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Abstract. Financial networks model debt obligations between economic
firms. Computational and game-theoretic analyses of these networks have
been recent focus of the literature. The main computational challenge
in this context is the clearing problem, a fixed point search problem
that essentially determines insolvent firms and their exposure to sys-
temic risk, technically known as recovery rates. When Credit Default
Swaps, a derivative connected to the 2008 financial crisis, are part of
the obligations and insolvent firms pay the same proportion of all their
debts, computing a weakly approximate solution is PPAD-complete [29],
whereas computing a strongly approximate solution is FIXP-complete
[17]. This paper addresses the computational complexity of the clear-
ing problem in financial networks with derivatives, whenever priorities
amongst creditors are adopted. This practically relevant model has been
only studied from a game-theoretic standpoint. We explicitly study the
clearing problem whenever the firms pay according to a singleton liabil-
ity priority list and prove that it is FIXP-complete. Finally, we provide
a host of NP-hardness results for the computation of priority lists that
optimise specific objectives of importance in the domain.

1 Introduction

The financial services industry has been very creative, with the constant intro-
duction of new products designed as investment and/or risk management tools.
This makes the web of liabilities between the different institutions in the market
hard to track and oversee. It is, in fact, this inherent complex structure of the
evolving modern financial system that has led to several somewhat unforeseen
and deeply damaging crises, such as the Great Financial Crisis (GFC) of 2008.
There is, therefore, the need to mathematically model and study this network
of obligations among interconnected financial agents in order to understand the
impact of new products, regulations or even single contracts.

The main computational challenge in this context is the clearing problem
introduced in [6]: Given the banks’ funds and the face values of all the liabil-
ities in the network, compute for each bank its exposure to systemic risk, in
the form of what is known as its clearing recovery rate. It turns out that the
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complexity of this problem is closely related to the class of financial products
populating the network. In fact, in financial networks where firms only subscribe
simple debt contracts, clearing recovery rates can be computed in polynomial
time [6,25]. Whilst this setup makes up for an easy modeling of networks as
directed graphs with nodes standing for financial institutions and edges repre-
senting debt obligations, this representation is too simplistic in that it does not
capture more advanced products, based on other existing contracts like mort-
gages, loans, interest rates etc. These complex contracts are called derivatives.
The addition of one such derivative, namely, Credit Default Swaps (CDSes),
introduced to financial networks in [28], makes the model more intriguing from
a computational perspective. A CDS involves three parties i, j, k, where k must
pay an amount of money to j on the condition that i cannot pay off all of its
obligations. Since adding CDSes to a financial network may generate irrational
clearing recovery rates [17,28], our interest turns to finding approximate clear-
ing recovery rates; it is proved that weakly (or “almost") approximate recovery
rates are PPAD-complete to compute [29] and strong (or “near") approximate
solutions are FIXP-complete to compute [17].

In this paper, we look at this problem from the perspective of the financial
regulator. We ask whether rules that determine how insolvent banks pay off their
debts can fundamentally change the computational hardness landscape above.
The most-studied payment scheme is the proportional payment scheme where
each bank pays off its debts proportionally to its recovery rate. However, defin-
ing priority classes amongst creditors and pay proportionally in each class (with
funds available at the current priority level) is another widely adopted measure
used in practice in the industry. For example, some regulatory regimes require
employees to be prioritised over other creditors whereas some advanced deriva-
tives (such as, the renown Collateralized Debt Obligations leading to the GFC)
define their payoff via tranching (effectively a priority list) of the underlying
securities. Whilst priority payments have been studied under a game-theoretic
framework [3,18,21], nothing is known about the complexity of the clearing
problem with this payment scheme in presence of financial derivatives.

Our Contribution. We study the clearing problem in financial networks with
derivatives under the priority list payment scheme. Specifically, we examine
financial networks consisting of both debt and CDS contracts and address the
complexity of computing a clearing recovery rate vector whenever each bank has
to pay its debts in the following way. For each bank, we define a partition of its
liabilities in priority classes. With the funds available at a certain priority (i.e.,
after having paid all the liabilities with higher priority), the liabilities at the cur-
rent priority are paid proportionally – in particular, this means that these are
paid in full if the funds are sufficient. This notion generalises the proportional
payment scheme studied in related literature (i.e., consider the case in which the
partition contains one part) and the class of singleton priorities, where each part
is a singleton. We call this problem cds-priority-clearing. Note that without
CDSes, cds-priority-clearing is known to be in P, both for proportional [6]
and priority [18] payment schemes.
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We observe here that whenever the partition defined by the priority list con-
tains at least of part of size 2 or more then cds-priority-clearing is FIXP-
complete. FIXP [8] is a complexity class that captures the fixed point computa-
tions of total search problems. In our context, it is important to observe that
FIXP is defined in terms of fixed-point functions defined upon the algebraic basis
A = {+,−, ∗, /,max,min, k

√}. It is not hard to see that the FIXP-completeness
follows from the recent reduction given in [17] where all gadgets adopted have
maximum out-degree 2.1 Therefore, the only case left open is when all the parts
of the priority list are singletons. We focus our attention on this setup in our
work. We then call cds-priority-clearing the problem of finding recovery
rates for singleton priorities, i.e., each bank has an ordering of its liabilities
according to which its debts are paid off.

Our first contribution gives technical evidence that the financial regulator
cannot change the complexity of computing clearing recovery rates, by enforcing
priority payments. Specifically, we prove that cds-priority-clearing is at least
as hard as the square root sum (sqrt-sum) problem [8,11,20,30] and that it is
complete for FIXP. We then give the full picture of the complexity for the clearing
problem, under all payment schemes proposed in the literature. Whilst the proof
of FIXP-completeness adopts known approaches [17], our reduction introduces
new financial network gadgets with priority payments for the operations in A.
In particular, our new multiplication gadget highlights the flexibility of financial
networks in handling arithmetic operations.

Whilst the regulator cannot ease the computational complexity of the prob-
lem, we wonder whether one can efficiently compute the banks’ priority lists to
optimise certain objective functions of financial interest. These include maximis-
ing the equity of a specific bank, maximising the liquidity in the system, and
minimising the number of activated CDSes. As our second main contribution, we
present a set of NP-hardness results showing a parallel with the known hardness
of computing similarly “optimal” solutions with proportional payments [22].

Related Work. Clearing problems have been studied a lot in the literature
[1,5–7,12,14–16,25]. Analysis of financial networks with CDSes as well as their
properties is a popular topic in the area [17,21,23,24,27–29]. A game-theoretic
approach to financial networks, the edge ranking game as well as other financial
network games are listed in [3,18,19,22]. The FIXP-complexity class was defined
first in [8,17,31], which established the FIXP-completeness of various fundamen-
tal fixed point computation problems. There are various further recent papers
that show FIXP-completeness of a range of problems, including [9,10,13,17].

2 Model and Preliminaries

Financial Networks and Payment Schemes. A financial network consists
of a set of financial entities (which we refer to as banks for convenience), inter-
connected through a set of financial contracts. Let N = {1, . . . , n} be the set

1 We defer a formal treatment of this and the omitted proofs herein to the full version.
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of n banks. Each bank i ∈ N has external assets, denoted by ei ∈ Q≥0. We let
e = (e1, . . . , en) be the vector of all external assets. We consider two types of
liabilities among banks: debt contracts and credit default swaps (CDSes). A debt
contract requires one bank i (debtor) to pay another bank j (creditor) a certain
amount ci,j ∈ Q≥0. A CDS requires a debtor i to pay a creditor j on condition
that a third bank called the reference bank R is in default, meaning that R can-
not fully pay its liabilities. Formally, we associate each bank i with a recovery
rate ri ∈ [0, 1], that indicates the proportion of liabilities i is able to pay. Having
ri = 1 means that bank i can fully pay its liabilities, while ri < 1 indicates that
i is in default. In case a reference bank R of a CDS is in default, the debtor i of
that CDS pays the creditor j an amount of (1− rR)cR

i,j , where cR
i,j ∈ Q≥0 is the

face value of the CDS. The value ci,j (cR
i,j , resp.) of a debt contract (CDS, resp.)

is also called the notional of the contract. Finally, we let c be the collection of
all contracts’ notionals. We do not allow any bank to have a debt contract with
itself, and assume that all three banks in any CDS are distinct.

The financial system F can therefore be represented as the triplet (N, e, c).
Given F , we let DCF denote the set of all pairs of banks participating in a debt
contract in F . Similarly, CDSF denotes the set of all triplets participating in a
CDS in F . (We drop F from the notation when it is clear from the context.)
The contract graph of F = (N, e, c) is defined as a coloured directed multigraph
GF = (V,A), where V = N and A = (∪k∈NAk) ∪ A0 where A0 = {(i, j) | i, j ∈
N ∧ ci,j �= 0} and Ak = {(i, j) | i, j ∈ N ∧ ck

i,j �= 0}. Each arc (i, j) ∈ A0

is coloured blue and each (i, j) ∈ Ak orange. For all (i, j, R) ∈ CDS we draw
a dotted orange line from node R to arc (i, j) ∈ AR, denoting that R is the
reference bank of the CDS between i and j. 2 Finally, we label each arc with the
notional of the corresponding contract, and each node with the external assets
of the corresponding bank.

All banks are obliged to pay off their liabilities according to a set of prespeci-
fied rules, which we refer to as a payment scheme. If a bank has sufficient assets,
then the payment scheme is trivial and prescribes to simply make payments that
correspond exactly to each of the bank’s liabilities. If there are insufficient assets,
on the other hand, the payment scheme will determine for each of the outgoing
contracts how much of it is paid off. The most studied payment scheme is the
proportional payment scheme, where each bank i submits an ri proportion of each
liability, leaving a (1−ri) fraction of each liability unpaid. In this paper we study
payments resulting from another rule, called the singleton liability priority lists
payment scheme. More specifically, given a financial system F = (N, e, c), for
each bank i we define a total order over the arcs going out of i in GF . We denote
the singleton liability priority list of i as Pi = (i1 | i2 | ... | ioutdeg(i)), where ik
stands for the k-th element in the order, or kth priority of node i, and outdeg(i)
denotes the out degree of node i in GF . The payments under this scheme are now
formed through an iterative process where each bank pays off its liabilities, one
after the other, preserving the ordering in its priority list. We denote by cik the
contract notional of the ikth priority and denote by P = (P1, . . . , Pn) the profile

2 This means that GF is a directed hypergraph with arcs of size 2 and 3.
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of singleton liability priority lists. We denote a financial system F endowed with
a singleton liability priority profile P as (F ,P). The next example illustrates the
model.

Example 1. The financial system of Fig. 1 consists of six banks, N = {1, 2, 3, 4, 5,
6}. Banks 2 and 5 have external assets e2 = e5 = 1 − c, for some constant c ∈
(0, 1), while all other banks have zero external assets. The set of debt contracts is
DC = {(2, 3), (5, 4)} and the set of CDS contracts is CDS = {(2, 1, 5), (5, 6, 2)}.
All contract notionals are set to 1. For example, c2,3 = c52,1 = 1. Node 2 has
two candidate singleton liability priority lists, one is P 1

2 = ((2, 3) | (2, 1, 5)),
where 21 = (2, 3) with contract notional c21 = c2,1 = 1 and 22 = (2, 1, 5)
with contract notional c22 = c52,1 = 1. The other one is P 2

2 = ((2, 1, 5) | (2, 3))
where 21 = (2, 1, 5) with c21 = c52,1 = 1 and 22 = (2, 3) with c22 = c2,3 = 1.
Symmetrically one can derive the lists for node 5.

Fig. 1. Example of a financial network

We are interested in computing for a pair (F ,P), for each bank i, the propor-
tion of liabilities that it is able to pay. This proportion is captured by the recov-
ery rate, mentioned earlier: For each bank i we associate a variable ri ∈ [0, 1],
that indicates the proportion of liabilities that bank i can pay. Recall that, to
define the liability generated from a CDS contract, we need the recovery rate
of the reference banks. Consequently in order to define all liabilities of banks
in a financial system, we need to be presented with an a-priori recovery rate
vector r = (r1, · · · , rn). So given a (F ,P) and assuming a vector r ∈ [0, 1]n, we
define the liabilities, the payments that each bank submits and the assets for
each bank as follows. We denote by lik(r) the k-th liability priority of node i. If
ik = (i, j) ∈ DC for some j ∈ N , then lik(r) = ci,j and if ik = (i, j, R) ∈ CDS
for some j, R ∈ N , then lij (r) = (1 − rR)cR

i,j . The liability of bank i ∈ N to a
bank j ∈ N is denoted by li,j(r) and it holds that

li,j(r) = ci,j +
∑

k∈N

(1 − rk)ck
i,j . (1)

We denote by li(r) the total liabilities of node i, and it holds that

li(r) =
outdeg(i)∑

j=1

lij (r) =
∑

j �=i

li,j(r) =
∑

j∈N\{i}

⎛

⎝ci,j +
∑

k∈N\{i,j}
(1 − rk)ck

i,j

⎞

⎠ .
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Node i can fully pay its kth priority only if he has sufficient assets left after
paying off the liabilities corresponding to priorities i1, . . . , ik−1. We denote by
pik(r) the payment of node i to its k-th priority, and by ai(r) its assets, which are
defined as the external assets it possesses plus all incoming payments submitted
from its debtors (see below for a more formal definition). Under our singleton
priority lists payment scheme:

pij (r) = max

⎧
⎨

⎩0,min

⎧
⎨

⎩lij (r), ai(r) −
∑

j′<j

lij′ (r)

⎫
⎬

⎭

⎫
⎬

⎭ . (2)

Moreover, we denote by pi,j(r) the payment of node i to node j under recovery
rate vector r: Let Cj = {ij | ij is a contract with node j as the creditor}, then
pi,j(r) =

∑
ij∈Cj

pij (r). The total payment made by a node is the sum of its indi-
vidual payments to its priorities which is equal to the total sum of its payments
to its creditors. Also, the payment of node i needs to be equal to the proportion
of its total liabilities it can pay off. Therefore, the following equations hold.

pi(r) =
outdeg(i)∑

j=1

pij (r) =
∑

j∈N

pi,j(r) = rili(r). (3)

The assets of a bank i are denoted as ai(r) and are the total amount of money
it possesses summing its external assets and all incoming payments made by its
debtors. It holds that

ai(r) = ei +
∑

j �=i

pj,i(r). (4)

We are interested in computing a specific recovery rate vector in [0, 1]n, such
that (3) holds (i.e., pi(r) = rili(r) for all i ∈ N), under the singleton liability
priority list payment rule (just defined formally by (2) and (4)). Formally:

Definition 1 (Clearing recovery rate vectors (CRRVs)). Given a finan-
cial system and a singleton liability priority profile (F ,P), a recovery rate vector
r is called clearing if and only if for all banks i ∈ N ,

ri = min
{
1,

ai(r)
li(r)

}
if li(r) > 0, and ri = 1 if li(r) = 0. (5)

We illustrate the notions of the dynamics and the CRRVs by reconsidering Exam-
ple 1 and computing them for some priority profile P.

Example 1 (continued). Let c = 1/4 in Fig. 1. Let P = (P2 = ((2, 3) | (2, 1, 5)),
P5 = ((5, 4) | (5, 6, 2))). Both nodes 2 and 5 receive no payment from any other
node thus their assets are defined as a2 = e2 = 1−c and a5 = e5 = 1−c. For node
2, given P2, we get that l21 = l2,1 = c21 = c2,3 = 1 and l22 = l2,1 = (1−r5)c52,1 =
(1−r5), thus the total liabilities for node 2 are l2 = l21 + l22 = 2−r5. For node 5
we get that l51 = l5,4 = c51 = c5,4 = 1 and l52 = l5,6 = c52 = (1−r2)c25,6 = 1−r2,
thus the total liabilities for node 5 are l5 = l51 + l52 = 2−r2. Let us compute the
CRRV. By (5) it must be r2 = min {1, a2(r)/l2(r)} = min {1, 1 − c/2 − r5} and
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r5 = min {1, a5(r)/l5(r)} = min {1, (1 − c)/(2 − r2)}. After solving this system
we get that r2 = r5 = 1 − √

c and since we assumed c = 1/4 we finally get that
r2 = r5 = 1/2. For the payments of node 2, we know that a2 = 3/4 and it first
prioritises node 3 for which it has a liability of 1, thus it cannot fully pay off
that liability and submits all of its assets to node 3, namely p21 = p2,3 = 3/4
and p22 = p2,1 = 0. The payments of node 5 are symmetrical.

Our Search Problem. We define cds-priority-clearing to be the search
problem that asks for a clearing recovery rate vector r given a pair (F ,P). The
term cds refers to the fact that F may contain CDS contracts (the problem
becomes polynomial time computable without CDSes [18]) and the term pri-

ority indicates that banks pay according to singleton liability priority list P.
Similarly to [17,29], we assume that F is non-degenerate (see below for a dis-
cussion).

Definition 2. A financial system is non-degenerate if and only if the following
two conditions hold. Every debtor in a CDS either has positive external assets
or is the debtor in at least one debt contract with a positive notional. Every bank
that acts as a reference bank in some CDS is the debtor of at least one debt
contract with a positive notional.

Given an instance I ∈ cds-priority-clearing we transform (1) into a
function defined on arbitrary recovery rate vectors r = (r1, · · · , rn) as:3

fI(r)i =
ai(r)

max{ai(r), li(r)} . (6)

From (6) we ascertain that r is a clearing recovery rate vector for I if
and only if r is a fixed point of fI , namely r = fI(r). Thus, solving
cds-priority-clearing comes down to computing the fixed points of fI . We
define cds-priority-clearing to contain only non-degenerate financial net-
works, for the analytical convenience that non-degeneracy provides (note that
a division by 0 never occurs in fI(r)i for these instances). It is not hard to see
that fI has fixed points, see, e.g., [21]. Moreover, there exist instances of (F ,P)
that admit multiple CRRVs.

Irrationality. As is the case for the proportional payments, the singleton lia-
bility priority list model contains instances that admit irrational CRRVs. Obser-
vation 1 below provides such an example while Observations 2 and 3 present
examples of how the priority profile affects the payments in the network. These
examples also provide insights on an important difference between the two pay-
ment scheme: In the proportional model, whenever the CRRV is irrational then
the clearing payment vector must be irrational as well. That is not the case in
the singleton liability priority payment scheme, where irrationality of a CRRV
need not cause any irrationality in the payments.
3 Strictly speaking, fI(r)i is defined only for nodes i that are not sinks in the contract

graph. Sink nodes have recovery rate 1, cf. (5). Their exclusion simply allows to
bypass potential divisions by 0 in fI (e.g., take node 1 in Fig. 1 when c = 1) while
preserving its continuity. For notational simplicity, we will implicitly assume that we
compute fI(r)i iff i is not a sink.
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Observation 1. There exist instances of (F ,P) that have irrational CRRVs.
For instance, we know that r2 = r5 = 1−√

c in Example 1. Thus, it is clear that
for many choices of c ∈ (0, 1) (e.g., c = 1/2) the CRRV is irrational.

Observation 2. There exist a pair (F ,P) with an irrational CRRV and irra-
tional payments. Take again Example 1 and fix c = 1/3. We have e2 = e5 = 2/3,
l2,3 = l5,6 = 2/3 and r2 = r5 = 1 − √

1/3. Now consider the singleton lia-
bility priority lists P2 = ((2, 1, 5) | (2, 3)) and P5 = ((5, 6, 2) | (5, 4)). Since
node 2 prioritises the (2, 1, 5) contract, it has to pay an amount of 1 − √

1/3 to
node 1. Given that its total assets are 2/3, it can fully pay this liability and so
p2,1 = 1−√

1/3 and what is left is being paid to node 3. Symmetrically, one can
compute that p5,6 = 1 − √

1/3.

Observation 3. There exist a pair (F ,P) with an irrational CRRV and rational
payments. Consider Example 1once more and fix c = 1/2. This yields e2 = e5 =
1/2, l2,3 = l5,6 = 1/2 and r2 = r5 = 1 − √

1/2. Consider the singleton liability
priority lists P2 = ((2, 1, 5) | (2, 3)) and P5 = ((5, 6, 2) | (5, 4)). Since node 2
prioritises the (2, 1, 5) contract, it has to pay a amount of 1 − √

1/2 to node
1 but only possesses total assets of 1/2. Thus it cannot fully pay this liability,
meaning that p2,1 = 1/2. Symmetrically, we can compute that p5,6 = 1/2.

A Primer on FIXP. A useful framework for studying the complexity of fixed
point computation problems is defined in [8]. Both exact and approximate com-
putation of the solutions to such problems are considered. We begin by defining
the notion of approximation we are interested in. Let F be a continuous function
that maps a compact convex set to itself and let ε > 0 be a small constant. An ε-
approximate fixed point of F is a point x is within a distance ε near a fixed point
of F , i.e., ∃x′ : F (x′) = x′ ∧ ‖x′ − x‖∞ < ε. This notion is also known as strong
approximation.4 We now introduce the problems we are focusing on. A fixed point
problem Π is defined as a search problem such that for every instance I ∈ Π
there is an associated continuous function FI : DI → DI —where DI ⊆ Rn (for
some n ∈ N) is a convex polytope described by a set of linear inequalities with
rational coefficients that can be computed from I in polynomial time—such that
the solutions of I are the fixed points of FI .

Definition 3. The class FIXP consists of all fixed point problems Π for which for
all I ∈ Π the function FI : DI → DI can be represented by an algebraic circuit
CI over the basis {+,−, ∗, /,max,min, k

√}, using rational constants, such that
CI computes FI , and CI can be constructed from I in time polynomial in |I|.

The class FIXPa is defined as the class of search problems that are the strong
approximation version of some fixed point problem that belongs to FIXP.

4 A weak ε -approximate fixed point of a continuous function F is a point x such
that its image is within distance ε of x, i.e., ‖x − F (x)‖∞ < ε. Under polynomial
continuity, a mild condition on the fixed point problem under consideration, a strong
approximation is also weak [8].
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The class Linear-FIXP is defined analogously to FIXP, but under the smaller
arithmetic basis where only the gates {+,−,max,min} and multiplication by
rational constants are used.

These classes admit complete problems. The completeness results in [8] in fact
show that it is without loss of generality to consider a restricted basis {+, ∗,max}
({+,max}) for FIXP (Linear-FIXP), and to assume that DI = [0, 1]n.5 Hardness
of a search problem Π for FIXP is defined through the existence of a polynomial
time computable function ρ : Π ′ → Π, for all Π ∈ FIXP, such that the solutions
of I can be obtained from the solutions of ρ(I) by applying a (polynomial-time
computable) linear transformation on a subset of ρ(I)’s coordinates. This type
of reduction is known as a polynomial time SL-reduction.

It is known that FIXPa ⊆ PSPACE and Linear-FIXP = PPAD [8]. An infor-
mal understanding of the hardness of FIXP vis-a-vis PPAD is as follows. PPAD
captures a type of computational hardness stemming from an essentially com-
binatorial source. FIXP introduces on top of that a type of numerical hardness
that emerges from the introduction of multiplication and division operations:
These operations give rise to irrationality in the exact solutions to these prob-
lems, and may independently also require the computation of rational numbers
of very high precision or very high magnitude.

3 Hardness of cds-priority-clearing

We are interested in identifying the complexity of cds-priority-clearing.
Recall that in Example 1, we presented an instance which under proper coef-
ficients admits only irrational clearing recovery rate vectors, which means that
either one should study this problem with respect to complexity classes compat-
ible real-valued solutions, or one should redefine the goal of the problem along
the lines of finding a rational-valued approximation to a potentially irrational
solution.

As an initial step, we first show that determining whether ri < 1 for a specific
bank i is at least as hard as solving the square root sum (sqrt-sum) problem.
An instance of sqrt-sum consists of n + 1 integers d1, d2, ..., dn, k and asks
whether

∑n
i=1

√
di ≤ k. It is known that sqrt-sum is solvable in PSPACE but

it is unknown whether it is in P, or even in NP. In [30] it is shown that it can
be solved in polynomial time in the unit-cost RAM model [2,26,30].

Lemma 1. For a given pair (F ,P), deciding whether a specific bank is in default
is sqrt-sum-hard.

Proof. We prove the lemma by reducing from sqrt-sum to cds-priority-
clearing. Let (d1, ..dn, k) be an instance of sqrt-sum. Firstly, we note that in
[4] it is shown that checking whether

∑n
i=1

√
di = k can be done in polynomial

time. We check whether equality holds for our input first and proceed without
loss of generality to the proof without minding equality.
5 We will make use of these facts in the proof of Theorem 1, below.



214 S. D. Ioannidis et al.

We construct a financial system F as follows, first we construct n financial
subnetworks which we refer to as square root gadgets and denote by gi,

√
. the ith

square root gadget. Whenever referring to a node k, belonging in a square root
gadget gi,

√
., we use the notation ki. The square root gadget gi,

√
. consists of the

financial network we presented in Fig. 1, augmented with two additional nodes
xi, yi, and the CDS contract (xi, yi, 2i). We let the external assets of nodes 2i

and 5i be e2i = e5i = 1 − di. We let exi
= 1 and eyi

= 0 and the CDS contract
(xi, yi, 2i) has a notional of 1: c2ixi,yi

= 1. The n square root gadgets are all
connected to a single node τ with eτ = 0, by n debt contracts {(yi, τ) : i ∈ [n]}.
There is one further node τ ′ to which τ is connected through debt contract (τ, τ ′)
with notional cτ,τ ′ = k. The construction is illustrated in Fig. 2.

We claim that this resulting financial system has a clearing recovery rate
vector r with rτ = 1 if and only if

∑n
i=1

√
di ≥ k. From the analysis of Example

1, it follows that under any clearing recovery rate vector r, the recovery rate of
node 2i is r2i = 1−√

di for all i ∈ [n]. Since node 2i is always in default(assuming
all di �= 0) the CDS (xi, yi, 2i) is activated and since node xi can fully pay its
liabilities, node yi receives a payment of 1 − r2i =

√
di. This implies that τ

receives a total payment of
∑

i∈[n]

√
di. Since τ has only one liability of k, it

holds that rτ = 1 if and only if the total payment that τ receives exceeds k, i.e.,
if and only if

∑
i∈[n]

√
di ≥ k, and this proves the claim. ��

Fig. 2. The financial system constructed from a given Square Root Sum instance

Next we show that cds-priority-clearing and its strong approximation
variant are FIXP and FIXPa complete, respectively. Our hardness reduction does
not start from a particular FIXP-hard problem. Rather, we show that we can
take an arbitrary algebraic circuit and encode it in a direct way in the form of
a financial system accompanied by a specific singleton liability profile. Hence,
our polynomial time hardness reduction works from any arbitrary fixed point
problem in FIXP. The reduction is constructed by devising various financial
network gadgets which enforce that certain banks in the system have recovery
rates that are the result of applying one of the operators in FIXP’s arithmetic
base to the recovery rates of two other banks in the system: In other words,
we can design our financial systems and singleton liability priorities such that
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the interrelation between the recovery rates mimics a computation through an
arbitrary algebraic circuit.

Theorem 1. cds-priority-clearing is FIXP-complete, and its strong approx-
imation version is FIXPa-complete.

Proof (sketch). Containment of cds-priority-clearing in FIXP is immediate:
The clearing vectors for an instance I = (N, e, c) ∈ cds-priority-clearing
are the fixed points of the function fI defined coordinate-wise by fI(r)i =

ai(r)
max{li(r),ai(r)} as in (6). The functions li(r) and ai(r) are defined in (1) and (4),
from which it is clear that fI can be computed using a polynomial size algebraic
circuit with only {max,+, ∗}, and rational constants. Note that non-degeneracy
of I prevents division by 0, so that the output of the circuit is well-defined for
every x ∈ [0, 1]n. This shows that cds-priority-clearing is in FIXP and that
its strong approximation version is in FIXPa.

For the FIXP-hardness of the problem, let Π be an arbitrary problem in FIXP.
We describe a polynomial-time reduction from Π to cds-priority-clearing.
Let I ∈ Π be an instance, let FI : [0, 1]n → [0, 1]n be I’s associated fixed point
function, and let CI be the algebraic circuit corresponding to FI . Our reduction is
analogous to the proof in [17], where the variant of the problem with proportional
payments is shown to be FIXP-hard: The proof consists of a “pre-processing” step
(in which the algebraic circuit is transformed into a specific form) followed by
a transformation into a financial network, where a set of financial subnetwork
gadgets are interconnected, and each such gadget corresponds to an arithmetic
gate in the algebraic circuit. The pre-processing step of this reduction is entirely
equal to that of [17]: This step transforms CI into a circuit C ′

I that satisfies that
all the signals propagated by all gates in C ′

I and all the used rational constants
in C ′

I are contained in the interval [0, 1]. The transformed circuit C ′
I may contain

two additional type of gates: Division gates and gates that compute the absolute
value of the difference of two operands. We will refer to the latter type of gate
as an absolute difference gate. The circuit C ′

I does not contain any subtraction
gates, and will not contain max and min gates either. The reader interested in
the details of this pre-processing step is referred to [17].

The second part of the proof (the transformation step) differs from [17] in
that a different set of gadgets needs to be used. For notational convenience,
we may treat C ′

I as the function FI , hence we may write C ′
I(x) = y to denote

FI(x) = y.
Each of our gadgets has one or two input banks that correspond to the input

signals of one of the types of arithmetic gate, and there is an output bank that
corresponds to the output signal of the gate. For each of the gadgets, it holds that
the output bank must have a recovery rate that equals the result of applying
the respective arithmetic operation on the recovery rates of the input banks.
Each gadget represents an arithmetic gate of the circuit, and the output banks
of a gadget are connected to input banks of other gadgets such that there is
a direct correspondence with the infrastructure of the arithmetic circuit. For
precise details on this correspondence, we refer the reader to the proof in [17].
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For defining our gadgets, we use our graphical notation for convenience. As
stated, our gadgets each have one or two input banks, and one output bank,
where the output bank is forced to have a clearing recovery rate that is obtained
by applying a arithmetic operation on the recovery rate of the input banks, so
as to simulate the arithmetic basis on which the algebraic circuit C ′

I is built.
As a simple example of one of these gadgets we define a straightforward

addition gadget, named g+, depicted in Fig. 3a. This gadget directly accounts
for the addition operation in the arithmetic basis. In our figures, input banks are
denoted by black arrows incoming from the left, and output banks correspond to
black arrows pointing out of the bank. The black arrows represent connections
to other gadgets, and these connections are always realised by a debt contract
of unit cost, and are always from the output node of a gadget to an input node
of another gadget. Another slightly more complex gadget example is the positive
subtraction gadget, displayed in Fig. 3b, taking two inputs r1, r2 and producing
as output the value max{0, r1 − r2}. This gadget is in turn used to form the
absolute difference gadget, which can be constructed by combining two positive
subtraction gadgets with an addition gadget (as |r1 − r2| = max{0, r1 − r2} +
max{0, r2 − r1}). It is also used in the construction of our multiplication gadget.

In the figures representing our gadgets, some of the nodes have been anno-
tated with a formula in terms of the recovery rates of the input banks of the
gadget, subject to the resulting values being in the interval [0, 1]. This can be
seen for example in the output node of our addition gadget in Fig. 3a. Such a
formula represents the value that a clearing recovery rate must satisfy for the
respective node. It is straightforward to verify that the given formulas are correct
for each of our gadgets.

Since all signals inside C ′
I are guaranteed to be in [0, 1] for all input vectors,

our financial system gadgets can readily be used and connected to each other
to construct a financial system that corresponds to C ′

I , i.e., such that the clear-
ing recovery rates of the input and output banks of each of the gadgets must
correspond to each of the signals inside the circuit C ′

I .
The remaining gadgets are omitted. Some of our gadgets are composed of

auxiliary gadgets, where in particular, the construction of the division gadget
is rather involved, and a separate discussion of how this gadget is constructed
is deferred to the full version of the paper. Another notably non-trivial gadget
is the multiplication gadget, where the main challenge in its construction is to
ensure that non-degeneracy holds and that the expressions for the intermediate
recovery rates inside the gadget are all contained in [0, 1]. ��

4 Hardness of Deciding the Best Priority Profile

In a financial network, each node i can be assigned one of outdeg(i)! singleton
liability priority lists. Consequently the number of candidate priority profiles for
a system is exponentially large in terms of its input size. Next, we consider the
setting where a financial authority is able to determine which priority list each
bank should get assigned, and is interested in assigning these in such a way that
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Fig. 3. Example gadgets from our reduction.

a specific objective is optimised for. We show that this problem is NP-hard for
a set of natural choices of objective functions:

1. Minimising the number of defaulting nodes.
2. Minimising the number of not fully paid liabilities.
3. Minimising the number of activated CDSes in the financial system.
4. Maximising the equity of a specific node.
5. Maximising the liquidity in the financial system.

We here only prove Statements 1, 2 and 4.

Lemma 2. Finding a priority list profile that minimises the number of default-
ing banks and finding a priority list profile that minimises the number of not
fully paid liabilities are both NP-hard problems.

Proof. We prove the lemma via a reduction from the satisfiability problem
(SAT), where we are given a boolean formula in conjunctive normal form, and
have to determine whether there is a truth assignment to the variables that

renders the formula true. Let F =
n∧

i=1

Ci be a SAT instance, where C1, . . . , Cn

are the clauses, and let VF be the set of all variables that in F . We create a
financial network from F as follows. For each variable x ∈ VF we construct a
gadget that is refereed to as the x-subnetwork. Each x-subnetwork consists of
four nodes, labeled as ix, x,¬x, jx, where eix = 1 and ex = e¬x = ejx = 0,
and of four debt contracts, DC = {(ix, x), (ix,¬x), (x, jx), (¬x, jx)} all with con-
tract notionals equal to one. Moreover, the constructed financial network has n
further nodes, labeled as C1, . . . , Cn, that correspond to each clause in F with
eC1 = · · · = eCn

= 0, and one terminal node labeled as τ , towards which each Ci
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holds a debt contract of notional one, i.e. cCi,τ = 1. Finally for each variable x of
F , we construct two nodes labeled as kx and k¬x respectively, where ekx

and ek¬x

are equal to the number of occurrences of literals x and ¬x in F , respectively.
Whenever a literal l belongs to a clause Ci we construct the CDS (kl, Ci,¬l)
with c¬l

kl,Ci
= 1. An example of a network induced from F = (x ∨ y) ∧ (y ∨ ¬y)

is given in Fig. 4. We now map a truth assignment T : VF �→ {true, false} to
a priority list profile PT as follows: If T(x) = true, node ix prioritises node x,
and otherwise it prioritises node ¬x. All kl nodes posses enough external assets
to fully pay their debts under any priority list, so we can take an arbitrary list
for those nodes, and all remaining nodes have at most one liability. Conversely,
from a priority list profile P we induce the truth assignment TP as follows: if ix
prioritises x then T(x) = true otherwise T(x) = false.

Let T : VF �→ {true, false} be any truth assignment and consider the priority
list profile PT. In each x-subnetwork, node ix can fully pay only its first priority,
thus in each x-subnetwork there exist two defaulting nodes regardless of the
choice of priority list of ix, meaning that the minimum number of defaulting
nodes in the induced financial system is 2|VF |. Similarly, each x-subnetwork has
two not fully paid liabilities regardless of the choice of priority lost of ix. The
only additional defaulting nodes might be the nodes C1, . . . , Cn, and the only
additional not fully paid liabilities might be on the n debt contracts in which
one of C1, . . . , Cn is the debtor. Let us inspect which of the latter set of nodes
are defaulting and which of the latter liabilities are not fully paid under PT.
If clause Ci is a clause that is not satisfied under T, then none of the CDSes
involving node Ci are activated, and node Ci does not have any assets under
PT. Since Ci has to pay 1 to τ , node Ci will be in default, and Ci’s liability
of 1 will not be paid. If clause Ci is a clause that is satisfied under T, then at
least one CDS involving node Ci is activated, and since the reference bank in
this CDS has recovery rate 0, node Ci will receive the CDS’s full notional of 1,
with which it can fully pay its liability of 1. Hence, in the latter case, node Ci is
not in default.

Hence, for a truth assignment T, under PT, the number of banks in default
and the number of not fully paid liabilities is are both equal to 2|VF | plus the
number of unsatisfied clauses. Since we argued above that restricting to the
profiles {PT | T is a truth-assignment for F} is without loss of generality, from
finding the profile of priority lists minimising the number of defaulting banks or
minimising the number of not fully paid liabilities in the constructed financial
network, one can infer whether the formula F is satisfiable, which proves our
claim. ��

Lemma 3. Finding a priority list profile that maximises the equity of a specific
node is NP-hard.

Proof. We prove the lemma via a reduction from Knapsack. Let us be given
a knapsack instance with a knapsack of capacity B, a set S = {a1, . . . , an}
of objects having profit profit(ai) and size size(ai). Without loss of generality,
we assume that size(ai), for all ai ∈ S as well as B are integer numbers. We
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Fig. 4. The financial system corresponding to the formula F = {x ∨ ¬y} ∧ {y ∨ ¬y}.

construct a financial network F = (N, e, c) as follows: We introduce a node 0 with
external assets e0 = B and for each object aj ∈ S we introduce a corresponding
node j and let node 0 hold a debt contract towards each node j with notional
c0,j = size(aj). Moreover we introduce a node τ with eτ = 0, and a node T
with eT = 0, which we refer to as the terminal node. We add a debt contract
of notional size(aj) from each node j to node τ . For each node j we moreover
introduce a j-subnetwork, consisting of:

– two nodes yj and xj with eyj
= 1, exj

= 0,
– a CDS contract (yj , xj , j) with notional cj

yj ,xj
= maxaj∈S{size(aj)},

– a node zj towards which xj holds a debt contract of notional cxj ,zj
= 1.

– a node kj with ekj
= profit(aj) and an outgoing CDS (kj , T, xj) with notional

profit(aj).

The construction of the j-subnetwork is illustrated in Fig. 5.
Assume an optimal solution to the original Knapsack instance and let OPT

be the set of the objects aj contained in it. We know that
∑

ai∈OPT size(ai) ≤ B
and that

∑
ai∈OPT profit(ai), is the maximum profit that can fit in the knap-

sack. We define the set N = {1, . . . , n}, and NOPT = {j | aj ∈ OPT} to
be the set containing all nodes in F that correspond to objects contained in
the optimal solution. Fix the singleton liability priority list for node 0 to be
P0 = ({NOPT} | {N \ NOPT}), meaning that node 0 first prioritises all creditors
in NOPT in an arbitrary order and afterwards all other creditors in N \ NOPT
again in an arbitrary order. Next we prove that under this profile, node T
receives its maximum total assets. Observe that ∀j ∈ NOPT, p0j = size(aj)
since

∑
j∈NOPT

c0j =
∑

aj∈OPT size(aj) ≤ B = e0. Since every j node that
corresponds to an object aj ∈ OPT receives size(aj), it can fully pay node
τ , so rj = 1. For all creditors m ∈ N \ NOPT it holds that p0m < size(am)
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Fig. 5. The j subnetwork of the constructed financial system

So, ∀j ∈ NOPT : rj = 1 while ∀m ∈ N \ NOPT : rm < 1. Next we prove
that for each j ∈ NOPT, pkj ,T = profit(aj) and for each m ∈ N \ NOPT,
pkm,T = 0. Take a j ∈ NOPT, we know that rj = 1, which implies that the
CDS (yj , xj , j) is not activated thus rxj

= 0 which in turn activates the CDS
(kj ,T, xj) where node kj pays profit(aj) to node T . On the other side, for a
m ∈ N \ NOPT, it holds that rm < 1, which means that the CDS (ym, xm,m) is
activated and generates a liability of maxai∈S{size(ai)} · (1 − rm) for node ym.
We prove that this liability is at least 1: For an object am /∈ OPT, rm indicates
the proportion of size(am) that fits in the available knapsack area unoccupied
by the objects in OPT. Obviously for am /∈ OPT, size(am) > B − size(OPT),
otherwise am ∈ OPT and rm · size(am) + size(OPT) = B. Since by assump-
tion B and size(aj) for all aj ∈ S are integers, it holds that ∀am /∈ OPT,
rm ≤ (maxak∈S{size(ak)} − 1)/(maxak∈S{size(ak)}, so the liability for ym is:

lmym,xm
= max

ak∈S
{size(ak)}(1 − rm)

≥ max
ak∈S

{size(ak)}
(
1 − maxak∈S{size(ak)} − 1

maxak∈S{size(ak)}
)

= 1.

So eventually, ∀m ∈ N \ NOPT, pym,xm
= 1. Now rxm

= 1 thus the CDS
(km,T, xm) is not activated meaning that pkm,T = 0. From the above observa-
tions we conclude that the equity of T is

∑
j∈NOPT

profit(aj): node T receives
money from all nodes that correspond to objects contained in OPT. We claim
that this is the maximum equity node T can receive. If there exist a higher equity
for T , then this must be generated from another profile P ′

0 that corresponds to
a solution to the original Knapsack instance with higher profit than the optimal
one which is a contradiction.

For the opposite direction assume P0 to be the profile of node 0 that
maximises T ’s equity. Let A = {aj | p0j = size(aj)} be the set of objects
that corresponds to creditor nodes that node 0 can fully pay. Obviously A
can be computed in polynomial time from P0. We claim that A is the opti-
mal solution to the original Knapsack instance. Assume that there exists
another set A′ such that

∑
aj∈A′ size(aj) ≤ B and

∑
aj∈A′ profit(aj) >∑

aj∈A profit(aj). Now node 0 could rearrange its priorities by prioritising all
creditors j for which aj ∈ A′. Doing so, node 0 can fully pay all nodes j
for which aj ∈ A′ since

∑
aj∈A′ size(aj) ≤ B = e0 and node T receives∑

aj∈A′ profit(aj) >
∑

aj∈A profit(aj), a contradiction to the original assumption
that

∑
aj∈A profit(aj) is the maximum equity for node T . ��
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5 Conclusions and Future Work

Financial networks have emerged as a fertile research area in both computational
complexity and algorithmic game theory. It is paramount to understand systemic
risk in finance from both these perspectives. In this paper, we join both streams
of work by settling questions around the computational complexity of systemic
risk for priority payments, a scheme so far only studied from the game-theoretic
point of view. In an interesting parallel with the state of the art for proportional
payments, we prove that computing clearing recovery rates is FIXP-complete
whereas it is NP-hard to compute the priority lists optimising several measures
of financial health of the system.

Our work paves the way for studying payment schemes in financial networks
in more detail. Is there a payment scheme for financial networks with derivatives
that makes the computation of systemic risk easy and/or that induces “nice”
equilibria? We also wonder the extent to which the flexibility of working with
financial networks can lead to a deeper understanding of FIXP; e.g., are there
payment schemes that can be proved complete for variants of FIXP defined upon
a different basis?
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