative weight vector r that realizes f , i.e. r
realizes f and only has non-negative entries.

Theorem 45. |Gwvg(n)| = |LT+(n)|
Proof sketch. There is an obvious one-to-one correspondence between the games in Gwvg(n)
and the threshold functions in LT+(n). When f is a non-negative threshold function, it has
a non-negative weight vector that realizes it, say r = (r0, r1, . . . , rn). ((r1, . . . , rn), r0) is
then a weighted form of some weighted voting game G ∈ Gwvg(n). Using this idea, it is
easy to see that |Gwvg(n)| ≥ |LT+(n)| and |Gwvg(n)| ≤ |LT+(n)|.

Now we can establish an upper bound on the number of weighted voting games.

Corollary 46. |Gwvg(n)| ≤ 2n2−n+1.

Proof. This follows directly from Theorem 45, the upper bound (4.1), and the fact that
|LT+(n)| ⊆ |LT(n)|.

1“LT” stands for “Linear Threshold function”.
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We will proceed by obtaining a lower bound on the number of weighted voting games.

Theorem 47. For any n, for every threshold function in LT(n)\LT+(n) and each r ∈
R

n+1 that realizes f , there exists a r′ ∈ (R+)n+1 such that r is obtained by negating some
of the entries in r′, and r′ is a realization of some threshold function in LT+(n).

Proof. Suppose for contradiction that there exists a threshold function f ∈ LT(n)\LT+(n)
for which this statement does not hold. f is a threshold function, so it has a realization r′ ∈
R

n+1. Now negate the negative entries in r′ to obtain r. r is a non-negative weight vector,
and for every non-negative weight vector there exists a non-negative threshold function that
is realized by it. This contradicts the assumption.

By these easy facts, the following lower bound follows.

Corollary 48. For large enough n, it holds that |Gwvg(n)| ≤ 2n2(1− 10
log n

)−n−1

Proof. Let f be a non-negative threshold function and let r be a non-negative weight vector
that realizes f . There are 2n+1 possible ways to negate the elements of r, so there are at
most 2n+1−1 threshold functions f′ ∈ LT(n)\LT+(n) such that f ′ has a realization that is
obtained by negating some of the elements of r. From this fact, and Theorem 47, it follows
that |LT+(n)| ≥ |LT(n)|

2n+1 . Next, by Theorem 45 we obtain |Gwvg(n)| ≥ |LT(n)
2n+1 |. Now by

using (4.2) we get |Gwvg(n)| ≥ 2
n2(1− 10

log n
)

2n+1 = 2n2(1− 10
log n

)−n−1.

We have obtained this lower bound on the number of weighted voting games by upper-
bounding the factor, say k, by which the number of threshold functions is larger than the
number of non-negative threshold functions. If we could find the value of k exactly, or
lower-bound k, then we would also be able to sharpen the upper bound on the number of
weighted voting games.

What about the canonical case, Gcwvg(n)? Gcwvg(n) is a subset of Gwvg(n), and for each
non-canonical weighted voting game there exists a permutation of the players that makes
it a canonical one. Since there are n! possible permutations, it must be that |Gcwvg(n)| ≥
|Gwvg(n)|

n! , and thus we obtain that

|Gcwvg(n)| ≥ 2n2(1− 10
log n

)−n−1

n!

for large enough n.
Unfortunately, we are again only able to upper-bound the factor by which the number

of weighted voting games is larger than the number of canonical weighted voting games, so
it seems hard to say much more about the cardinality of Gcwvg(n).

4.2 The Synthesis Problem for Simple Games

In a Voting Game Synthesis Problem, we are interested in transforming a given simple game
from one representation language into another representation language.
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Definition 49 (Voting Game Synthesis (VGS) Problem). Let L1 and L2 be two languages
and let fL1→L2 : L1 → L2 ∪ {no} be the function that, on input �,

• outputs no when G� is not in the class of games defined by L2, and

• otherwise maps a string � ∈ L1 to a string �′ ∈ L2 such that G� = G�′ .

In the (L1,L2)-Voting Game Synthesis Problem, or (L1,L2)-VGS Problem, we are given a
string � ∈ L1 and we must compute fL1→L2(�).

4.3 Algorithms and Solutions for Voting Game Synthesis

In this section we will discuss algorithms and hardness results for various VGS problems.
In sections 4.3.1, 4.3.2 and 4.3.3 we will consider respectively the problems of

• transforming games into weighted representation (Lweights);

• transforming games into roof- or ceiling-representation (Lroof ,Lceiling);

• transforming games into the languages LW ,LW,min,LL,LL,max.

4.3.1 Synthesizing Weighted Representations

Of central importance in the next chapter of this thesis, is the fact that the problem (LW,min,Lweights)-
VGS has a polynomial time algorithm. This is a non-trivial result and was first stated in [37]
by Peled and Simeone. In [37], the problem is stated in terms of set-covering problems. Be-
cause this algorithm is central to the approach we take in the next chapter for solving the
PVGD-problem, we will here restate the algorithm in terms of simple games, and we will
give a proof of its correctness and polynomial runtime.

We first introduce a new total order on the set of coalitions 2N of a set of players
N = {1, . . . , n}.
Definition 50 (Positional representation). Let S ⊆ N = {1, . . . , n} be a coalition. The ith
position p(i, S) of S is defined to be the player a in S such that |{1, . . . , a}∩N | = i. The po-
sitional representation of S, pr(S), is defined as the n-dimensional vector (p′(1, S), . . . , p′(n, S))
where

p′(i, S) =

{
0 if |S| < i,

p(i, S) otherwise.

for all i with 1 ≤ i ≤ n.

As an example: if we have N = {1, . . . , 5} and S = {1, 4, 5}, then pr(S) = (1, 4, 5, 0, 0).

Definition 51 (PR-lexi-order). The PR-lexi-order is the total order (2N ,�pr), where for two
coalitions S ⊆ N and S′ ⊆ N : S �pr S′ if and only if pr(S) lexicographically precedes
pr(S′). A vector �v lexicographically precedes another vector �v′ when there exists a i such
that vi < v′i and for all j < i it holds that vi = vj .
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For example, we see that for N = {1, . . . , 5}, we have {1, 2, 3} �pr {1, 3, 5}. The least
element of (2N ,�pr) is ∅ and the greatest element of (2N ,�pr) is N .

Now, we will introduce some operations that we can apply to coalitions. For this, the
reader should recall definitions 17 and 20 from Chapter 2.

Definition 52 (fill-up, bottom right shift, bottom left shift, truncation, immediate successor).
Let N be the set of players {1, . . . , n} and let S ⊆ N be a coalition. The functions a and b
are defined as follows.

• b(S) is the largest index j such that χ(j, S) = 1.

• a(S) is the largest index j such that χ(j, S) = 0 and χ(j + 1, S) = 1 (if such a j
does not exist, then a(S) = 0).

Now we can define the following operations on S:

• The fill-up of S: fill(S) = S ∪ {b(S) + 1} (undefined if S = N ).

• The bottom right shift of S: brs(S) = S∪{b(S)+1}\{b(S)} (undefined if b(S) = n).

• The truncation of S: trunc(S) = S\{a(S) + 1, . . . n}.
• The immediate successor of S:

succ(S) =

{
fill(S) if n �∈ S ,

brs(S\{n}) if n ∈ S .

The immediate successor operation is named as such because it returns the successor of
S in the total order (2N ,�pr).

One last concept we need is that of a shelter coalition.

Definition 53 (Shelter). A shelter is a minimal winning coalition S such that brs(S) is
losing or undefined.

Note that the set of roof coalitions of a canonical linear game is a subset of the set of
shelter coalitions of that game.

The Hop-Skip-and-Jump Algorithm

We are now ready to state the algorithm. The input to the algorithm is a string � in LW,min,
i.e. the list of characteristic vectors describing the set of minimal winning coalitions Wmin.
The four main steps of the algorithm are:

1. Check whether G� is a linear game. If not, then stop. When it turns out that the game
is linear, find a permutation of the players that turns the game into a canonical linear
game. In the remaining steps, we assume that G� is a canonical linear game.

2. Generate a list of shelters S , sorted according to the PR-lexi-order.
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3. Use S as input for the Hop-Skip-and-Jump algorithm. The Hop-Skip-and-Jump algo-
rithm will give as output the set of all maximal losing coalitions Lmax. This step, the
Hop-Skip-and-Jump algorithm, is the most non-trivial part, and we will explain it in
detail below.

4. Use Wmin and Lmax to generate the following system of linear inequalities, and solve
it for any choice of q in order to find the weights w1, . . . , wn:

w1χ(1, S) + · · · + wnχ(n, S) ≥ q,∀S ∈Wmin

w1χ(1, S) + · · ·+ wnχ(n, S) < q,∀S ∈ Lmax
(4.3)

If this system of linear inequalities has no solutions, then G� is not weighted; and
otherwise the weights that have been found are the weights of the players, and q is
the quota: ((w1, . . . , wn), q) is a weighted form of the weighted voting game.

The first step of the algorithm is easy if we use an algorithm by Aziz, given in [2]. This
algorithm decides whether a monotone simple game represented as a listing of minimal
winning coalitions is a linear game, and if so it outputs a strict desirability order2. From the
strict desirability order, the required permutation of the players directly follows.

The generation of the sorted list of shelters is clearly doable in polynomial-time: We
can easily check for each minimal winning coalition whether its bottom right shift is losing.

Linear programs are solvable in a time that is polynomial in the size of the linear pro-
gram, by Karmarkar’s algorithm [22] for example. So for the linear program of the fourth
part of the algorithm we will have to show that its size is a polynomial in n and the amount
of minimal winning coalitions, i.e., we will have to show that there are only polynomially
many more maximal losing coalitions than that there are minimal winning coalitions. This
follows from the fact that the Hop-Skip-and-Jump algorithm (see below) runs in polynomial
time and hence can output only a polynomial number of coalitions. Lastly, the fact that we
can choose any q we want follows from Theorem 41.

The hard part that now remains is part three of the algorithm: outputting the list of
maximal losing coalitions, given a sorted list of shelter coalitions. This is what the Hop-
Skip-and-Jump-algorithm does. We will now state this algorithm, prove it correct and show
that the runtime is a polynomial in the amount of players n and the number of shelter
coalitions t. From this polynomial runtime it then also follows that |Lmax| is polynomially
bounded in |Wmin|.

The pseudocode for the Hop-Skip-and-Jump algorithm is given in Algorithm 1. The
basic idea is to traverse all coalitions in order, according to the PR-lexi-order, and output
those coalitions that are maximal losing coalitions. During this process, we will be able to
skip huge intervals of coalitions in order to achieve a polynomial run-time.

We will now proceed by giving a correctness-proof of this algorithm.

Theorem 54. Algorithm 1 outputs only maximal losing coalitions.

2With this, we mean that the algorithm outputs a list �P = (P1, . . . , Pj) such that {P1, . . . , Pj} is a
partition of the set of all players N , where the players of any set in this partition are pairwise equally desirable
and for all i and j with i > j we have that any player in Pi is strictly more desirable than any player in Pj .
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Algorithm 1 The Hop-Skip-and-Jump algorithm. A polynomial-time algorithm that out-
puts the set of maximal losing coalitions of a monotone simple game G on players
N = {1, . . . , n}, given the sorted list of shelters of G as input. An assumption we make in
this algorithm is that the empty-coalition does not occur in the list of shelters. If it does, it
becomes a trivial task to output the list of maximal losing coalitions, so it is a safe assump-
tion.

1: nextshelter := first shelter on the list. {Output N and stop if the list is empty.}
2: currentcoalition := ∅ {Start with the least coalition in the PR-lexi-order.}
3: loop
4: while currentcoalition �= nextshelter\{b(nextshelter)} do
5: if n �∈ currentcoalition then
6: currentcoalition := fill(currentcoalition)
7: else
8: output currentcoalition
9: currentcoalition := brs(trunc(currentcoalition)) {Stop if undefined.}

10: end if
11: end while
12: if n �∈ nextshelter then
13: currentcoalition := brs(nextshelter)
14: else
15: output currentcoalition
16: currentcoalition := succ(nextshelter) {Stop if nextshelter = {n}.}
17: end if
18: nextshelter := next shelter on the list.
19: end loop

Proof. There are three places at which Algorithm 1 outputs coalitions: line 1, 8 and line 15.
At line 1, a coalition is only output when the list of shelters is empty. When this list is

empty, it means there are no winning coalitions, so N is the only maximal losing coalition.
At line 15 we see that currentcoalition ⊂ nextshelter, and nextshelter is a minimal

winning coalition, so currentcoalition must be losing. Also, at line 15, n ∈ nextshelter.
This means that any superset of currentcoalition is a superset of a leftshift of nextshelter,
and therefore winning. So we conclude that currentcoalition is a maximal losing coalition.
This establishes that at line 15, all coalitions output are maximal losing coalitions.

Now we need to show the same for line 8. For this, we first need to prove the following
invariant.

Lemma 55. When running Algorithm 1, directly after executing line 2, line 18, and each
iteration of the while-loop of line 4, currentcoalition is a losing coalition.

Proof. We prove all three cases separately.

• Directly after executing line 2, currentcoalition is the empty coalition and thus losing
by assumption.
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• Directly after executing line 18, we have two subcases:

Case 1: After the last time the execution of the algorithm passed line 11, lines 12 and
13 were executed while lines 14–16 were skipped. In this case, currentcoalition
is a bottom right shift of a shelter, so currentcoalition is losing by the definition
of a shelter.

Case 2: After the last time the execution of the algorithm passed line 11, lines 14–16
were executed while lines 12 and 13 were skipped. In this case, currentcoalition
is a direct successor of a shelter s containing player n, by definition of the direct
successor function, currentcoalition is a subset of s and hence losing.

• Directly after each iteration of the while-loop of line 4. We can use induction for this
final case. By the preceding two cases in this list, that we proved, we can assume that
currentcoalition is losing when the while-loop is entered. It suffices now to show that
currentcoalition is losing after a single repetition of the while-loop. We divide the
proof up again, in two cases:

Case 1: During the execution of the while-loop, lines 5 and 6 were executed while
lines 7–9 were skipped. Then currentcoalition is a fill-up of a losing coalition,
say l. Let i be the agent that was added by the fill-up, i.e., currentcoalition =
l ∪ {i}. Suppose for contradiction that currentcoalition is winning; then i ∈
nextshelter and i−1 ∈ nextshelter. It must also be true that l ⊆ nextshelter be-
cause otherwise l is a right-shift of nextshelter and therefore winning (the induc-
tion hypothesis states that l is losing). Therefore l = nextshelter\{b(nextshelter)}.
But then execution would have left the loop because of line 4. Contradiction.

Case 2: In the execution of the while-loop, lines 7–9 were executed while lines 5
and 6 were skipped. currentcoalition is a bottom right shift of a truncation of a
losing coalition. A truncation of a losing coalition is losing, and a bottom right
shift of a losing coalition is losing, so currentcoalition is losing.

From the lemma above, it follows that at line 8, currentcoalition is losing. To show that
it is also maximal, we divide the proof up in three cases:

Case 1: The execution of the algorithm has never passed line 11. In this case currentcoalition
at line 8 is obtained by a series of successive fill-ups starting from the empty coalition,
and n ∈ currentcoalition. This means that currentcoalition = N , so currentcoalition
is clearly maximal.

Case 2: The execution of the algorithm did pass line 11 at least once, and the last time
that execution has done so lines 12 and 13 were executed while lines 14–16 were
skipped. In this case we have that at line 8, currentcoalition is obtained by a series
of fill-ups of a bottom right shift of a shelter-coalition s. It follows that adding any
player to currentcoalition will turn currentcoalition into a winning coalition, because
currentcoalition would then become a superset of a left-shift of s. So currentcoalition
is maximal.
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Case 3: The execution of the algorithm did pass line 11 at least once, and the last time that
execution has done so lines 14–16 were executed while lines 12 and 13 were skipped.
In this case we have at line 8 that currentcoalition is the successor of a shelter s that
has player n in it. By the definition of the successor function we get that adding
any player to currentcoalition would make it a superset of a left-shift of s, and thus
winning. So currentcoalition is maximal.

Theorem 56. Algorithm 1 outputs all maximal losing coalitions.

Proof. By Theorem 54 we have that Algorithm 1 outputs only maximal losing coalitions,
so what suffices is to show that the intervals of coalitions that Algorithm 1 does not output,
do not contain any losing coalitions.

Let s be a coalition that is not output by Algorithm 1. There are several cases possible.

Case 1: There is a point when the execution of the algorithm has just passed line 6, such
that currentcoalition = s. In that case s is losing, following from Lemma 55.

Case 2: There is a point when the execution of the algorithm has just passed line 8, such
that currentcoalition �pr s �pr brs(trunc(currentcoalition)). Now s is a direct
right-shift of a point s′ that the algorithm has output. s′ is maximal losing so s is not
maximal losing.

Case 3: There is a point when the execution of the algorithm has just passed line 12, such
that currentcoalition �pr s �pr brs(nextshelter). Here we have that s is either a
right-shift of currentcoalition or a left-shift of a superset of nextshelter. In the former
case, s is not a maximal losing coalition because it is a right-shift of currentcoalition,
and currentcoalition is not a maximal losing coalition because it is a strict subset
of the bottom right shift of nextshelter, which is also losing. In the latter case, s is
winning, so s can not be maximal losing.

By the two theorems above, we have established that the Hop-Skip-and-Jump algorithm
works correctly. Now we will also show that it runs in polynomial time.

Theorem 57. Algorithm 1 runs in time O(n3t) (where t is the number of shelter coalitions).

Proof. When repeatedly executing the while-loop of line 4, lines 5 and 6 can be executed
only n consecutive times, before lines 7–9 are executed. Line 9 can be executed at most
n times in total, given that the execution does not leave the while-loop (after n times, the
operation done at line 9 is undefined, and execution stops). It follows that the while-loop is
executed at most n2 consecutive times before execution leaves the while-loop. Each time
lines 12–18 are executed, one shelter is taken from the list, so lines 12–18 are executed
only t times. The fill-up operation, bottom right shift operation, successor operation and
truncation operation can all be implemented in O(n) time. So, bringing everything together,
we arrive at a total runtime of O(n3t).
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4.3.2 Synthesizing Roof- and Ceiling-representations

Now let us consider the problem of synthesizing various representations of games into the
roof- and ceiling-representation of a canonical linear game.

Let us start with the problem (LW,Lroof )-VGS. This problem boils down to solving
the (LW,min,Lroof )-VGS problem, since (LW,LW,min)-VGS is easy (just check for each
coalition in W whether it is minimal, and if so, it is in Wmin). The same holds for the
problems (LL,Lceil)-VGS and (LL,max,Lceil)-VGS.

Solving (LW,min,Lroof )-VGS is also not very difficult. As pointed out before in this
chapter, we can use a polynomial-time algorithm in [2] in order to check whether a mono-
tone simple game given as a list of minimal winning coalitions is weighted, and we can
obtain the strict desirability order if this is the case. It could be that it turns out the game is
linear, but not canonical. If we wish, we are then also able to permute the players so that
we end up with a canonical linear game. After that, all that we have to do is check for each
minimal winning coalition C whether each of its direct right shifts (no more than n direct
right-shifts are possible) are losing coalitions. If that is the case, then C must be a roof. For
the problem (LL,max,Lceil)-VGS, the situation is analogous.

What also follows now, is that the problems (LW,min,Lceil)-VGS can be solved in poly-
nomial time: the Hop-Skip-and-Jump algorithm of the previous section is able to generate
in polynomial a list of maximal losing coalitions from the list of minimal winning coali-
tions. The problem (LL,max,Lroof )-VGS is also solvable in polynomial time by running a
“dual” version of the Hop-Skip-and-Jump algorithm where we

• permute the players according to the permutation π that permutes the players into a
sequence where the players are ordered in ascending desirability, i.e., the least desir-
able player is now player 1, and the most desirable player is player n.

• treat losing coalitions as winning coalitions and vice versa, during the execution of
the Hop-Skip-and-Jump algorithm.

once the Hop-Skip-and-Jump algorithm is done, we have a list of coalitions. For each C in
this list, π−1(C) is a minimal winning coalition.

As a consequence, by polynomial time solvability of (LW,LW,min)-VGS and (LL,LL,max)-
VGS we also have that (LL,Lroof )-VGS and (LW,Lroof )-VGS admit a polynomial time
algorithm.

Is the problem (Lceiling,Lroof )-VGS solvable in polynomial time? This turns out to not
be the case. We will give a family of examples in which the number of roof coalitions
is exponential in n, while the number of ceiling coalitions is only polynomial in n. As a
consequence, any algorithm that generates the list of roofs from the list of ceilings will run
in exponential time in the worst case. By symmetry it also follows that (Lroof ,Lceiling)-VGS
is not solvable in polynomial time.

This example that we are now going to give, together with its analysis, is not so straight-
forward. Let us first define the following specific type of coalition.

Definition 58 ((k, i)-encoding coalition). Let N = {1, . . . , n} be a a set of players such
that n = 4i for some i ∈ N. For any k satisfying 0 ≤ k < 2i − 1, the (k, i)-encoding
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coalition Sk,i ⊆ N is then defined as

{4(j − 1) + 2, 4(j − 1) + 3 | The jth bit in the binary representation of k equals 0.} ∪
{4(j − 1) + 1, 4(j − 1) + 4 | The jth bit in the binary representation of k equals 1.}

For example, S2,2 = {1, 4, 6, 7}, and S5,3 = {1, 4, 6, 7, 9, 12}.
Definition 59 (i-bit roof game). Let N = {1, . . . , n} be a a set of players such that n = 4i
for some i ∈ N. The i-bit roof game on N , denoted Gi−bit, is the canonical linear game
such that the set of roof coalitions of G is {S0,i, . . . , S2i−1,i}.

For example, the 2-bit roof game, G2−bit, consists of the roofs {{2, 3, 6, 7}, {2, 3, 5, 8},
{1, 4, 6, 7}, {1, 4, 5, 8}}. Gi−bit is well-defined for all i because the binary representations
of two arbitrary i-bit numbers k and k′ differ in at least one bit. Therefore, Si,k is not a
superset of a left-shift of Si,k′ and hence the set of roofs that we have defined for Gi−bit is
indeed a valid set of roofs (i.e. there are no two roofs such that one is a left shift of another).

Gi−bit has 2i = 2
n
4 roofs, i.e. an exponential number in n. We will show that the

number of ceilings in Gi−bit is only polynomially bounded (in fact, linear in n). First let us
use the following definitions for convenience.

Definition 60 (Accepting roof set). Let G ∈ Gclin(n) be a canonical linear game on players
N = {1, . . . , n}. Let C ⊆ N be a coalition, let a be a number such that 1 ≤ a ≤ |C|, and
let p be the ath most desirable player in C . The accepting set of roofs of the ath player in
C , denoted A(C, a), is the set consisting of those roof coalitions R for which the ath most
desirable player in R is greater than or equal to p, or |R| < a.

Alternatively stated, the accepting roof set say the ath most desirable player in a coali-
tion is the set of all roofs R such that the ath player in R is a less desirable.

It is important to now observe that the following fact holds.

Lemma 61. In a canonical linear game, a coalition C is winning if and only if
⋂

a A(C, a) �=
∅.

Proof. This Lemma is in fact an equivalent statement of the fact that a coalition is winning
if and only if it is a left shift of a winning coalition.

Using the notion of an accepting roof set, we can prove the following technical lemma.

Lemma 62. Let C be a ceiling of Gi−bit with more than one direct left shift and let p be an
arbitrary player that we can apply the direct left shift operation on, i.e., let p be a player
such that C1 = C ∪ {p − 1}\{p} is a direct left shift of C . Also, let a be the number such
that p is the ath most desirable player in C . Then p = 2a.

Proof. Observe that for all b it holds that every roof of Gi−bit has as its bth most desirable
player either player 2b − 1 or player 2b. By construction of Gi−bit, the number of roofs of
Gi−bit that contain player 2b−1 is 2i

2 , and the number of roofs that contain player 2b is also
2i

2 .
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C has more than one direct left shift, so there must be another player p′, p′ �= p, such
that C2 = C ∪ {p′ − 1}\{p′} is a direct left shift of C .

First we will show that p ≤ 2a. Assume therefore that p > 2a. Now we have that
|A(C, a)| = 0, so then |A(C2, a)| = 0 and hence

⋂
a A(C2, a) = ∅. We see that C2 is

losing, but C2 is a direct left shift of ceiling C , so C2 is winning. This is a contradiction, so
p ≤ 2a.

Now we will show that p ≥ 2a. Assume therefore that p < 2a. Now we have that
|A(C, a)| = 2i, so then A(C1, a) = 2i. Now it must be that

⋂
a A(C1, a) =

⋂
a A(C, a).

But
⋂

a A(C, a) = ∅ because C is losing, and therefore
⋂

a A(C1, a) = ∅ so C1 is losing.
C1 is also winning, because it is a left shift of ceiling C . This is a contradiction, so p ≥ 2a.

Now that we know that p ≥ 2a and p ≤ 2a, we can conclude that p = 2a.

Lemma 63. In Gi−bit, a ceiling does not have more than two direct left shifts.

Proof. For contradiction, let C be a ceiling with more than two direct left shifts. Let k be
the number of direct left shifts of C , and let P = {p1, . . . , pk} be the set containing the
players of C that we can apply the direct left shift operation on (we say that we can apply
the direct left shift operation on a player q when C ∪ {q − 1}\{q} is a left shift of C). Let
A = {a1, . . . , ak} then be the numbers such that pj is the ajth most desirable player in C ,
for all i with 1 ≤ j ≤ k. For any j ∈ {1, . . . , i} and any b ∈ {0, 1}, let R(j, b) denote the
following set of roofs of Gi−bit:

R(j, b) = {Sk,i | The jth bit of the binary representation of k is b. }

Observe that by the previous lemma, there is a k-tuple of bits (b1, . . . , bk) ∈ {0, 1}k such
that for all j with 1 ≤ j ≤ k:

A(C, aj) = R(�pj/4�, kj).

There are now two cases:

Case 1: All of the players {p1, . . . , pk} are in different multiples of 4, i.e., �p1/4� �=
�p2/4� �= · · · �= �pk/4�. Then by the properties of the binary numbers, the intersec-
tion

⋂
a∈A A(C, a) =

⋂
p∈P R(�p/4�, b) is not empty, therefore C must be winning,

which is in contradiction with C being a ceiling. So this case is impossible.

Case 2: There are two players p and p′, both in P , that are in the same multiple of 4, i.e.,
�p/4� = �p′/4�. Assume without loss of generality that p < p′. Then A(C, a) ∩
A(C, a′) = ∅. But then we would be able to apply a direct left shift on player p′′

without turning C into a winning coalition, i.e., C ∪ {p′′ − 1}\{p′′} is winning. But
C is a ceiling, so that is a contradiction.

From the previous lemma it follows that there can not be more than two players that are the
same multiple of 4, so these two cases are indeed exhaustive. Both cases are impossible,
so we must reject the assumption that there exists a ceiling C with more than two left
shifts.
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It is easy to see that there are no more than O(n5) coalitions with two left shifts, there
are no more than O(n3) coalitions with one left shift, and there are no more than O(n)
coalitions with no left shifts. so we get the following corollary.

Corollary 64. The game Gi−bit (on n = 4i players) has O(n5) ceilings.

In fact, using careful analysis we think it is possible to show that the number of ceilings
is only linear in n, but proving that is not in scope with our goal that we just achieved: we
can now conclude that {Gi−bit | i ∈ N} is an infinite family of examples in which there are
exponentially many more roofs than ceilings. Hence, finally we obtain:

Corollary 65. there is no polynomial time algorithm for (Lceiling,Lroof )-VGS
and (Lceiling,Lroof )-VGS.

4.3.3 Other Voting Game Synthesis Problems & Summary of Results

In this section we will discuss some of the remaining variants of the Voting Game Synthesis
problem that we did not discuss in the other sections. At the end of this section, Table 4.1
summarizes all of the results that we have discussed and obtained in this chapter.

First of all, Freixas et al. investigate in [18] the (L1,L2)-VGS problem for L1 and L2

being any choice of language in {LW ,LW,min,LL,LL,max}. Most of their results follow
rather easily from what has already been said in this chapter. One of their results that do
not yet follow from this chapter is that (LW ,LL)-VGS and (LL,LW )-VGS does not have
a polynomial time algorithm. This is not hard to see: there are instances where there are
exponentially many more losing coalitions than that there are winning coalitions. Consider
for instance the game in which only the grand coalition is winning. In this game there are
2n − 1 losing coalitions, so it takes exponential time to list them all. This game is also
a canonical linear game and a weighted voting game, so even if we restrict games to be
weighted, or canonical linear, it still holds that (LW ,LL)-VGS and (LL,LW )-VGS do not
have polynomial time algorithms.

In [18] it is also shown that (LW,max,LL,min)-VGS is in general not polynomial time
solvable. The authors show this by giving a family of examples of monotone games which
have exponentially many more maximal losing coalitions than minimal winning coali-
tions. However, the Hop-Skip-and-Jump algorithm that we described does actually solve
(LW,max,LL,min)-VGS in polynomial time for the restriction to linear games.

Another set of Voting Game Synthesis Problems that we have not yet discussed is the
(Lweights,L2)-VGS case, for any choice of L2. In this case it always holds that there is no
polynomial time algorithm for the problem:

• When L2 = LW , consider the weighted voting game in which the quota is 0. Now
there are 2n minimal winning coalitions, so the output is exponentially larger than
the input. The case L2 = LL is analogous, but now we take a weighted voting game
in which the quota is larger than the sum of all weights, so that there are no winning
coalitions.

• When L2 = LW,min or L2 = LL,max, we see that the weighted voting game in
which every player’s weight is 1 and the quota is �n2 � has an exponential amount of

38



Voting Game Synthesis 4.3 Algorithms and Solutions for Voting Game Synthesis

minimal winning coalitions and maximal losing coalitions: any coalition of size �n2 �
is minimal winning, and any coalition of size �n2 � − 1 is maximal losing. There are
respectively

( n

n

2
�
)

and
( n

n

2
�−1

)
such coalitions. By using Stirling’s approximation,

we can see that both these expressions are exponential in n.

• When L2 = Lroof it follows directly from the proof of Theorem 42 that the weighted
voting game in which player i gets weight n− i + 1 and the quota is equal to n(n +
1)/4, has an exponential number of roofs. We do not know whether there is also a
weighted voting game with an exponential number of ceilings, but we suspect so.

That completes our study of the voting game synthesis problem. As said before, table
4.1 summarizes all of the results that we have discussed and obtained. It indicates for each
variant of the Voting Game Synthesis problem whether it is solvable in polynomial time
(P), or does not have a polynomial time algorithm (EXP). We see that the complexities of
three problems remain open, namely the problems of

• transforming roof-representations of canonical linear games into weighted represen-
tations,

• transforming ceiling-representations of canonical linear games into weighted repre-
sentations,

• transforming weighted-representations of weighted voting games into ceiling repre-
sentations.

Table 4.1: Time complexities of the various (L1,L2)-VGS problems that we have discussed
in this chapter.

L2 → LW LW,min LL LL,max Lroof Lceil Lweights

L1 ↓
LW - P EXP P P P P

LW,min EXP - EXP EXP (P if linear) P P P

LL EXP P - P P P P

LL,max EXP EXP (P if linear) EXP - P P P

Lroof EXP EXP EXP EXP - EXP ?
Lceil EXP EXP EXP EXP EXP - ?

Lweights EXP EXP EXP EXP EXP ? -
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Chapter 5

Solving PVGD Problems

From the existing literature on the power index voting game design problem, we see that
researchers have only considered heuristic methods for the case where a weighted represen-
tation must be output. Even stronger: the weighted representation is the only representation
that current voting game design algorithms internally work with. No other methods of rep-
resenting a game have even been considered.

A second fact that stands out is that (as of yet) an exact algorithm for voting game design
problems is not known. An interesting question that we could ask is whether there even
exists a method to exactly compute the optimal answer to a voting game design problem.
There exists an infinite number of weighted representations for each WVG (this follows
from Theorem 41). Hence, it seems not that surprising that no algorithm has been developed
to exactly solves the problem.

Nevertheless, it turns out that we can fortunately answer this question positively: there
do exist exact algorithms for voting game design problems. In what follows in this chapter,
we will look into exact algorithms for various power index voting game design problems.
Of course, the most important among these problems is the variant in which we must find a
weighted voting game, and output it in a weighted representation.

We approach the voting game design problem by devising an enumeration method that
generates every voting game relatively efficiently. First, we devise a “naive” method that
enumerates all monotone games in doubly exponential time (Section 5.1). Subsequently, in
Section 5.2, for the case of weighted voting games we improve on this runtime exponentially
by showing how to enumerate all WVGs within exponential time. Although the runtime of
this enumeration method is still exponential, we will see that the algorithm for the power
index weighted voting game problem that results from this has the anytime property: the
longer we run it, the better the result becomes. Also, we are guaranteed that the algorithm
eventually finds the optimal answer. The enumeration method is based on exploiting a
new specific partial order on the class of weighted voting games. This partial order can be
considered interesting in its own right, from a mathematical point of view.

Prior to reading this chapter, the reader may wish to go over some of the material on
order theory, that is given in the first section of Appendix A.
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5.1 Monotone Game Design

In this section we will consider the power index voting game design problem for the class
of monotone games Gmon. There are four representation languages that can be used for
monotone games:

• LW , the winning coalition listing;

• LL, the losing coalition listing;

• LW,min, the minimal winning coalition listing;

• LL,max, the maximal losing coalition listing.

From these languages, we obtain the following four different power index voting game de-
sign problems: (f,Gmon,LW )-PVGD, (f,Gmon,LL)-PVGD, (f,Gmon,LW,min)-PVGD and
(f,Gmon,LL,max)-PVGD. For f we can then choose any power index. Of these problems,
the cases of LW,min and LL,max are the most interesting, because these languages both
define the class of monotone games.

We do not know of any practical situations in which this problem occurs. Therefore, we
will only address this problems briefly and show for theoretical purposes that the optimal
answer is computable. We do this by giving an exact algorithm.

An exact algorithm that solves (f,Gmon,LW,min)-PVGD or (f,Gmon,LL,max)-PVGD
must search for the antichain of coalitions that represents the game that has a power in-
dex closest to the target power index. This antichain of coalitions could either be a set of
minimal winning coalitions, or a set of maximal losing coalitions. In either way, a simple
exact algorithm for this problem would be one that considers every possible antichain, and
computes for each antichain the power index for the game that the antichain represents.

Algorithm 2 describes the process more precisely for the case that the representation
language is LW,min. We will focus on LW,min from now on, because the case for LL,max is
entirely analogous. An algorithm for the languages LW and LL can be obtained by applying
the transformation algorithm discussed in the last chapter.

From line 3, we see that we need to enumerate all antichains on the grand coalition. As
we already said in Section 4.1, the amount of antichains we need to enumerate is Dn, the
nth Dedekind number.

Because the n’th Dedekind number Dn quickly grows very large (in n), line 3 is what
gives the algorithm a very high complexity. The following bounds are known [24]:1

2(1+c′ log n
n

)En ≥ Dn ≥ 2(1+c2−n/2)En , (5.1)

where c′ and c are constants and En is the size of the largest antichain on an n-set. Sperner’s
theorem tells us the following about En [47]:

1Also, Korshunov devised an asymptotically equal expression [26]: Dn ∼
2C(n)ec(n)2−n/2+n22−n−5−n2−n−4

with C(n) =
(

n
� n

2 �
)

and c(n) =
(

n
�n

2 �−1

)
. In [26], this expression

is described as the number of monotone boolean functions, which is equal to the nth Dedekind number.
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Algorithm 2 A straightforward algorithm for solving (f,Gmon,LW,min)-PVGD. The input
is a target power index �p = (p1, . . . , pn). The output is an � ∈ LW,min such that f(G�) is as
close as possible to �p.

1: bestgame := 0 {bestgame keeps track of the best game that we have found, represented
as a string in LW,min.}

2: besterror := ∞ {besterror is the error of f(Gbestgame) from �p, according to the sum-
ofsquarederrors measure.}

3: for all � ∈ LW,min do
4: Compute f(G�) = (f(G�, 1), . . . , f(G�, n)).
5: error :=

∑n
i=1(f(G�, i)− pi)2.

6: if error < besterror then
7: bestgame := �
8: besterror := error
9: end if

10: end for
11: return bestgame

Theorem 66 (Sperner’s theorem).

En =
(

n

�n2 �
)

.

From Sperner’s theorem and Stirling’s approximation (Theorem 94) of the factorial
function, we get

En ∈ Θ
(

2n

√
n

)
. (5.2)

A possible approach to enumerate antichains would be to simply enumerate each family
of coalitions, and check if that family is an antichain. Is this approach an efficient one?

In total, there are 22n
families of coalitions2. Now let us suppose that Dn equals the

upper bound of (5.1). Substituting the tight bound of 5.2 into the upper bound of (5.1), we
get

Dn ≤ 2(1+c′ log n
n

)k 2n√
n (5.3)

for some constants k and c′.
From (5.3), we then see that

D

√
n

(1+c′ log n
n )k

n ≤ 22n
.

This means that the number of all families of subsets on an n-set is exponential in n relative
to the Dedekind number. Hence, the Dedekind number is super-exponential but sub-doubly-
exponential in n. Therefore, the approach of simply checking all families of coalitionsis not

2This is true because N is a set of n players. Then, the powerset of N is the set of all possible coalitions,
and thus the powerset of the powerset of N is the set of all sets of coalitions.
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efficient (in the sense that there is an exponential amount of families of colitions that are not
antichains).

We will not explore this enumeration problem any further, for the reason that even an
efficient enumeration method for antichains would not result in any practically applicable
version of Algorithm 2, simply because the Dedekind number is very large.

So, leaving this as it is for now, we conclude that the algorithm achieves a running
time in O∗(22n · h(n)), where h(n) is the time it takes to execute one iteration of the
for-loop in Algorithm 2. As long as h(n) is not super-exponential, it holds that O∗(22n ·
h(n)) ∈ O∗(22n(1+ε)

) for any ε > 0. Fortunately, all known power indices are known to be
computable in at most exponential time. Of course, if the power index can be computed in
polynomial time, then we achieve a runtime of O∗(22n

), i.e. we may take 0 for ε.

5.2 Weighted Voting Game Design

Having given a simple but very slow algorithm for the PVGD-problem for the very general
class of monotone games, we will now see that we can do much better if we restrict the prob-
lem to smaller classes. More precisely, we will restrict ourselves to the class of weighted
voting games: Gwvg. This class is contained in the class of linear games Glin, and therefore
also contained in the class of monotone games Gmon. For this reason, we can represent a
game in Gwvg using any representation language that we have thus far introduced.

Because weighted voting games are arguably the only class of games that we really
actually encounter in the real world, and the algorithm that we will devise has potential to
be applied in practice, this section could be considered the main contribution of this thesis.
As has been said in Section 3.2, all known research on voting game design problems has
focused on this specific variant, (f,Gvwg,Lweights)-PVGD, with f being either the Banzhaf
index or the Shapley-Shubik index. The methods that have been proposed up until now are
all local search methods without an approximation guarantee. Here, we will give an exact
algorithm for this problem that runs in exponential time. What will turn out to make this
algorithm interesting for practical purposes, is that it can be used as an anytime-algorithm:
we can stop execution of this algorithm at any time, but the longer we run it, the closer
the answer will be to the optimum. The advantage of this algorithm over the current local
search methods is obviously that we will not get stuck in local optima, and it is guaranteed
that we eventually find the optimal answer.

5.2.1 Preliminary Considerations

Before proceeding with formally stating the algorithm, let us first consider the question of
which approach to take in order to find an exact algorithm for designing weighted voting
games.

A possible approach to solve the (f,Gvwg,Lweights)-PVGD problem is to use Algorithm
2 as our basis, and check for each monotone game that we find whether it is a weighted
voting game. We do the latter by making use of the Hop-Skip-and-Jump algorithm that
we described in the previous chapter. This indeed results in an algorithm that solves the
problem, but this algorithm would be highly unsatisfactory: firstly, we noted in the previous
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section that it is not known how to enumerate antichains efficiently. Secondly, the class of
weighted voting games is a subclass of the class of monotone games: in fact, we will see
that there are much less weighted voting games than monotone games.

The main problem we face for the (f,Gvwg,Lweights)-PVGD problem is the fact every
weighted voting game G ∈ Gwvg has an infinite number of weighted representations, i.e.
strings in Lweights that represent G. This is easily seen from Theorem 41: we can multiply
the weight vector and the quota with any constant in order to obtain a new weight vector
that represents the same game. On top of that, it is also possible to increase or decrease a
player’s weight by some amount without “changing the game”.

For this reason, it will be hard to find an exact algorithm that works internally with the
weighted representations of games: an exact algorithm for this problem will probably have
to consider many different weighted voting games, but when using the weighted represen-
tation of a game, it is hard to know whether or not the algorithm has already considered the
same game at an earlier point in time.

All of the local search methods that try to solve the PVGD-problem use the weighted
representation internally, but if we want to solve this problem exactly, we will probably
have to resort to using other representations. In our case, we will initially be working with
LW,min, the minimal winning coalition listings, because for each weighted voting game
there is only one unique listing of minimal winning coalitions, instead of an infinite amount.

5.2.2 A New Structural Property for the Class of Weighted Voting Games

Let us now develop the necessary theory behind the algorithm that we will propose. We will
focus only on the canonical class of weighted voting games, since for each non-canonical
weighted voting game there is a canonical one that can be obtained by merely permuting
the players.

The algorithm we will propose is based on a new structural property that allows us to
enumerate the class of canonical weighted voting games efficiently: We will define a new
relation ⊇MWC and we will prove that for any number of players n the class Gcwvg(n) forms
a graded poset with a least element under this relation.

Definition 67 (⊇MWC). Let G1 and G2 be any two monotone games. Let Wmin,1 and
Wmin,2 be their respective sets of minimal winning coalitions. Then, we say that G1 ⊇MWC

G2 if and only if Wmin,1 ⊇Wmin,2.

Theorem 68. For each n, (Gcwvg(n),⊇MWC) is a graded poset with rank function

ρ : Gwvg(n) → Z

G �→ |Wmin(G)|,
where Wmin(G) is the set of minimal winning coalitions of G. Moreover, (Gcwvg(n),⊇MWC)
has a least element of rank 0.

Observe that the theorem above is simply a more formal way of saying: “Consider
an arbitrary weighted voting game of n players, and look at its list of minimal winning
coalitions. There is a minimal winning coalition in this list, such that if we remove that
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coalition, we obtain a list of winning coalitions that represents yet another weighted voting
game of n players.”

Proof (Theorem 68). By definition, (Gcwvg(n),⊇MWC) is a valid poset. In order to prove
that the poset is graded under the rank function ρ that is specified in the theorem, we will
show by construction that

Lemma 69. For any game G ∈ Gcwvg(n) with a non-empty set Wmin as its set of minimal
winning coalitions, there is a coalition C ∈ Wmin and a game G′ ∈ Gcwvg(n) so that it
holds that Wmin\C is the set of minimal winning coalitions of G′.

From Lemma 69, the remaining part of the theorem automatically follows: the game
with no minimal winning coalitions is the only weighted voting game with rank 0, and
clearly is the least element of the poset.

To prove Lemma 69, we first prove the following two preliminary lemmas.

Lemma 70. Let G = (N = {1, . . . , n}, v) be a weighted voting game, and let � =
((w1, . . . , wn), q) be a weighted representation for G. For each player i there exists an
ε > 0 such that �′ = ((w1, . . . , wi + ε′, . . . wn), q) is a weighted representation for G for
all ε′ < ε.

Informally, what this lemma is telling us, is that it is always possible to increase the
weight of a player by some amount without changing the game.

Proof. � is a weighted representation for G, so for each C such that v(C) = 1 we have that
w�(C) ≥ q, and for each C such that v(C) = 0 we have that w�(C) < q. Define Li as the
set of losing coalitions containing player i. Now consider a coalition C ∈ Li for which it
holds that for all C′ ∈ Li : w�(C ′) ≤ w�(C).

Because w�(C) < q, it must be that q − w�(C) is greater than 0. If we increase wi in �
by a number strictly between 0 and q − w�(C) to obtain �′, then clearly no losing coalition
in G� is a winning coalition in G�′ . Moreover, all winning coalitions in G� are also winning
coalitions in G�′ , because we only increased the weight of a player, and we did not change
the quota.

Lemma 71. Let G = (N = {1, . . . , n}, v) be a weighted voting game. There exists a
weighted representation � ∈ Lweights such that for all (C,C′) ∈ (2N )2, C �= C ′ for which
v(C) = v(C ′) = 1, it is true that w�(C) �= w�(C ′).

Or, informally stated again: for a weighted voting game there exists a weighted repre-
sentation such that all winning coalitions have a different weight.

Proof. Let � = ((w1, . . . , wn), q) be a weighted representation for G for which there exists
a (C,C ′) ∈ (2N )2 with w�(C) = w�(C ′), C �= C ′ and v(C) = v(C′) = 1. We will
show how to obtain an �′ from � such that G� = G�′ and w�′(C) �= w�′(C ′′) for any other
coalition C′′ ∈ N with v(C ′′) = 1. This process can then be repeated to obtain a weighted
representation for G under which the weights of all winning coalitions differ.

The procedure works as follows: it can be assumed without loss of generality that
there is a player i in C but not in C′. By Lemma 70, there is an ε > 0 such that �′ =
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((w1, . . . , wi + ε′, wn), q) is a weighted representation for G for any 0 < ε′ < ε. � is then a
weighted representation with w�′(C) �= w�′(C ′), so this almost proves the lemma; we must
only make sure the we adjust i’s weight in such a way that C’s weight does not become equal
to any other coalition. This can clearly be done: Consider the set of winning coalitions Wi

containing player i, and let D ∈Wi be a coalition such that C �= C′′ and for all D′ ∈Wi\C ,
we have w�(D) < w�(D′). If we make sure that 0 < ε′ < min{w�(D) − w�(C), ε}, then
w′

�(C) is clearly different from w′
�(C

′′) for any C′′ ⊆ N . w(D)−w(C) is a positive num-
ber, so this is possible if D exists. If D does not exist, then it suffices to take ε′ simply
strictly between 0 and ε.

Using Lemma 71, we can prove Lemma 69, which establishes Theorem 68.

Proof (Lemma 69). Let G = ({1, . . . , n}, v) be a canonical weighted voting game. Let
Wmin be its set of minimal winning coalitions and let � = ((w1, . . . , wn), q) be a weighted
representation for which it holds that all winning coalitions have a different weight. By
Lemma 71, such a representation exists. We will construct an �′′ from � for which it holds
that it is a weighted representation of a canonical weighted voting game with Wmin\C as
its list of minimal winning coalitions, for some C ∈Wmin.

Let i be the highest-numbered player that is in a coalition in Wmin (i.e. i is the least
desirable non-dummy player). Let C ∈ Wmin be the minimal winning coalition containing
i for which it holds that ∀C′ ∈Wmin : (C ′ �= C ∧ i ∈ C)→ w�(C ′) > w�(C). Now obtain
�′ = ((w1, . . . , wi − (w�(C) − q), . . . , wn), q). Clearly, G�′ = G� = G and w�′(C) = q.
Moreover, all minimal winning coalitions in Wmin that contain player i have a different
weight under �′.

What we will do next is decrease i’s weight by an amount that is so small, that the
only minimal winning coalition that turns into a losing coalition is C . Note that under
�′, minimal winning coalition C is still the lightest minimal winning coalition containing
i. Let C ′ ∈ Wmin then be be the second-lightest minimal winning coalition containing
i. Clearly, by decreasing i’s weight (according to �′) by a positive amount smaller than
w�′(C ′)−w�′(C), coalition C will become a losing coalition and all other minimal winning
coalitions will stay winning.

In Figure 5.1, (Gcwvg(4),⊇MWC) is depicted graphically. Note that this is not precisely
the Hasse diagram of the poset (Gcwvg(4),⊇MWC) (see the explanation in the caption of this
figure; the reason that we do not give the Hasse diagram is because the Hasse diagram is
not a very convenient way of representing (Gcwvg(4),⊇MWC)).

Next, we show that (Gcwvg(n),⊇MWC) is not a tree for n ≥ 4. When we will state our
algorithm in the next section, it will turn out that this fact makes things significantly more
complex.

Theorem 72. For any n ≥ 4, (Gcwvg(n),⊇MWC) is not a tree.
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Figure 5.1: Graphical depiction of (Gcwvg(4),⊇MWC). Each node in this graph represents
a canonical weighted voting game of four players. It should be read as follows: each node
has the characteristic vector of a minimal winning coalition as a label. The set of minimal
winning coalitions of a game that corresponds to a certain node n in the graph, are those
coalitions that are described by the set of vectors that is obtained by traversing the path from
the top node to n. The top node corresponds to the canonical weighted voting game with
zero minimal winning coalitions (i.e. every coalition loses).

Proof. We will show an example of a game in (Gcwvg(4),⊇MWC) for which there are mul-
tiple games that cover it. The poset (Gcwvg(4),⊇MWC) is in that case not a tree. For n > 4
a similar example is obtained by adding dummy players to the example that we give.

Consider the following weighted representation of a canonical weighted voting game
over players {1, . . . , 4}:

� = ((3, 2, 2, 1), 4).

The set of characteristic vectors Cmin,� of minimal winning coalitions of G� is as follows:

Cmin,� = {1100, 1010, 0110, 1001}.
Next, consider the weighted voting games �′ and �′′:

�′ = ((3, 1, 1, 1), 4)
�′′ = ((1, 1, 1, 0), 2),

with respectively the following sets of characteristic vectors of minimal winning coalitions:

Cmin,�′ = {1100, 1010, 1001},
Cmin,�′′ = {1100, 1010, 0110}.

It can be seen that Cmin,�′ = Cmin,�\{0110} and Cmin,�′ = Cmin,�\{1001}.
The example we gave is for the set of canonical weighted voting games of four players.

This can easily be extended to more than four players: simply add any amount of dummy
players to the three example-games.
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5.2.3 The Algorithm

We will use the results from the previous section to develop an exponential-time exact algo-
rithm for (f,Gcwvg,LW,min)-PVGD, and also for (f,Gcwvg,Lweights)-PVGD. The way this
algorithm works is very straightforward: Just as in algorithm 2, we enumerate the complete
class of games (weighted voting games in this case), and we compute for each game (that is
output by the enumeration algorithm) the distance from the target power index.

Recall that the problem with Algorithm 2 was that the enumeration procedure is not
efficient. For the restriction to weighted voting games, we are able to make the enumeration
procedure more efficient. We will use Theorem 68 for this: The key is that it is possible to
generate the minimal winning coalition listing of canonical weighted games of rank i fairly
efficiently from the minimal winning coalition listing of canonical weighted voting games
of rank i− 1.

The following theorem shows us how to do this. To state this theorem, we will first
generalize the truncation-operation from Definition 52.

Definition 73 (Right-truncation). Let S ⊆ N be a coalition on players N = {1, . . . , n}.
The ith right-truncation of S, denoted rtrunc(S, i), is defined as

rtrunc(S, i) =

⎧⎪⎨
⎪⎩

S\{pi, . . . n} if 0 < i ≤ |S|,
S if i = 0,
undefined otherwise ,

where pi is the ith greatest-numbered player among the players in S.

Theorem 74. For any n, let (G,G′) ∈ Gcwvg(n)2 be a pair of canonical weighted voting
games such that G covers G′ in (Gcwvg(n),⊇MWC). Let Wmin,G and Wmin,G′ be the sets
of minimal winning coalitions of G and G′ respectively, and let Lmax,G and Lmax,G′ be the
sets of maximal losing coalitions of G and G′ respectively. There is a C ∈ Lmax,G and an
i ∈ N with 0 ≤ i ≤ n such that Wmin,G′ = Wmin,G ∪ rtrunc(C, i).

Proof. Because G covers G′, by definition there is a coalition C′ �∈ Wmin,G such that
Wmin,G′ = Wmin,G ∪ C ′. Clearly C′ can not be a superset of any coalition in Wmin,G,
so it must be a subset of a coalition in Lmax,G. Suppose for contradiction that C′ is not a
right-truncation of a maximal losing coalition C ∈ Lmax,G. Then there is left shift C′′ of
C ′ such that C′′ is a subset of a coalition in Lmax,G, which means that C′′ is not a superset
of any coalition in Wmin,G, hence C′′ is also not a superset of any coalition in Wmin,G′ . So
C ′′ is a losing coalition in G′. But G′ is a canonical weighted voting game, hence G′ is also
a canonical linear game. By the fact that canonical linear games have the total desirability
relation 1 �D · · · �D n, C ′′ is a winning coalition in G′ because it is a left shift of the
winning coalition C′. This is a contradiction.

From Theorem 74, it becomes apparent how to use (Gcwvg(n),⊇MWC) for enumerating
the class of n-player canonical weighted voting games. We start by outputting the n-player
weighted voting game with zero minimal winning coalitions. After that, we repeat the
following process: generate the LW,min-representation of all canonical weighted voting
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games with i minimal winning coalitions, using the set of canonical weighted voting games
games with i−1 minimal winning coalitions (also represented in LW,min). Once generated,
we have the choice to output the games in their LW,min-representation or in their Lweights-
representation, by using the transformation algorithm presented in the previous chapter.

Generating the set of games of i minimal winning coalitions works as follows: For each
game of i − 1 minimal winning coalitions, we obtain the set of maximal losing coalitions
by using the Hop-Skip-and-Jump algorithm presented in the previous chapter. Next, we
check for each maximal losing coalition C whether there is a right-truncation of C that we
can add to the set of minimal winning coalitions, such that the resulting set is a weighted
voting game. Again, testing whether a game is a weighted voting game is done by using the
algorithm given in the previous chapter. If a game turns out to be weighted, we can save it
and output it.

There is one remaining problem with this approach: It outputs duplicate games. If
(Gcwvg(n),⊇MWC) were a tree, then this would not be the case, but by Theorem 72 it is
not a tree for any n ≥ 4. Therefore, we have to do a duplicates-check for each weighted
voting game that we find. We have to check whether we did not already generate it. In
principle, this seems not to be so difficult: For each game that we find, sort its list of
minimal winning coalitions, and check if this list of coalitions already occurs in the array
of listings of minimal winning coalitions that correspond to games that we already found.
The problem with this is that the list grows very large, so these checks are then very time
and space consuming operations.

We will therefore use a different method for doing this “duplicates-check”. We use
the following algorithm for this check: Suppose that we have found an n-player canonical
weighted voting game G of i minimal winning coalitions by adding a coalition C to a
minimal winning coalition listing of a canonical weighted voting game that we have already
found. We first sort G’s list of minimal winning coalitions. After that, we check for each
coalition C′ that occurs before C in this sorted list, whether C′’s removal from the list
results in a list of minimal winning coalitions of a canonical weighted voting game. If there
is such a C′, then we do not output the game G. As one can see, there is only one C such
that there is not such a C′, so by using this method, it is certain that each canonical weighted
voting game will be generated only once.

Algorithm 3 gives the pseudocode for this enumeration method.

Theorem 75. Algorithm 3 runs in O∗(2n2+2n) time.

Proof. Lines 8 to 18 are executed at most once for every canonical weighted voting game.
From Theorem 66 we know that any list of minimal winning coalitions has fewer than( n

n

2
�
)

elements. So by the runtime of the Hop-Skip-and-Jump algorithm, line 7 runs in time

O(n
( n

n

2
�
)2 + n3

( n

n

2
�
)
) = O(n2√n2n). Within an iteration of the outer loop (line 4), lines

10 to 13 are executed at most n
( n

n

2
�
)

= O(
√

n2n) times (because Lmax is also an antichain,

so Sperner’s theorem also applies for maximal losing coalitions). The time-complexity of
one execution of lines 10 to 13 is as follows.

• At line 10 we must solve a linear program, taking time O(n4.5
( n

n

2
�
)
) = O(n42n)

using Karmarkar’s interior point algorithm [22].
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Algorithm 3 An enumeration algorithm for the class of n player canonical weighted voting
games.

1: {games[i] will contain the list of canonical weighted voting games that have i minimal
winning coalitions. The games are represented in language LW,min. games[0] is our
starting point. First we output the n-player canonical weighted voting game with zero
minimal winning coalitions.}

2: Output ((0, . . . , 0), 1).
3: games[0] := {∅}
4: for i := 1 to

(
n


n
2
�
)

do

5: for all Wmin ∈ games[i− 1] do
6: {Obtain the maximal losing coalitions:}
7: Lmax := hopskipjump(Wmin)
8: for all C ∈ Lmax do
9: for j := 1 to n do

10: if isweighted(Wmin ∪ rtrunc(C, i)) then
11: if Wmin ∪ rtrunc(C, i) passes the duplicates-check (see discussion above)

then
12: Output the weighted representation of the voting game with minimal

winning coalitions Wmin ∪ rtrunc(C, i)).
13: Append Wmin ∪ rtrunc(C, i)) to games[i].
14: end if
15: end if
16: end for
17: end for
18: end for
19: end for

• At line 11, we must execute the duplicates-check. This consists of checking for at
most

( n

n

2
�
)

sets of minimal winning coalitions whether it is weighted. This involves

running the Hop-Skip-and-Jump algorithm, followed by solving a linear program. So
in total this takes O(n3√n22n).

• Lines 12 and 13 clearly take linear time.

Bringing everything together, we see that a single pass through lines 6 to 16 costs us
O(n423n) time. As said, these lines are executed at most |Gcwvg|(n) times. We know
that |Gwvg(n)| ∈ O(2n2−n) (see previous chapter), and of course |Gcwvg(n)| < |Gwvg(n)|,
so lines 6 to 16 are executed at most O(2n

2−n) times, and therefore the runtime of the
algorithm is O(2n2+2nn4) = O∗(2n2+2n).

Although the runtime analysis of this algorithm that we gave is not very precise, the
main point of interest that we want to emphasize is that this method runs in exponential
time, instead of doubly exponential time. We can also show that this algorithm runs in a
time that is only polynomially greater than the amount of data output:
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Theorem 76. Algorithm 3 runs in output-polynomial time.

Proof. Lines 8 to 18 are executed less than |Gcwvg(n)| times. From the previous chapter,

we have as a lower bound that |Gcwvg(n)| ∈ Ω(2n2(1− 10
log n

)/n!2n). One execution of lines
6 to 16 costs O(n423n) time, and thus one iteration takes

O(n423n) ∈ O(2n2(1− 10
log n

)/n!2n) ∈ O(|Gcwvg(n)|)

time, resulting in the fact that the algorithm runs in O(|Gcwvg(n)|2) time.

Remark 77. We can not give a very sharp bound on the space complexity of the algo-
rithm, because we do not know anything about the maximum cardinality of an antichain in
(Gcwvg(n),⊇MWC). However, it can be seen that it is also possible to generate the games
in this poset in a depth-first manner, instead of a breadth-first manner like we do now. In
that case, the number of space that needs to be used is bounded by the maximum length of
a chain in (Gcwvg(n),⊇MWC). This is a total amount of O( 2n√

n
) space.

Now that we have this enumeration algorithm for weighted voting games, we can use the
same approach as in algorithm 2 in order to solve the (f,Gcwvg,Lweights)-PVGD problem:
for each game that is output, we simply compute the power index of that game and check if
it is closer to the optimum than the best game we have found up till that point. This works
best when f is efficiently computable, as is the case with the Deegan-Packell index (when
the input is in LW,min).

5.3 Improving the Algorithm

Algorithm 3 is in its current state not that suitable for solving the (f,Gcwvg,Lweights)-PVGD
problem in practice. In this section we will make several improvements to the algorithm,
so that it results in an enumeration algorithm of which we expect that it outputs canonical
weighted voting games at a steady rate. We will see that this gives us a practically applicable
anytime-algorithm for the (f,Gcwvg,Lweights)-PVGD problem when f = ϕ or f = β (the
Banzhaf index or the Shapley-Shubik index).

First, in section 5.3.1, we will see how we can make the system of linear inequalities 4.3
smaller. In section 5.3.2, we will improve Theorem 74 in order to more quickly find new
potential minimal winning coalitions to extend our weighted voting games with. Lastly,
in Section 5.3.3 we give an output-polynomial time algorithm for enumerating all ceiling
coalitions, given a set of roof coalitions.

It is important to see that these three improvements combined, eliminate the need to keep
track of the complete lists of minimal winning coalitions and maximal losing coalitions of
the weighted voting games that we enumerate. Instead, it suffices to only keep track of the
sets of roof coalitions and ceiling coalitions.
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5.3.1 An Improved Linear Program for Finding the Weight Vector of a
WVG

When finding a weight vector for a weighted voting game of which we obtained the maximal
winning coalitions and minimal losing coalitions, we proposed in the previous chapter to
do this by solving the system of inequalities (4.3). In [37] it is noted that we can make this
system much more compact.

First of all we can reduce the number of inequalities in our system by observing that
a minimal winning coalition C which is not a roof, always has a higher total weight than
at least one roof, in a canonical weighted voting game. This is because C is a superset
of a left shift of some roof. In the same way, a maximal losing coalition which is not a
ceiling, always has a lower total weight than at least one ceiling. Therefore if we add the
inequalities w1 ≥ · · · ≥ wn to our system of inequalities (4.3), then we can remove a
lot of other inequalities from (4.3) because it then suffices to only make sure that out of
all minimal winning coalitions, only the roofs have a higher weight than q; and out of all
maximal losing coalitions, only the ceilings have a lower total weight than q.

Secondly, we can reduce the number of variables (weights) in (4.3) by noting that if two
players i and i + 1 are equally desirable, then wi = wi+1. Therefore, we need only one
representative variable from each set D of players for which it holds that that

1. the players in D are pairwise equally desirable,

2. and any player in N\D is strictly less or strictly more desirable than a player in D.

By reducing the number of inequalities and variables in this way, we can in most cases
drastically decrease the time it takes to find a solution.

5.3.2 A Better Way of Finding New Minimal Winning Coalitions

Theorem 74 allows us to find potential minimal winning coalitions that we can extend our
weighted voting games with. We will now see that we do not really need to consider every
right-truncation of every maximal losing coalition: In fact, we only need to look at ceiling
coalitions.

Theorem 78. For any n, let (G,G′) ∈ Gwvg(n)2 be a pair of weighted voting games such
that G covers G′ in (Gcwvg(n),⊇MWC). Let Wmin,G and Wmin,G′ be the sets of minimal
winning coalitions of G and G′ respectively, and let Lceil,G and Lceil,G′ be the sets of ceiling
coalitions of G and G′ respectively. There is a C ∈ Lceil,G and an i ∈ N with 0 ≤ i ≤ n
such that Wmin,G′ = Wmin,G ∪ rtrunc(C, i).

Proof. Let Lmin,G and Lmin,G′ be the sets of minimal winning coalitions of games G and
G′ respectively. Because G covers G′, by definition there is a coalition C′ �∈ Wmin,G such
that Wmin,G′ = Wmin,G ∪ C ′. Suppose for contradiction that C′ is not a right-truncation
of a ceiling Lceil,G. By Theorem 74, C′ is a right-truncation of a coalition in Lmin,G. But
then it is a subset of a left shift of a ceiling C ∈ Lceil,G. Then there is left shift C′′ of C ′

such that C′′ is a subset of a coalition in Lmax,G, which means that C′′ is not a superset of
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any coalition in Wmin,G, hence C′′ is also not a superset of any coalition in Wmin,G′ . So
C ′′ is a losing coalition in G′. But G′ is a canonical weighted voting game, hence G′ is also
a canonical linear game. By the fact that canonical linear games have the total desirability
relation 1 �D · · · �D n, C ′′ is a winning coalition in G′ because it is a left shift of the
winning coalition C′. This is a contradiction.

5.3.3 An Output-polynomial Time Algorithm for Obtaining the Ceiling-list
from the Roof-list

In section 4.3.2, we derived that the (Lroof ,Lceil)-VGS problem does not have a polynomial
time algorithm because the output may be exponentially sized in the input. Nevertheless,
it is certainly interesting to try to come up with an as efficient as possible algorithm for
this problem, considering that such an algorithm can be used in combination with the im-
provements of the previous section for finding weight vectors for weighted voting games. If
we have a good algorithm for (Lroof ,Lceil)-VGS, then using that algorithm is certainly pre-
ferred to using the Hop-Skip-and-Jump algorithm (described in Section 4.3.1), because in a
canonical linear game there are always less roof coalitions than minimal winning coalitions,
and less ceiling coalitions than maximal losing coalitions.

We will now present an output-polynomial time algorithm for (Lroof ,Lceil)-VGS. The
algorithm that we present is based on the following observation.

Definition 79 (i-prefix, prefix). Let S be a coalition on N = {1, . . . , n}. The i-prefix of
S is the set S′ = S ∩ {1, . . . , x} where x is the agent such that |S′| = i. If for some i a
coalition S is an i-prefix of another coalition S′, then we say that S is a prefix of S′.

Informally, the i-truncation of a coalition s is simply S restricted to the i most desirable
players that are in S.

Theorem 80. Let G ∈ Gclin(n) be a canonical linear game on players N = {1, . . . , n},
let S ⊆ N be a coalition, let a be the least desirable player of S, and let C be the set of
ceilings of G. Then S is a |S|-prefix of a ceiling C ∈ C if and only if there exists a number
i ≥ 0 such that

1. S ∪ {a + 1, . . . , a + i} is winning in G or a ceiling,

2. and S ∪ {n− i + 1, . . . , n} is losing in G.

Proof. (⇒) Let S be a |S|-prefix of a ceiling C ∈ C. In case S = C , the proof is trivial. In
case S �= C then the coalition S ∪ {a + 1, . . . , a + |C| − |S|} is either equal to C or a left
shift of C (hence winning), and S ∪{n− |C|+ |S|+ 1, . . . , n} is either equal to C or a left
shift of C (hence losing in both cases).

(⇐) Let S be a coalition and let i be a number such that S∪{a+1, . . . , a+1} is winning
or a ceiling, and S∪{n− i+1, . . . n} is losing. There are two cases: S∪{a+1, . . . , a+ i}
is either winning or a ceiling. In the latter case it follows immediately that S is a |S|-prefix
of a ceiling, namely of S itself, so we assume that S ∪ {a + 1, . . . , a + i} is winning. From
the fact that S ∪ {n − i + 1, . . . n} is losing, it follows that there must be a left shift S′ of
{a + 1, a + i} such that S ∪ S′ is losing and all direct left shifts of S ∪ S′ are winning.
S ∪ S′ can only be a prefix of a ceiling and therefore S is also a prefix of a ceiling.
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The algorithm we will give uses Theorem 80 to find and extend the prefixes of ceiling
coalitions. Once it has found the j-prefix of a ceiling C ∈ C(i), there are at most n coalitions
that can be the (j+1)-prefix of C . Theorem 80 provides us with a fast method to test whether
a coalition is a prefix of a ceiling.

The (high level) pseudocode for the algorithm is given in Algorithm 4. Line 3 can be
implemented by applying Theorem 80.

Algorithm 4 An algorithm that outputs all ceiling coalitions of a canonical linear game on
players N = {1, . . . , n} that is represented as a list of roof coalitions. The input is a string
� ∈ Lroof . For any i with 0 ≤ i ≤ n, the variable Pi represents the prefixes of cardinality i
of ceiling coalitions.

1: P0 := {∅} {For any coalition C , the empty coalition is a 0-prefix of C .}
2: for i = 1 to n do
3: Using Pi−1, generate all prefixes S of ceilings such that |S| = i, and store them in

Pi

4: output all ceilings in Pi and remove them from Pi.
5: end for
6: return

The correctness of this algorithm is obvious. We will now show that it can be imple-
mented to run in output-polynomial time.

Theorem 81. Let � ∈ Lroof(n) be a list of roofs of a canonical linear game G� ∈ Gclin(n)
on players N = {1, . . . , n}. Let C be the set of all ceilings of G�. On input �, Algorithm 4
runs in time O(n3 · |�| · |C|) and is hence an output-polynomial time algorithm.

Proof. Line 3 can be implemented by applying Theorem 80: during iteration j of the for-
loop this involves checking for each coalition C ∈ Pj (let a be C’s least desirable player),
whether there is an i such that C ∪ {a + 1, . . . a + i} is winning or a ceiling and C ∪ {a−
i + 1, . . . , i} is losing. Pj is the set of all prefixes of ceiling coalitions, so |Pj | ≤ C.

Checking whether a coalition is winning, losing, or a ceiling are easy operations and
take time at most O(n2 · |�|): They all require scanning the list of roofs � and checking
whether or not the coalition is a left shift of one of the roofs. Checking whether a coalition is
a ceiling additionaly requires checking whether all (at most n) direct left shifts are winning.
The for loop is executed n times.

Bringing everything together, we end up with a total runtime of O(n3 · |�| · |C|).
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Chapter 6

Experiments

In this chapter, we will discuss the results obtained from some experiments that we have
performed by implementing Algorithm 3, and the algorithm for (β,Gwvg,Lweights)-PVGD
that directly follows from it, where β denotes the normalized Banzhaf index. We think
that it is interesting to run our algorithm for some small choices of n to see at what point
it becomes intractable, and to obtain some interesting data about the class of canonical
weighted voting games (e.g. the number of WVGs on n players). Also, we want to know
about the error convergence rate of the algorithm for larger values of n, when solving the
problem to optimality is intractable.

So the experiments we perform are related to

• the time-performance of the algorithm (for small n);

• the error-convergence behaviour of the algorithm (for larger n, when it becomes in-
tractable to run the algorithm to completion);

• obtaining the exact number of weighted voting games of n players, in order to com-
pare this to the theoretical bounds;

• obtaining the number of weighted voting games of n players for fixed numbers of
minimal winning coalitions;

In Section 6.1 we will give some important information about the implementation itself.
Section 6.2 gives a description of our experiments. Lastly, in Section 6.3 we will give the
results to these experiments.

6.1 Implementation Details

We have implemented Algorithm 3 together with all of the optimizations described in Sec-
tion 5.3. The implementation language that we chose is C.

During execution of the algorithm, it is necessary to solve a large amount of linear
programs. For doing this, we have chosen to make use of the GNU Linear Programming
Toolkit [32]. This is an open-source C library. The GNU Linear Programming Toolkit is not
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the fastest software that is available for solving linear programs. Most commercial software
claims to achieve a performance that is about 10 to 100 times better. However, the reason we
chose to use the GNU Linear Program toolkit is because commercial linear programming
software is not available to us, and because we think that the GNU Linaer Programming
Toolkit allows us to implement our algorithm with relatively the most ease.

As said in the introduction of this chapter, this implementation solves the (β,Gwvg,Lweights)-
PVGD problem, where β is the normalized Banzhaf index. This means that for each
weighted voting game that is output by our enumeration algorithm, we must invoke a
procedure for computing the normalized Banzhaf index. In our case, we simply use the
brute-force approach to compute the normalized Banzhaf index. By using more advanced
algorithms for this, it will probably be possible to obtain a large improvement in the runtime
of this implementation of the algorithm.

Two variants of the enumeration algorithm have been implemented: The first one uses
the standard breadth-first approach, that sequentially generates all weighted voting games of
i minimal winning coalitions, for increasing i. The second one uses the depth-first method
mentioned in Remark 77 (in Section 5.2.3).

6.2 Experiments

We perform our experiments on a computer with an Intel Core2 Quad Q9300 2.50GHz
CPU with 2GB SDRAM Memory. The operating system is Windows Vista. We compiled
our source code using gcc 3.4.4, included in the DJGPP C/C++ Development System. We
compiled our code with the –O3 compiler flag.

For doing the experiments, we need input data: instances that we use as input for the
algorithm. Instances can in principle be any vector of real numbers. However, normalized
Banzhaf indices are always vectors whose elements sum to 1, i.e. normalized Banzhaf
indices are members of the unit simplex1. So any useful and realistic input for our algorithm
is in this case a non-increasing vector in the n-dimensional unit simplex. Our input data
therefore consists of samples of such vectors that were taken uniformly at random. We have
generated those samples according to the procedure described in [46].

We performed the following experiments.

Experiment 1: For up to 8 players, we measured the CPU time it takes for the enumeration
algorithm to output all games, for both the breadth-first and the depth-first method.
From these experiments we obtain the exact number of canonical weighted voting
games of n players for all n between 1 and 8. We also measure the additional runtime
that is necessary when we include the computation of the Banzhaf index into the
algorithm.

Experiment 2: We use the enumeration algorithm to compute for all n with 1 ≤ n ≤ 8
and all m with 0 ≤ m ≤ ( n


n/2�
)
, the exact amount of canonical weighted voting

games on n players with m minimal winning coalitions.

1The definition of unit simplex is given in Appendix A
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Experiment 3: For n between 1 and 7, we compute for 1000 random instances the average
optimal error. That is, the average error that is attained out of 1000 random instances
(i.e. uniform random vectors in the n-dimensional unit-simplex), when the algorithm
is allowed to run to completion on these instances. We also report the worst error
that is attained among these 1000 instances. The error function we use is the square
root of the sum of squared errors, as stated in Definition 40. The reason that we use
this specific error measure is because it has a nice geometric interpretation: it is the
Euclidian distance between the target (input) vector and the closest point in the unit
simplex that is the normalized Banzhaf index of a weighted voting game. We will
therefore denote this error function by the Euclidian error.

Experiment 4: For n ∈ {10, 15, 20}, we measure the error-convergence behaviour of the
algorithm: the Euclidian error as a function of the amount of time that the algorithm
runs. We again do this experiment for both the breadth-first and the depth-first version
of the algorithm. For each of these three choices of n, we perform this experiment
for 10 random instances, and for each instance we allow the algorithm to run for one
minute.

6.3 Results

For experiment 1, the runtimes are given in Figure 6.1. Note that this graph is plotted on
a log-scale. From the graph we see that for all four versions of this algorithm, there is
relative not much difference in the runtime. This means that the inclusion of the Banzhaf
index computation procedure does not add a significant amount of additional runtime. One
should not forget however, that these results are displayed on a logarithmic scale. When we
compare the runtimes for 8 players with each other for example, we see that the runtime
of the depth-first search version without Banzhaf index computation is 21 minutes, while
it is 26 minutes when we include the computation of the Banzhaf index into the algorithm.
When we use the breadth first search approach instead, the runtime is only 16 minutes. In
general, the breadth first search method is a lot faster than the depth first search method.

The number of canonical weighted voting games on n players, for 1 ≤ n ≤ 8, is
displayed in Figure 6.2. Even for these small values of n, we can already clearly see the
quadratic curve of the graph on this log-scale, just as the theoretical bounds from Section
4.1 predict. In Table 6.1, we state the number of canonical weighted voting games as exact
numbers.

For experiment 2, the results are displayed in Figure 6.3. Note that on the vertical axis
we have again a log-scale. We see that for each of these choices of n, most of the canonical
weighted voting games have a relatively low amount of minimal winning coaltions relative
to the maximum amount of winning coalitions

( n

n/2�

)
.

The Euclidian errors computed in experiment 3 are displayed in Figure 6.4. We see that
the errors decrease as n gets larger. We also see that the worst case optimal error can be
much worse than the average case. We want to emphasize that these are results computed
over only 1000 random instances, therefore these worst case optimal errors serve only as a
lower bound for the worst case optimal error over all possible instances.
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Figure 6.1: Runtimes of Algorithm 3 for 1 to 8 players, for both the breadth first search
and the depth first search variant of the algorithm, both with and without the Banzhaf index
computation procedure included.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1  2  3  4  5  6  7  8

N
um

be
r 

of
 c

an
on

ic
al

 w
ei

gh
te

d 
vo

tin
g 

ga
m

es

Number of players

The number of WVGs on n players

Figure 6.2: The number of canonical weighted voting games on n players, for 1 ≤ n ≤ 8.

60



Experiments 6.3 Results

Table 6.1: Exact values for the number of weighted voting games on n players, for 1 ≤ n ≤
8.

n |Gcwvg(n)|
1 3
2 5
3 10
4 27
5 119
6 1083
7 24162
8 1353220
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For experiment 4, we see no possibility for a meaningful or interesting visualisation of
its results. Experiment 4 confirms for us that this enumeration-approach of solving PVGD
problems is not so practical for larger values of n. Our hopes were that the anytime-property
of the algorithm would account for a quick convergence to a low (but not necessarily op-
timal) error; even for large values of n. It turns out that this is not really the case. In all
cases (i.e. for n = 10, n = 15 and n = 20, for all of the 10 random instances), the
error-convergence is high during approximately the first second that the algorithm runs.
After that, the frequency by which improvements in the error occur seems to decrease ex-
ponentially. Moreover, after the first second, the improvements made are without exception
only tiny. The average errors obtained after letting the algorithm run for one minute are as
follows:

• For n = 10, after one minute, the average error over the 10 instances was 0.055234
for the breadth first variant, and 0.1705204 for the depth first variant.

• For n = 15, after one minute, the average error over the 10 instances was 0.0983193
for the breadth first variant, and 0.2018266 for the depth first variant.

• For n = 20, after one minute, the average error over the 10 instances was 0.1475115
for the breadth first variant, and 0.2399217 for the depth first variant.

From this, we see that for n = 10, the breadth first search method still gives us reason-
ably nice results within a minute. But when we increase the number of players to 15 and
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20, we see that the results quickly get worse; especially when we compare the results to the
expected average optimal error (that we obtain by extrapolation of the results of experiment
3).

Another interesting observation is that these errors for the depth first variant are much
worse than the errors for the breadth first variant. An explanation for this is that the Banzhaf
indices of the games are scattered more evenly across the unit simplex in the case of the
breadth first variant. On the contrary, for a small time interval like 1 minute, we ex-
pect the depth first variant to enumerate a lot of games for which the Banzhaf indices are
close, since many of the games enumerated by the breadth first method cover each other in
(Gcwvg(n),⊇MWC).

A final comment we would like to make is that when n gets larger, the output rate of
the enumeration algorithm gets slower. Of course, this is explained by the fact that many
of the operations in the algorithm must now be performed on games with more players.
Especially this slowdown is caused by the computation of the Banzhaf index that is done
for every game. In our current implementation, computing the Banzhaf index takes tight
exponential time in n.

In general, our current implementation is crude: many procedures in this implementa-
tion are still far from optimal. We expect that it is possible to attain a huge improvement in
the performance of this algorithm by optimizing the code.
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Chapter 7

Discussion & Future Work

In this thesis, we have derived the first exact algorithm for solving power index weighted
voting game design problems. We have shown that such a problem is always solvable
for any class of games, but the guarantee on the worst-case runtime that we can give is
unfortunately only doubly exponential. For the important case of weighted voting games,
we have derived an anytime method that runs in exponential time, and we have constructed
various additional techniques that we can use to speed this algorithm up.

This algorithm is based on an enumeration procedure for the class of weighted voting
games: it works by simply enumerating every game, and verifying for each game whether
it lies closer to the target power index than the games that we encountered up until that
point. For this reason, the algorithm has the anytime property: as we run this algorithm for
a longer period of time, the algorithm will enumerate and check more games, so the answer
will get better.

Also, because this idea of enumeration is so generic, this method can not only be used
to solve power index voting game design problems: in principle it can also be used to solve
any other voting game design problem. The only thing we have to adapt is the verification-
part of the algorithm (i.e. the part that checks the property in question for each of the games
that the enumeration procedure outputs); the enumeration procedure can be left in tact.

Finally, we implemented a simple, non-optimized version of the algorithm in order to
do some experiments, and in order to extract some statistical information about the class of
weighted voting games. We have computed some exact values for the number of canonical
weighted voting games on n players with m minimal winning coalitions, for various choices
of n and m. We have seen that even for small n, it is already visible that the number of
weighted voting games grows quadratically on an exponential scale, precisely according to
the known asymptotic bounds. We have also looked at the runtime of the algorithm, and
seen that running the algorithm to completion becomes intractable at approximately n = 10
(on the computer that we performed the experiments with, it would take about one day to
run the algorithm for n = 9). Lastly, for larger values of n we have seen that our algorithm
(or at least our current implementation) is not of much use for practical purposes, because
the error does not converge as quickly as we would want to. We think that we can attain
a huge speedup by optimizing the code, and by using better linear programming software;
but in addition to that we will also need to make optimizations in the algorithm in order to
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overcome this problem.
Note that in most real-life examples, the number of players in a weighted voting game

is rather small: usually 10 to 50 agents are involved. For future work, the goal is then of
course to get this algorithm to yield good results within a reasonable amount of time, when
the number of players is somewhere in this range. There is still a lot of room for improving
the proposed algorithm itself, and also the current implementation that we have built.

We think that it will be interesting to study in more depth the partial order that we
presented in this thesis, both from a from a computational perspective and from a purely
mathematical perspective. With regard to the design of weighted voting games, we suspect
that it is possible to prune a lot of “areas” in this partial order, i.e., we think that it is possible
to skip the enumeration of a lot of games in the partial order, in many cases.

We are curious about how an algorithm performs that searches through the partial order
in a greedy manner, or what will happen if we use some other (possibly heuristic) more
intelligent methods to search through the partial order. We wonder whether we can use such
a search method while still having an approximation guarantee, or maybe even preserving
the guarantee that the optimal game will be found. Lastly, we can also use this idea as a
postprocessing step, to extend the existing algorithms by Fatima et al. [16] and Aziz et al.
[3], that we mentioned in Section 3.2. With this, we mean that it might be a good idea to first
run the algorithm of Fatima or Aziz, in order to obtain a good initial game. Subsequently
we can try to search through the neighborhood of the game in the partially ordered set, in
order to find improvements.

Lastly, some related questions for which it would be interesting to obtain an answer
are about the computational complexity of the power index voting game design problem,
and also about the polynomial-time-approximability. The runtime of our current algorithm
implies that the problem is in EXPTIME for the case of weighted voting games, but that
seems to be all we can say about it. We do not expect the problem to be complete for
EXPTIME, but on the other hand, at the moment we do not at all have any ideas on how
to prove hardness for this problem for any complexity class whatsoever. It seems very
difficult to find a polynomial-time reduction from any known problem that is hard for some
complexity class: none of these problem seems to be in any way comparable to our PVGD
problem. Also for questions related to approximability of PVGD problems, we currently do
not know anything. It might be interesting to look into this question for future research.
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Appendix A

Some Preliminary Knowledge

Throughout this thesis, we make use of some results and ideas from mathematics and com-
puter science that the reader might not be familiar with. In this appendix, we will define
some notation and introduce some of the essential notions that are needed in order to under-
stand the results. Particularly, we will introduce some order-theoretical concepts.

A.1 Order Theory

All of the following can be looked up in any introductory text on order theory, for example
[7].

Definition 82 (Partially ordered set). A partially ordered set or poset is a pair (P,�), where
� is a binary relation over the set P satisfying: ∀a, b, c ∈ P :

• a � a (reflexivity)

• a � b ∧ b � a→ a = b (antisymmetry)

• a � b ∧ b � c→ a � c (transitivity)

When |P | is finite, (P,�) is called a finite poset.

Definition 83 (Least element). The least element of a subset S ⊆ P of a partially ordered
set (P,�) is the a ∈ S for which it holds that ∀b ∈ S : a � b. The least element of S may
not exist. The least element of S in the case that we take S = P if referred to as the least
element of poset (P,�). The least element of a poset may not exist.

Definition 84 (Cover). We say that in a poset (P,�), an element a ∈ P covers an element
b ∈ P if and only if b ≺ a and ¬∃c ∈ P : b ≺ c ≺ a.1

Definition 85 (Graded poset & rank function). A poset (P,�) is graded if and only if there
exists a function ρ : P → Z such that ∀a, b ∈ P : a covers b → ρ(a) = ρ(b) + 1. ρ is
called the rank function.

1For any pair of elements (a, b) ∈ P 2, we have a ≺ b if and only if a � b and a �= b.
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Definition 86 (Hasse diagram). A Hasse diagram of a finite poset (P,�) is a depiction
of the graph (P, {(a, b) | (a, b) ∈ P2 ∧ a covers b}). It is considered a convenient way to
visualize finite partially ordered sets.

Definition 87 ((Finite) Tree). A poset (P,�) is a finite tree when (P,�) is finite and when
the graph depicted by its Hasse diagram is a tree.

Definition 88 (Chain). A chain in a poset (P,�) is a set S ⊆ P such that for any (a, b) ∈ S2

we have a � b or b � a.

Definition 89 (Antichain). An antichain in a poset (P,�) is a set S ⊆ P such that for any
(a, b) ∈ S2 we have that neither a � b nor b � a holds.

A.2 Some notions from computer science

We assume that the reader is familiar with basic complexity theory and asymptotic analysis
of algorithms. In this thesis, we use the following additional concepts that might be less
well-known.

The O∗-notation for exponential-time algorithms

Definition 90 (O∗-notation). We say that a function f(x) defined on the real numbers is in
O∗(g(x)) if and only if there is a polynomial p such that f(x) ∈ O(g(x) · p(x)).

This notation is convenient for functions of superpolynomial growth, in order to make
light of polynomial factors. Use of the O∗-notation is justified by the fact that the expo-
nential factor of a function has much more influence on its growth than the polynomial
factors.

The class #P

Some of the computational problems that we will encounter are in the complexity class #P,
introduced in [51]:

Definition 91 (#P). Let Σ = {0, 1}. A function f : Σ∗ → N is in #P iff there is a
polynomial-time Turing machine M such that

f(x) = {y ∈ Σ∗ |M(x, y) accepts}.

Moreover, we require that the size of y is polynomial in x. Any f ∈ #P can be seen
as the problem of counting the number of accepting paths in the computation graph of a
non-deterministic polynomial time turing machine.

With an instance of f ∈ #P we mean an input ∈ Σ∗ for f .

A function f is #P-complete if f ∈ #P and for every g ∈ #P there exists a Cook-
reduction from g to f .
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Definition 92 (Cook reduction). Given two problems Π1 and Π2, a Cook reduction from
Π1 to Π2 is a Turing machine which solves instances of Π1 in polynomial time and makes
use of an oracle for Π2.

In this thesis we will use the Cook-reduction definition of #P-completeness, although
more stringent definitions of #P-completeness have been proposed in [52, 45, 27].

Output-polynomial time

Definition 93 (Output-polynomial time). An algorithm computing a function f(x) is said
to run in output-polynomial time if its worst-case running time is bounded by a polynomial
in |x| and |f(x)|.

Often, when talking about algorithms, we would like to find algorithms that run in time
polynomial in the input. However, in a lot of cases, we know in advance that the output of
the algorithm will be exponentially sized, relative to the input.

For example, this occurs often in the case of enumeration algorithms: algorithms that
find all solutions to a specific problem, or (more generally) algorithms that enumerate all
members of a certain class of objects. Polynomial time algorithms do not exist for a lot
of such problems, and in this case it is reasonable to ask for an output polynomial time
algorithm, i.e., an algorithm that runs in an amount of time that is only polynomially larger
than the amount of data that it outputs.

A.3 Miscellaneous

Stirling’s approximation is an expression that is asymptotically equal to the factorial func-
tion.

Theorem 94 (Stirling’s approximation).

n! ∼
√

2πn
(n

e

)n
.

Definition 95 (Unit simplex). For any n ∈ N, the n dimensional unit simplex is defined as
{(r1, . . . , rn) ∈ R

n | ∑n
i=1 ri = 1}.
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