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Abstract
We consider a multi-stage facility reallocation problems on the real line, where a
facility is being moved between time stages based on the locations reported by n
agents. The aim of the reallocation algorithm is to minimise the social cost, i.e., the
sum over the total distance between the facility and all agents at all stages, plus the
cost incurred for moving the facility. We study this problem both in the offline setting
and online setting. In the offline case the algorithm has full knowledge of the agent
locations in all future stages, and in the online setting the algorithm does not know
these future locations and must decide the location of the facility on a stage-per-stage
basis. We derive the optimal algorithm in both cases. For the online setting we show
that its competitive ratio is (n + 2)/(n + 1). As neither of these algorithms turns out
to yield a strategy-proof mechanism, we propose another strategy-proof mechanism
which has a competitive ratio of (n + 3)/(n + 1) for odd n and (n + 4)/n for even n,
which we conjecture to be the best possible. We also consider a generalisation with
multiple facilities and weighted agents, for which we show that the optimum can be
computed in polynomial time for a fixed number of facilities.

Keywords Facility location · Online algorithms · Strategy-proof mechanisms

1 Introduction

Facility location is one of the most well-studied problems in the literature due to its
multitude of practical applications, e.g., to clustering of images [26], and to document

A preliminary version of this paper has appeared in the Proceedings of the IJCAI 2018 conference.

B Bart de Keijzer
bart.de_keijzer@kcl.ac.uk

Dominik Wojtczak
d.wojtczak@liverpool.ac.uk

1 King’s College London, London, United Kingdom

2 University of Liverpool, Liverpool, United Kingdom

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-022-00993-1&domain=pdf
http://orcid.org/0000-0001-9465-0837


Algorithmica (2022) 84:2898–2925 2899

and image summarisation [16, 29]. In its simplest form, also referred to as the Weber
problem [30], the aim is to locate a single point fromwhich the sumof the transportation
costs to n agents’ locations is minimal. The generalisation of this problem where the
task is to place k facilities in a way that the sum of the distances of each agent to its
nearest facility is minimised, is NP-hard already in two-dimensions [19]. However, it
is polynomial time solvable in the one-dimensional setting [20], i.e., when the agents’
and facilities’ locations are all placed along a single real line. Such scenarios were
studied, e.g., in the context of an optimal placement of public facilities along a street
[21] or to analyse voting scenarios [8].

We generalise this classic facility location problem to the situation where the inter-
action between agents and facilities lasts over multiple rounds, the agents’ locations
may not be known in advance and the facilities can be moved if needed. In particular,
let us consider the following motivating example. Assume there is a political party
with k members that would like to win the next T consecutive parliamentary elections.
In order to achieve this, the party would like its members to represent the political
opinions of as many voters as possible to get their votes. A voter feels well-represented
if at least one party member has a similar political stance as her. As a result, a party
that would like to succeed should try to gather members with a diverse range of polit-
ical opinions.1 During each term, the political opinion of the voters may change and
the party may need to refocus and reconsider their positions, to better reflect current
political sentiments. At the same time, each time a politician changes their opinion,
they lose a bit of credibility. To estimate such a difference in opinions, [5] proposed to
model the political views as a spectrum, ranging from extreme-left to extreme-right, as
points along as a single real line. The ultimate aim for the party is then to minimise the
sum of the distances from its voters while simultaneously taking into consideration
the credibility that is lost when readjusting the party’s political stance before each
election.

In an alternative formulation, one can imagine a long and narrow beach where k
ice-cream vendors (owned by the same company) are to be located. For the next T
hours, the beach is visited by n customers and their location may change throughout
the day. As each client will typically simply pick the closest vendor, it is best for
the vendors to change their location throughout the day to adjust to the demand. The
aim in this case is the minimisation of the social cost, i.e., the total distance that the
customers as well as the ice-cream vendors have to travel.

Themodelswedescribed so far assumed the agents to report their location truthfully.
However, since each agent would like to be as close as possible to one of the facilities,
theymay have an incentive to lie, andmisreport their location as an attempt tomake the
facility move closer to their real location. From the point of view of the facility owner,
such untruthful behaviour is highly undesirable, as the reported information needs to be
reliable for making effective decisions on relocating the facilities. Thus, one typically
strives to devise a strategy-proof mechanism, where the termmechanism simply refers
to an algorithm that takes inputs from multiple independently acting self-interested
agents, and outputs a facility assignment based on the locations reported by these

1 In reality, it would not be possible to choose such political positions in a completely arbitrary way, as a
certain degree of consistency in a party’s program is needed for it to be taken seriously by the public. This
raises some interesting open research questions.
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agents, while strategy-proof refers to the property that under this mechanism no agent
can gain by misreporting their location. There are various very important mechanism
design domains where strategy-proofness is attained by allowing the mechanism to
charge a payment from the agents, where the utility function that an agent is trying to
maximise is then modeled by including the payment as a negative term. Examples of
such domains include many auction scenarios, where an auctioneer runs a mechanism
to sell one or more items, and the participating agents can receive these items in
exchange for a payment. However, there are also many domains where payments
are impossible or undesirable, e.g., in kidney exchanges, public projects, politics, and
voting settings. This impossibility may arise due to e.g. ethical, legal or privacy issues.
In such settings, the mechanism proposed needs to be strategy-proof, without using
any monetary transfers. One of the aims (among others) of the present paper is to
design strategy-proof mechanism without money for the facility reallocation problem.
Outline of this paper.Our analysis starts in Sect. 3 with finding an optimal algorithm in
the case the true locations of all the agents are known, which we call the offline setting.
We show that there is an algorithm for the offline setting that runs in linear time for one
facility (k = 1) and another one that runs in polynomial time for any fixed k. We then
adapt our algorithm for k = 1 to the online setting in Sect. 5. In such a setting, at each
time stage we are required to make the decisions on the location of the subsequent
time stage, before seeing the remainder of the input (i.e., the locations of the agents
in future stages), which makes it impossible to find a solution of the same quality as
the optimal offline solution. However, for the online setting we are able to minimise
the competitive ratio instead, which is the worst-case ratio of the cost returned by the
online algorithm and the optimal offline cost. We show a mechanism of which the
competitive ratio is (n + 2)/(n + 1) and prove that no other algorithm can do better.
Finally, in Sect. 6, we show that neither of these one facility location algorithms yields
a strategy-proof mechanism, and we devise a new strategy-proof mechanism without
monetary transfers. We show that the competitive ratio of this mechanism is (n+4)/n
for odd n and (n + 3)/(n + 1) for even n, and that these values are tight.

A preliminary version of this paper, where most of the proofs were omitted has
appeared as [15].

1.1 RelatedWork

The body of literature on facility location is extensive and very diverse in the large
array of variations of the problem that has been considered in past literature. We limit
our discussion in this setting to the papers that are, to the best of our knowledge, most
closely related to ours.

Since an earlier publication of a preliminary conference version of the present
paper [15], direct follow up work to has appeared in [11] where the authors present
a polynomial time algorithm for the generalisation of the reallocation problem where
there are multiple (i.e., K ≥ 1) facilities. The main results of [11] are an algorithm for
computing the optimal solution in the offline variant of the problem, where all agent
locations at all stages are known in advance. This algorithm runs in time polynomial in
n, T , and K . Additionally, the authors present an online algorithmwith an analysis that
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bounds its competitive ratio. In the present paper, we also present an (offline) algorithm
for the K -facility variant, under the additional generalisation that the objective is
to minimise a weighted sum of costs of the players. Our algorithm, runs in time
exponential in K , but polynomial in n and T , yielding a polynomial time algorithm
for each fixed choice of K .

Our work fits tightly into the literature of time-evolving optimisation problems,
where an instance of a computational problem changes over time and there is a cost
incurred by implementing a change in the solution at each time step.

See, for example, [2, 7, 14], where the latter two works consider two other variants
of time-evolving facility reallocation problems.

A mobile facility location problem, which can be seen as a one-stage version of our
problem with k facilities, was introduced in [13] where it was shown that this problem
is NP-hard in general. A polynomial (3 + ε)-approximation algorithm was given in
[1].

The study of the k-facility location problem in an online setting, also called the
k-median problem in such a context, has been extensively studied (see, e.g., [10] for a
survey). In particular, [4] studied an online model where the location of the facilities
can be moved, but with a zero cost.

The papers [6, 31] comprise a recent study on strategy-proofness for a facility
location problem on a line, where there are two facilities to be placed, and agents
aim to minimise their total distance to both these facilities. Another recent work is
[3], where there are again two facilities, and the utility functions of the agents are
heterogeneous, where an agent may either maximise or minimise over the distances
to the facilities.

The field of approximate mechanism design without money was initiated by [23]
where the facility location problem was considered. This research has attracted much
attention in recent AI conferences. For example, [28] study false-name strategy-proof
mechanisms on a real line, i.e., suchmechanisms cannot bemanipulated to their advan-
tage by agents who replicate themselves. The paper [27] study strategy-proof facility
location in multi-dimensional space for different metrics and devise the percentile
mechanisms for them. In [32], strategy-proof mechanisms are studied for agents with
dual preferences where some agents would like to be as close as possible to a facility,
while others would prefer to be as far as possible. Moreover, [25] study the two facil-
ity problem where the cost function may differ between agents. The paper [9] studies
strategy-proof mechanisms for double-peaked preferences, which can model e.g., a
scenario where each agent would like to be close to a facility, but not too close. In [24]
the trade-off is studied between variance and approximation factor for strategy-proof
mechanisms. The one-stage facility location problem in the context of voting under
the constraint that the facilities can only be placed on agents’ locations is studied
in [8]. Furthermore, [12] characterised completely the deterministic strategy-proof
mechanisms for the placement of two facilities on the line and showed that the best
approximation ratio of such a mechanism is n − 2. Lastly, [17] showed there exists a
4-approximation randomised mechanism for the same problem, while a 1.045 lower
bound is also known [18].
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2 Preliminaries

For a ∈ N, we will write [a] to denote the set {1, . . . , a}. In this paper we will treat
all sets as multisets, and all the operations are thus multiset operators.

An instance of the facility reallocation problem is a quadruple (n, T , y0, x), where
n ∈ N is the number of agents, T is the number of stages, y0 is the starting location of
facility, and x = (x1, . . . , xT ) are the vectors of agent locations in each stage, where
xt = (xt1 . . . , xtn) ∈ R

n are the locations of the agents at Stage t ∈ [T ]. A solution
of a given instance is a placement of the facility at each of the stages, i.e., a sequence
y = (y1, . . . yT ) ∈ R

T . A mechanism is a mapping from instances to solutions.2 The
cost of a solution y is given by

C(y) =
T∑

t=1

(
|yt−1

j − ytj | +
n∑

i=1

|xti − ytj |
)

,

which is, in words, the sum of distances from each agent to the facility at each stage
t , plus the total distance the facility moves across all stages. An optimal solution is
a solution that minimises C . For convenience we denote the individual terms in the
above summation by C1, . . .CT . So, for t ∈ [T ] we let

Ct (y) =
(

|yt−1
j − ytj | +

n∑

i=1

|xti − ytj |
)

,

so that

C(y) =
T∑

t=1

Ct (y).

AsCt is only dependent on the values of y at coordinates t−1 and t , we may overload
notation and occasionally write Ct (yt−1, yt ) instead of C(y).

We define Xt as the multiset {xt1, . . . , xtn}. Let t ∈ [T ] be a stage, and let yt−1

be any location. We define Mt (yt−1) as the median of the set of points Xt ∪ {yt−1},
i.e., the set of points z such that

∑n
i=1 |xti − z| + |yt−1 − z| is minimised. Note that

Mt (yt−1) implicitly depends on the set Xt which is part of a facility reallocation
problem instance, but this set Xt will be clear from context at all times throughout
our discussion. It is straighforward to verify that Mt (yt−1) is the middle point of
{yt−1} ∪ Xt if n is even, and is the interval between (and including) the two middle
points of {yt } ∪ Xt if n is odd.

In Sect. 6, we study the strategy-proofness property of our mechanisms. There, we
assume that the input to the mechanism is provided by the agents, who are interested
in minimising their total distance to the facility. They may thus misreport their true
locations, in case this results in facility placements closer to their true locations.

2 For convenience, we conflate the terms algorithm and mechanism from this point.
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Let A be a mechanism. We define the cost of Agent i ∈ [n] for a solution y as

ci (y) =
T∑

t=1

|yi − xti |.

We use the notation (x̃S, x−S) to denote a solution obtained from x by replacing the
location vectors {xi : i ∈ S} where xi = (x1i , . . . , x

T
i ), by different vectors x̃S = {x̃i :

i ∈ S}, where x̃i = (x̃1i , . . . , x̃
T
i ) are the alternative locations corresponding to Agent

i ∈ S.Mechanism A is group-strategy-proof if for all S ⊆ [n], for all x̃S , there exists an
i ∈ S such that ci (A(x)) ≤ ci (A(x̃S, x−S)). Mechanism A is strategy-proof if for all
i and for all x̃i it holds that ci (A(x)) ≤ ci (A(x̃i , x−i )). Thus, stated more informally,
strategy-proofness is a property that requires that no agent can improve their cost
through reporting a set of locations other than their true locations. Similarly, group-
strategy-proofness requires that no set of agents can collectively report alternative
locations such that all agents in the set strictly improve their cost.

3 Optimal Mechanisms

First, we consider the basic problem of computing an optimal solution to the facility
reallocation problemwhen the complete instance is given to themechanism in advance.

Let I = (n, T , y0, x) be a facility reallocation instance. The following lemmas
show that in every Stage t ∈ [T ], putting the facility on a point in the intervalMt (yt−1)

is less expensive than putting the facility outside of Mt (yt−1), regardless of the choice
of facility locations in all the other stages.

Lemma 1 Let y = (y1, . . . , yT ) be a solution to I and let t ∈ [T ], and let d be the
distance between yt and the nearest point z ∈ Mt (yt−1). Then,

d ≥ Ct (y) − Ct ((z, y−t )),

where (z, y−t ) is the vector of facility locations obtained from y by replacing yt with
z.

Proof In case n is even, then Mt (yt−1) is a single point, located either at yt−1 or at one
of the agents. We consider only the latter case, and assume that Mt (yt−1) is located
at an Agent �, with location xt�. The former case is proved by simply replacing xt� by
yt−1 in the proof that follows. Consider the list x↑ in which the multiset of points
({yi−1} ∪ Xt ) \ {xt�} is ordered non-decreasingly. Note that x↑ consists of n entries.
The cost Ct ((w, y−t )) of placing the facility at any point w can now be written as:

n/2∑

i=1

(|x↑
i − w| + |x↑

n−i+1 − w|) + |xt� − w|.
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Note that the i th term in the above summation is at least |x↑
i −x↑

n−i+1|, and in casew lies

in between x↑
i and x↑

n−i+1 then this holds with equality. Moreover, it is straighforward

to verify that in case w lies at a distance c of the interval [x↑
i , x↑

n−i+1], then the i th

term in the summation is equal to 2c + |x↑
i − x↑

n−i+1|. Point z lies at distance 0 of

xt� and is in all intervals [x↑
i , x↑

n−i+1], i ∈ [n/2], so point z lies at distance 0 from all
these intervals. Thus,

Ct (z, y−t ) =
n/2∑

i=1

(|x↑
i − x↑

n−i+1|),

and z minimises the total cost at Stage t , given y−t . Point yt lies at distance d from
point z = xt�, Hence,

Ct (y) ≥
n/2∑

i=1

(|x↑
i − x↑

n−i+1|) + d = Ct ((z, y−t )) + d,

which proves the claim for even n.
In case n is odd, define x↑ now as the list in which the multiset of points {yt−1}∪Xt

is ordered non-decreasingly. Note that x↑ consists of an even number of n+ 1 entries.
The cost of placing the facility at any point w can now be written as

(n+1)/2∑

i=1

(|x↑
i − w| + |x↑

n−i+1 − w|).

In case w lies at a distance c of the interval Ii = [x↑
i , x↑

n−i+1], then the i th term in

the summation is equal to 2c + |x↑
i − x↑

n−i+1|. The point yt lies at distance d from

Mt (yt−1) = [x↑
�n/2	, x

↑
�n/2	+1] = I(n+1)/2, the interval corresponding to the last term

of the above summation. The point z lies in all intervals I1, . . . , I(n+1)/2 of the above
summation, and this establishes the claim for odd n. 
�
The following lemma is proved using the former.

Lemma 2 Let y = (y1, . . . , yT ) be a solution to I . Suppose that there is a Stage t
such that yt is not in Mt (yt−1). Then, replacing yt with the nearest point ỹt to yt that
lies in Mt (yt−1) results in a solution with a cost that is at most C(y).

Proof We can write the difference in costs of y and (ỹt , y−t ) as follows:

C(y) − C((ỹt , y−t ))

=
T∑

u=1

(Cu(y) − Cu((ỹt , y−t )))

= Ct (y) − Ct ((ỹt , y−t )) + Ct+1(y) − Ct+1((ỹt , y−t ))
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=
n∑

i=1

(|xti − yt | − |xti − ỹt |) + |yt−1 − yt | − |yt−1 − ỹt |

+
n∑

i=1

(|xt+1
i − yt+1| − |xt+1

i − yt+1|) + |yt − yt+1| − |ỹt − yt+1|

=
n∑

i=1

(|xti − yt | − |xti − ỹt |) + |yt−1 − yt | − |yt−1 − ỹt |

+ |yt − yt+1| − |ỹt − yt+1|
= Ct (y) − Ct ((ỹt , y−t )) + |yt − yt+1| − |ỹt − yt+1|
≥ |yt − ỹt | + |yt − yt+1| − |ỹt − yt+1|
≥ |yt − ỹt | − |yt − ỹt |
= 0.

where in the second-to-last inequality we used Lemma 1, where in this case d =
|yt − ỹt |. 
�

Lemma 2 yields an easy and efficiently computable optimal mechanism when n is
even: An optimal facility reallocation mechanism for k = 1 always places the facility
at Stage t ∈ [T ] in the median interval Mt (yt−1). Hence, when the number of agents
is even, the optimal allocation vector is unique and can be computed in O(nT ) (i.e.,
linear) time.

For n odd, the above does not yet characterise the optimal mechanism, and it turns
out that in this case the facility cannot be placed at just any point in the median without
sacrificing optimality. This is due to the fact that the median Mt (yt−1) of Stage t is
dependent on the location yt−1 of the facility of the previous stage, and is therefore by
recursion also dependent on the location the facility and all the agents at all previous
stages. Because Mt (yt−1) is generally an interval of points instead of a single point,
there is a choice to be made that influences the medians of all the subsequent stages.

The following two example instances show that the optimal choice of facility at a
given stage may depend on the locations of the agents in the next stage.

Example 1 Consider first the following example with T = 3 stages and n = 3 agents,
depicted in Fig. 1. Let y0 = 3 be the initial facility location. The locations of the
agents at each of the 3 stages are x1 = (3, 7, 7), x2 = (4, 5, 6), x3 = (1, 1, 2). The
median in the first stage is the interval [3, 7]. The point in this median that we choose
for y1 influences the median in the second stage:

– When we set y1 ∈ [3, 4], the median in the second stage will be [4, 5];
– When y1 ∈ (4, 5], the median in the second stage will be [y1, 5];
– When y1 ∈ [5, 6), the median in the second stage will be [5, y1);
– When y1 ∈ [6, 7], the median in the second stage will be [5, 6].
The optimal solution is to set y1 ∈ [4, 5], and to not move the facility to a different

location in the second stage. This is the best tradeoff to minimising the second stage’s
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1 2 3 4 5 6 7 8 9 100

Stage 1

Stage 2

Stage 3

y0

y1

y2

y3

Stage 3’ y2

y3

Fig. 1 Depiction of the two facility reallocation instances of Example 1, one consisting of Stages 1,2,3, and
the other consisting of stages 1,2,3′. The dots indicate the locations of the agents at each stage. The squares
indicate an optimal choice of facility locations, where the square at a given stage is the facility location
at the previous stage. (At the first stage it is the starting location.) The square below the final stage is the
facility location at the last stage. The blue part of the line at Stage t represents the median Mt (yt−1). The
bottom part of the figure illustrates that in case Stage 3 of this instance would be replaced with Stage 3’,
then the facility placement at stages two and 3 would need to be chosen diffently than the solution presented
in this figure for the original instance (Color figure online)

cost while keeping the facility close to the agent locations in the third stage so that the
third stage’s cost is also kept small.

However, if in Stage 3 the facilities of the three agents would be x̄3 = (8, 9, 9), then
the optimal choice of facility location for the first stage would be to set y1 ∈ [5, 6]. 
�

The above examples show that theremay be infinitelymany optimal solutions when
n is odd. The analysis also suggests that it may always be optimal to put the facility at
any given stage at the location of the central agent of the subsequent stage, whenever
that is possible. We can prove this, and in fact we can refine this statement further, as
follows.

Theorem 1 Suppose that in instance I it holds that n is odd. There exists an optimal
solution y for this instance such that:

– at any Stage t ∈ [T − 1], the facility is placed at the point in Mt (yt−1) that lies
closest to the location of the middle agent at the subsequent Stage t + 1, i.e., the
median of {xt+1

1 , . . . , xt+1
n }.

– At Stage T , the facility is placed anywhere in Mt (yt−1).

Proof We assume without loss of generality (by possibly renaming the agents at each
stage) that xti ≤ xti+1 for all i ∈ [n − 1] and all t ∈ [T ] so that xt
n/2� is the location
of the middle agent for each Stage t . We also assume without loss of generality that
the starting location y0 is located at the right of the middle agent x
n/s�. We prove by
induction on the number of stages T that the claim holds. We additionally prove at
each stage of our inductive proof the following auxiliary claim:

– Changing the instance I by moving the starting location y0 a distance d further to
the right (i.e., away from the middle agent x1
n/s� at Stage 1) does not decrease the
optimal cost, and will increase the optimal cost by at most d.
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Our induction basis is when T = 1, where our claim follows from the definition of
C : Letting x↑ denote the non-decreasingly ordered list X1∪{y0}, the distance between
the facility and any pair of points x↑

i , x↑
n−i+1 (where i ∈ [(n + 1)/2]) is minimised

when y1 is in between these two points, and placing the facility anywhere in M1(y0)
ensures that the facility is placed in between all these pairs. The cost is then equal to
the length of all the intervals. Moreover, changing the instance by moving the starting
location y0 an amount of d to the right can only lengthen the set of intervals, and will
increase the total length of the intervals by d. This shows that the base case holds.

Suppose now that the claim, including the auxiliary claim, holds for all instances
with T = U stages. We prove that it also holds when I has T = U + 1 stages.

Consider the subinstance of I restricted to stages [U+1]\{1} after fixing the facility
location at stage one to any location z1. Denote this subinstance by J (z1). We denote
the optimal cost of J by C∗(J (z1)). By the induction hypothesis, we may assume that
every solution vector for J satisfying the properties of the claim, is optimal for J (i.e.,
attains cost C∗(J (z1))). We denote by s(J (z1)) such an optimal solution vector.

The cost C(y) of instance I for a given solution y can now be decomposed as the
sum of the cost incurred by Stage 1 and the cost of (y2, . . . , yn) on subinstance J (y1).
If y is an optimal solution, then taking y and replacing the entries (y2, . . . , yn) by
s(J (y1)) is also an optimal solution for I . The location y1 in the optimal solution
should thus satisfy that C1(y0, y1) +C∗(J (y1)) is minimised. By Lemma 2, it holds
that y1 ∈ M1(y0), and by the auxiliary claim of the induction hypothesis, C∗(J (y1))
decreases as y1 gets closer to x
n/2�. Furthermore, the term C1(y0, y1) is constant in
its argument y1 on the subdomain M1(y0). Altogether this means that y1 is the point
in M1(y0) closest to x1
n/2�. This proves that (y1, s(J (y1))) is an optimal solution for
I that satisfies the properties of the main claim, and concludes the proof of the main
claim of the induction step.

What remains is to establish the auxiliary claim. To that end, let Ĩ be an instance
where the starting location ỹ0 lies at a distance d to the right of y0, and where Ĩ is
otherwise identical to I . Through analogous reasoning as above, we infer that there is
a solution ỹ = (ỹ1, s(J (ỹ1))) for instance Ĩ that satisfies the properties of the main
claim. Because x1
n/s� ≤ y0 ≤ ỹ0, we have the inclusion M1(y0) ⊆ M1(ỹ1), and
these two medians share the same leftmost endpoint. We now distinguish three cases.

– If x2
n/2� ∈ M1(y0), then also x2
n/2� ∈ M1(ỹ0), which means that both y1 and

ỹ1 are placed at location x2
n/2�. This means that in both instances I and Ĩ the
contribution to the cost by the subinstance J is the same, and the only difference in
cost is causedby the cost contributionofStage 1.Thedifference in cost contribution
of Stage 1 among the two instances is d, which follows from analogous reasoning
as in the proof of the base case of the induction. This means that the total cost
difference between optimal solutions for instances I and Ĩ is d, and this establishes
the auxiliary claim for this case.

– If x2
n/2� lies strictly to the left of M1(y0), which means that also in this case,

y1 and ỹ1 are the same location, which is the leftmost endpoint of M1(y0) (and
M1(ỹ0)). For reasons analogous to the former case, it follows that the total cost
difference between optimal solutions for instances I and Ĩ is d.
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– In the last case, x2
n/2� lies strictly to the right of M1(y0). Because in the two
instances, in the first stage, the facilities are placed at the point in the median
closest to x2
n/2�, it holds for the subinstances J (y1) and J (ỹ1) that the starting
positions are at distance at most d from each other, and that the starting positions
both lie on the same side of the middle agent location x2
n/2� at the first stage of
these subinstances. Thus, the auxiliary claim of the induction hypothesis applies to
the resulting pair of subinstances and we may conclude that in these subinstances
the optimal costs differ by at most d, where C∗(J (ỹ1)) ≤ C∗(J (y)). Next, we
observe that the optimal cost of I in the first stage is exactly d less than the optimal
cost of Ĩ in the first stage, so we conclude that the optimal cost of I is still at most
the optimal cost of Ĩ , and is at most d less. This completes the proof of the auxiliary
claim of the induction step. 
�
The following corollary summarises all of the above.

Corollary 1 It is an optimal facility reallocation mechanism for k = 1 to place the
facility at each stage t ∈ [T − 1] at the point in the median interval Mt (yt−1) that
lies closest to the middle agent of Stage t + 1, and to place the facility at Stage T
at any point in the median interval. Hence, when the number of agents is even, the
optimal allocation vector is unique and can be computed by an online mechanism.
When the number of agents is odd, the optimal mechanism needs to look at each stage
t ∈ [T − 1] at the agent locations in Stage t and t + 1 only. The mechanism runs in
both cases in O(Tn) time.

Thus, for n odd, we can compute the optimum efficiently, but we do need a one stage
“look-ahead”. Thus, this result does not imply an optimal onlinemechanism. We give
in Sect. 5 an online mechanism with an optimal competitive ratio.

4 TheWeighted ProblemwithMultiple Facilities

Next, we consider a generalised variant of the problem where there are k ≥ 1 facilities
and the agents have weights. The cost of an agent i ∈ [n] is their distance to the
nearest facility at each stage, and their weight wi ∈ R≥0 is the factor by which their
cost contributes to the cost function.

The problem of computing the optimal facility locations for such a generalised
instance is considerably more complex. We prove that nonetheless, when the number
of facilities k is fixed, this can be done in polynomial time, when k is fixed.

Theorem 2 There exists a mechanism that computes the optimal solution to a gener-
alised facility reallocation problem in time O(T 2(2max{Tn, k})k+1).

As mentioned in Sect. 1.1, the paper [11] provides a strongly related and important
result for the special case of this problem where all weights are equal: In this case, the
authors show that there exists an algorithm that is not only polynomial in T and n, but
also polynomial in k. Their algorithm can be generalised to handle the case where the
objective is a weighted sum of the total movement cost and the total distance of the
agents to the facility. However, their algorithm is not applicable to arbitrarily weighted
agents, which the algorithm presented here is suitable for.
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Proof of Theorem 2. The main insight that we need is that it suffices to consider only
solutionswhere at each stage t ∈ [T ] each facility is placed on a location corresponding
to one of the agent locations (at any stage) or to one of the starting facility locations
y01 , . . . , y

0
k .

Lemma 3 Let y = (y1, . . . , yT ) be a solution to a generalised facility location
instance (where yt are k-dimensional vectors) with T stages. There exists a solu-
tion ỹ such that C(ỹ) ≤ C(y) and for all t ∈ [T ] and j ∈ [k], it holds that
ytj ∈ {y01 , . . . y0k } ∪ X1 ∪ · · · ∪ XT .

Proof Given a Stage t ∈ [T ], let X≤t denote the union of the set of agent positions up
to Stage t and and the set of all facility locations up to Stage t , i.e.

X≤t = {xsi : i ∈ [n], s ∈ [t]} ∪ {ys1, . . . , ysk : s ∈ [t] ∪ {0}}.

It suffices to show that in case y does not satisfy that ytj ∈ X≤t for all t ∈ [T ] and
j ∈ [k] then we can change one of the locations ytj /∈ X≤t , with t ∈ [T ], j ∈ [k], to a
location ỹtj such that ỹtj ∈ X≤t while not increasing the cost.

Consider therefore the highest t ∈ [T ] for which there exists a j ∈ [k] such that
ytj /∈ X≤t . We now consider two possible alternative locations for facility j at Stage
t : the points pl and pr in X≤t closest to ytj to the left and right of ytj respectively.
We prove that moving facility j to one of these points will not decrease the total cost,
which suffices to prove the claim.

Moving the facility j at Stage t to a point different from ytj may affect the cost
contribution coming from n + 2 sources: the distance to the closest facility of the n
agents at Stage t , the distance by which the facility moves from Stage t − 1 to Stage
t , and the distance by which the facility moves from Stage t to Stage t + 1.

Let Sl ⊆ [n] be the set of agents to the left of ytj for which facility j is the unique
closest facility at Stage t under its current location ytj , and let Wl be the total weight
of these agents. Likewise, Let Sr ⊆ [n] be the set of agents to the right of ytj for which
facility j is the unique closest facility at Stage t under its current location ytj , and let
Wr be the total weight of these agents. Moving the facility to the left of its current
location ytj will increase the distance of the facility to the agents of Sr at rate Wr and
decrease the distance to the agents of Sl at rate Wl . Moreover, doing so will increase
the distance to yt−1

j if yt−1
j < ytj and decrease the distance to yt−1

j otherwise. The

same holds for the distance to yt+1
j (if t + 1 ∈ [T ]). A symmetric observation holds

for moving the facility to the right of ytj .

Therefore, if t + 1 ∈ [T ] and yt+1
j �= ytj , moving the facility to point pl will not

increase the cost if

Wl + 1[yt−1
j < ytj ] + 1[ytj < yt+1

j ] ≤ Wr + 1[yt−1
j ≥ ytj ] + 1[ytj ≥ yt+1

j ],

where 1[·] denotes the indicator function thatmaps to 1 if the provided argument holds,
and maps to 0 otherwise. and moving the facility to point pr will not increase the cost
if the above inequality holds in the opposite direction. This is the case because:
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– The difference between the right and left hand side of the inequality is the rate of
change in the cost function when moving the facility to the right at point ytj , i.e.,
this difference is the partial derivative of C with respect to ytj .

– The partial derivative of C with respect to ytj is monotone in the interval [pl , pr ],
because moving the facility in the direction of pl can only cause agents left of
pl to possibly join facility j and can only cause any Agent i to the right of pl to
possibly drop facility j and to join an alternative facility that is closer to i . Thus,
when C is viewed as a function of ytj restricted to the interval [pl , pr ] with the
remaining coordinates fixed, then C is maximised at pl or pr .

If, on the other hand, t + 1 ∈ [T ] and yt+1
j = ytj , as the rates of change in the

cost function when moving left and right respectively, are slightly different (because
in this case yt+1

j /∈ Xt ). In this case, moving the facility to point pl will not increase
the cost if

Wl + 1[yt−1
j < ytj ] − 1 ≤ Wr + 1[yt−1

j ≥ ytj ] − 1,

and moving the facility to point pr will not increase the cost if the above inequality
holds in the opposite direction. Lastly, if t = T , then yt+1

j is not an influencing factor
in the rates of change in cost as a consequence of moving the facility to the left and
right respectively. Therefore, moving the facility to point pl will not increase the cost
if

Wl + 1[yt−1
j < ytj ] ≤ Wr + 1[yt−1

j ≥ ytj ],

and moving the facility to point pr will not increase the cost if the above inequality
holds in the opposite direction. This condition is equivalent to the previous case. 
�

Using this lemma, a polynomial time algorithm with the claimed runtime can be
constructed through standard dynamic programming techniques: For each possible
vector ȳ of starting facility locations that are in the set expressed in Lemma 3 (there
are at most k + (Tn)k of them by the above lemma), we can efficiently find a solution
to a subinstance I on stages t, . . . , T with facility starting positions ȳ, by considering
the optimal solutions to the subinstaces on stages t+1, . . . , T with all possible starting
positions, and using the one that minimises the cost for I .

We now provide the details of this construction. Let X be the set of locations
expressed in Lemma 3. We also define the functions

C>t =
T∑

u=t+1

Ct and C≤t =
t∑

u=1

Ct , (1)

representing the total cost contributed by stages after t and up to t , respectively. We
may abuse notation and use as the argument y provided to C>t only the T − t + 1
vectors of facility locations for Stages t, . . . , T . Likewise, we may provide to C≤t

only the t vectors of facility locations for Stages 1, . . . , t .
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Let Y denote the set of all vectors yt of locations for the k facilities at any Stage
t ∈ [T ], such that ytj ∈ X for all j ∈ [k] and ytj ≤ ytj+1 for j ∈ [k − 1]. Observe
that there are

(|X |
k

) ≤ (nT + k)k such vectors. For yt ∈ Y , denote by y>t (yt ) =
(yt , (y>t )t+1, . . . , (y>t )T ) a sequence of T − t + 1 facility location vectors that
minimises the cost generated by the Stages t + 1, . . . , T , given that the vector of
facility locations at Stage t is yt . That is, y>t (yt ) minimises the function C>t defined
in (1).

Observe that our mechanism needs to compute y>0(y0), because C>0 = C . These
definitions, together with Lemma 3, imply an efficient way to compute for a given yt ∈
Y the optimal placement y>t (yt ) of the facilities of the subsequent stages, provided
that we have computed the optimal locations y>t+1(yt+1) for all yt+1 ∈ Y t+1:

y>t (yt ) ∈ arg(yt+1,y>t+1(yt+1)) max{C>t ((yt+1, y>t+1(yt+1))) : yt+1 ∈ Y }.

Lemma 3 implies that the above expression is true, as it states that indeed it suffices
to consider only the vectors yt+1 ∈ Y in the above max-epression.

Since the summation by which C>t is defined consists of at most Tn + T k terms
that each take O(k) time to compute, and the max-expression above is over a set
of |Y | ≤ (nT + k)k values, an appropriate vector y>t (yt ) can be computed in time
O(T (n + k)(Tn + k)k) from the values y>t+1(yt+1), yt+1 ∈ Y . Thus, proceeding by
standard dynamic programming, it is possible to compute y≥0(y0) in time O(T (n +
k)(Tn + k)k · T ) ⊆ O(T 2(2max{Tn, k})k+1). 
�

5 The Online Setting

In this section we study again the basic facility reallocation problem with a single
facility, and we focus on the online variant of the problem, where for each stage
t ∈ [T ] the agent locations xt+1

1 , . . . , xt+1
n of the next stage may only be read by the

mechanism after the mechanism outputs the facility location yt1 for the current stage.
We are interested in finding an online mechanism with an as good as possible

competitive ratio, which is defined as the ratio of the cost of the solution generated by
the online mechanism and the cost of the optimal solution (i.e., the solution generated
by the optimal offline mechanism).

Corollary 1 points out that for an even number of agents it is optimal to put the
facility in the median at each stage, which is a single point. Since this can be done
in an online fashion, this mechanism suffices for the case of even n, and achieves a
competitive ratio of 1. For odd n,

For odd n, Corollary 1 states that the optimal facility placement at any given stage
depends on the location of the middle agent at the subsequent stage, which means
that the optimal online mechanism necessarily does not achieve a competitive ratio
of 1. The following example shows that due to the lack of ability to look one stage
ahead, any optimal online mechanism cannot achieve a competitive ratio better than
(n + 2)/(n + 1).
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Fig. 2 Depiction of the two facility reallocation instances (one on the left side, and one on the right side)
of Example 2, for the case of � = 1 (i.e., there are n = 3 agents). The notation we use is the same as in
Fig. 1. The square indicates, at a given stage, the previous stage’s optimal location of the facility. The cross
indicates, at a given stage, the previous stage’s location of the facility that the optimal online mechanism
would choose, where the final facility locations are depicted below the final stage. The examples differ
in Stage 2, which causes the optimal facility location chosen in Stage 1 to be distinct among the two
instances. An optimal online facility location, on the contrary, would choose to set the facility in Stage 1 at
the middlepoint of the median interval M1(y0), as this choice minimizes the maximum cost caused by the
subseqent stage, of which the online mechanism does not know the precise agent locations when it has to
choose the facility location in the first stage

Example 2 Consider the following two instances I� and I ′
�, wheree both instances have

2� + 1 agents, for any � ∈ N. Both instances have T = 2 stages. Fig. 2 depicts the
instances for � = 1. The agent locations of Stage 1 are 0 for the first � agents and 1
for the remaining � + 1 agents. At Stage 2, all agents are located at 0 in instance I�,
and at 1 in instance I ′

�. The initial facility location is 0 in both instances.
ThemedianM1(y0) of the first stage is [0, 1], so by Corollary 1 the optimal solution

is to place the facility at 0 in Instance I� and at 1 in Instance I�. In Stage 2, the facility
then does not need to move.

However, as the instances differ only in the second stage, an online mechanism is
restricted to place the facility at the same position in Stage 1, in both instances. Placing
the facility at 1/2 is the best that any online mechanism can choose, to minimise the
maximum cost among those two instances. Therefore the cost of the optimal solution
is � + 1 for both instances, while the cost of the solution generated by the optimal
online mechanism is � + 3/2. The ratio of these two quantities is (n + 2)/(n + 1).
This is a lower bound on the competitive ratio achievable by an online mechanism. 
�

We now provide an online mechanism of which the competitive ratio matches the
lower bound on the competitive ratio of Example 2. The key idea behind this online
mechanism is to try to place the facility at each stage as close as possbile to the location
where the optimum facility may be placed. While it is impossible to know the exact
location of the optimum facility at the current stage t , an optimal mechanism can
nonetheless derive at each stage the precise interval in which the optimum location
may lie: The online mechanism can compute the precise optimum location ỹt−1 at
Stage t − 1 (as it has access to the agent locations of Stage t), and by Corollary 1 the
optimal location at Stage 2 can lie at any point in Mt (ỹt−1), depending on the next
stage. Our online mechanism will therefore place the facility yt at the point Mt (yt−1)

that lies as close as possible to the middle point of Mt (ỹt−1).
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Definition 1 Define Mechanism A as follows: For each Stage t ∈ T , compute the
optimum facility location ỹt−1 at Stage t − 1. Set yt to the location in Mt (yt−1)

closest to the middle point of the interval Mt (ỹt−1).

Regarding the runtime of A, note that ỹt−1 can be computed from ˜yt−2 inO(n) time,
and the point in Mt (yt−1) closest to the middle point of Mt (ỹt−1) can be computed
in O(n) time as well. We thus obtain the following corollary.

Corollary 2 Mechanism A is an online mechanism that runs in O(n) time per stage,
and thus takes O(Tn) (i.e., linear) time in total.

A more challenging task is to prove that the competitive ratio of this mechanism is
optimal. That is, it matches the lower bound of Example 2. We will prove this in the
remainder of this section.

Theorem 3 Mechanism A has competitive ratio (n + 2)/(n + 1) on instances with an
odd number of n agents. That is, let I = (n, T , y0, x) be an instance where n is odd,
let y be the output solution of A and let ỹ be the optimal solution. It holds that

C(y)

C(ỹ)
≤ n + 2

n + 1
.

Proof We assume without loss of generality (by possibly renaming the agents at each
stage) that xti ≤ xti+1 for all i ∈ [n − 1] and all t ∈ [T ] so that xt
n/2� is the location
of the middle agent for each Stage t .

Note first that by Lemma 2, for each Stage t ∈ [T ], it holds that ỹt ∈ Mt (ỹt−1) and
by definition of A it also holds that y ∈ Mt (yt−1). At any stage, define the non-median
cost of a solution z ∈ R

T as

Ct
NM (z) =

∑

i∈[n]\{
n/2�}
|xti − zt |,

and define the residual cost of z as

Ct
R(z) = |xt
n/2� − zt | + |zt−1 − zt |,

so that Ct (z) = Ct
NM (z) + Ct

R(z) for all t ∈ T and for all solutions z.
The non-median cost can alternatively be written as

Ct
NM (z) =

�n/2	∑

i=1

(|xti − zt | + |xtn−i+1 − zt |),

and from the latter expression it can be seen thatCt
NM is minimised and constant when

zt is in the interval St = [xt
n/2�−1, x
t
n/2�+1], which we refer to as the supermedian

at Stage t . The interval Mt (zt−1) is always a subset of the supermedian at Stage t ,
regardless of its argument zt−1. Hence, solutions y and ỹ achieve the same non-median
cost at any stage.
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Fig. 3 Depiction of stages belonging to each of the three types. The dot represents the middle agent location
xt
n/2�, the square represents the optimal facility location ỹt , and the cross represents the facility location

yt−1 output by the online mechanism. The blue interval represents the median Mt (ỹt−1) associated to the
optimal solution, while the red interval represents the median Mt (yt−1) associated to the solution output
by online mechanism A. Agents’ locations other than the middle agent location are not depicted. Note that
in a type 2 stage, it may either occur that yt−1 is to the left of ỹt−1 or to the right of ỹt−1, although only
the latter situation is displayed here (Color figure online)

Given that both y and ỹ place the facility in the median at every Stage t , the facility
is placed between xt
n/2� and the facility location of the previous stage. Therefore,
the residual costs for both solutions at any Stage t ∈ [T ] can be written as Ct

R(y) =
|xt
n/2� − yt−1| and Ct

R(ỹ) = |xt
n/2� − ỹt−1|. Thus, we may derive that

C(y) − C(ỹ) =
T∑

t=1

(Ct
R(y) − Ct

R(ỹ)) =
T∑

t=1

(|xt
n/2� − yt−1| − |xt
n/2� − ỹt−1|).

(2)

The remainder of this proof will therefore focus on bouding the right hand side of this
equation.

Our approach will be as follows. We classify for each stage the behaviour of the
mechanism into one of three types. A type 1 stage is a stage t ∈ [T ] such that yt−1

differs from ỹt−1 and lie on opposing sides of xt
n/2�. Stage t is a type 2 stage if

yt−1 and ỹt−1 lie on the same side of xt
n/2�, and the middle point of Mt (ỹt−1) is in

Mt (yt−1). Lastly, t is a type 3 stage if yt−1 and ỹt−1 lie on the same side of xt
n/2�,
and the middle point of Mt (ỹt−1) is not in Mt (yt−1) (implying that ỹt−1 is further
away from xt
n/2� than yt−1). Note that each state is classified into exactly one of the
three types. See Fig. 3 for a visualisation of the three types.

Our goal is for each stage t to provide a useful bound on the difference in distance
by which the facilities at Stage t are removed from the middle agent location xt+1


n/2�,
because this difference defines the difference in the residual costs at Stage t + 1. We
bound this difference in distances in terms of the length of the supermedian of Stage t
and the optimal residual cost at Stage t , i.e., |ỹt − xt
n/2�|. Furthermore, we will relate
the length of the supermedian at Stage t to the total non-median cost of Stage t , which
will then yield the desired bound on the competitive ratio.

For a Stage t ∈ [T ], let �t = |xt
n/2�−1− xt
n/2�+1| be the length of the supermedian
St of Stage t . For each stage type we provide in separate propositions a meaningful
bound. We start with a bound for stages t of type 2, indeed given in terms of the length
of the �t of Stage t and the Ct

R(ỹ).
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Proposition 1 For a type 2 stage t ∈ [T ] it holds that |yt− ỹt | ≤ n−1
2(n+1) �

t+ 1
n+1C

t
R(ỹ).

Proof From the definition of a type 2 stage it follows that the mechanism places the
facility at Stage t exactly at the middle point of Mt (ỹt−1). The distance between yt

and ỹt is thus at most half of the length of Mt (ỹt−1), and the length of Mt (ỹt−1) is
at most Ct

R(ỹ), so |yt − ỹt | ≤ 1
2C

t
R(ỹ). The length of Mt (ỹt−1) is also at most the

length �t of the supermedian St , because Mt (ỹt−1) ⊆ St . Therefore |yt − ỹt | ≤ 1
2�

t .
Taking a convex combination of these two bounds on |yt − ỹt |, we obtain the desired
bound

|yt − ỹt | ≤ 1

2

n − 1

n + 1
�t + 1

2

(
1 − n − 1

n + 1

)
Ct
R(ỹ).


�
Next, we turn to the type 3 stages. For a type 3 stage t , Mechanism A actually yields a
solution y with a better cost at Stage t than the globally optimal solution ỹ. We prove
that the distance |yt − ỹt | between the facilities is at most equal to this profit.

Proposition 2 For a type 3 stage t ∈ [T ], it holds that |yt − ỹt | ≤ Ct
R(ỹ) − Ct

R(y).

Proof From the definition of a type 3 stage and the mechanism, it follows that yt =
yt−1. Assume without loss of generality that xt
n/2� lies to the right of yt−1 = yt . We
distinguish two cases.

– If ỹt lies to the left of yt , then the distance |yt − ỹt | between the facilities at Stage
t is less than the distance |yt−1 − ỹt−1| between the facilities at Stage t − 1, and
the latter defines the difference in residual costs Ct

R(ỹ) − Ct
R(y).

– The other case is when ỹt gets placed to the right of yt . Note that ỹt is then in the
interval [yt−1, x
n/2�], which is shorter than the interval Mt (ỹt−1) \ Mt (yt−1),
which is in turn shorter than the interval [ỹt−1, yt−1]. The length of the latter
interval defines the difference in residual costs Ct

R(ỹ)−Ct
R(y), which also settles

the claim for this second case. 
�
Lastly, for a type 1 stage t , we do not prove a direct bound on the distance between

the facilities. Rather, the following lemma essentially shows that adding the residual
cost difference Ct+1

R (y) − Ct+1
R (y) of the next stage to the residual cost difference

Ct
R(y) − Ct

R(y) of the current stage yields a quantity that is at most the distance
|yt−1 − ỹt−1| between the facilities at the previous stage (where one should observe
that Ct+1

R (y) − Ct+1
R (y) ≥ |yt − ỹt | in order to understand this interpretation of the

lemma’s statement).

Proposition 3 For a type 1 stage t, where t ∈ [T − 1], it holds that

|yt − ỹt | + max{0,Ct
R(y) − Ct

R(ỹ)} ≤ |yt−1 − ỹt−1|.

Proof The quantity max{0,Ct
R(y) − Ct

R(ỹ)} is at most Ct
R(y), which is equal to the

distance d1 := |yt−1−xt
n/2�| since yt ∈ Mt (yt−1). Let d2 := |xt
n/2�− ỹt−1|. Because
ỹt−1 and yt−1 lie on opposite sides of xt
n/2�, it holds that d1 + d2 = |yt−1 − yt |.
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Mechanism A places the facility at Stage t at the point yt = x
n/2�. The optimum
location ỹt at Stage t lies in the interval Mt (ỹt−1) which is a subset of [xt
n/2�, ỹt−1].
The distance |yt − ỹt | between the two facilities is therefore at most d2. Therefore,

|yt − ỹt | + max{0,Ct
R(y) − Ct

R(ỹ)} ≤ d2 + Ct
R(y) ≤ d2 + d1 = |yt−1 − ỹt−1|.


�
We define a block of stages B ⊆ T as a maximal set of subsequent stages t, . . . , u

such that Stages t to u−1 are all type 1 stages (and therefore Stage u is a type 2 or type
3 stage). Proposition 3 implies that for such a block B = {t, . . . , u} the total residual
cost difference of block B is bounded by the distance between the facility locations
|yt−1 − ỹt−1| in the previous stage t − 1.

Corollary 3 Let B = {t, . . . , u} ⊆ [T ] be a block. Then,

u∑

s=t

max{0,Cs
R(y) − Cs

R(ỹ)} ≤ |yt−1 − ỹt−1|. (3)

Proof If B is a singleton then (3) states a trivial bound that follows from the definition
of CR and the fact that the facility at stage t gets placed in between the previous
location and xt
n/2� under both y and ỹ. Assume now as an induction hypothesis that
(3) holds for blocks of size K . We prove next that (3) also holds if |B| = K + 1. By
the induction hypothesis, we have that

u∑

s=t+1

max{0,Cs
R(y) − Cs

R(ỹ)} ≤ |yt − ỹt |.

By Proposition 3 it holds that

max{0,Ct
R(y) − Ct

R(ỹ)} ≤ |yt−1 − ỹt−1| − |yt − ỹt |,

hence

u∑

s=t+1

max{0,Cs
R(y) − Cs

R(ỹ)} = |yt − ỹt | + |yt−1 − ỹt−1| − |yt − ỹt |

= |yt−1 − ỹt−1|.


�
Let {B1, . . . , BK } be the unique partition of [T ] into blocks. We refer to tk as the

final stage of block k ∈ [K ], and for notational convenience we define t0 = 0. Let T2
be the subset of stages {t1, . . . , tK−1} that are type 2 stages (which are all type t stages
in [T ]), and let T3 be the subset of {t1, . . . , tK−1} that are type 3 stages.
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We can bound the total residual cost difference as follows.

T∑

t=1

(Ct
R(y) − Ct

R(ỹ)) ≤
T∑

t=1

max{0,Ct
R(y) − Ct

R(ỹ)} +
∑

t∈T3
(Ct

R(y) − Ct
R(ỹ))

≤
K∑

k=1

|ytk−1 − ỹtk−1 | +
∑

t∈T3
(Ct

R(y) − Ct
R(ỹ))

=
∑

t∈T2
|yt − ỹt | +

∑

t∈T3
|yt − ỹt || +

∑

t∈T3
(Ct

R(y) − Ct
R(ỹ)),

where the first equality follows from the fact that in type 3 stages, Ct
R(y) ≤ Ct

R(ỹ),
and the first inequality follows from Corollary 3. We will now apply Propositions 1
and 2 to the terms in the last summation. We apply Proposition 1 to the stages in T2
and we apply Proposition 2 to the stages in T3, so we obtain:

T∑

t=1

(Ct
R(y) − Ct

R(ỹ)) ≤
∑

t∈T2
|yt − ỹt | +

∑

t∈T3
|yt − ỹt | +

∑

t∈T3
(Ct

R(y) − Ct
R(ỹ))

≤
∑

t∈T2

(
n − 1

2(n + 1)
�t + 1

n + 1
Ct
R(ỹ)

)

+
∑

t∈T3
(Ct

R(ỹ) − Ct
R(y)) +

∑

t∈T3
(Ct

R(y) − Ct
R(ỹ))

≤
∑

t∈T2

(
n − 1

2(n + 1)
�t + 1

n + 1
Ct
R(ỹ)

)

≤
T∑

t=1

(
n − 1

2(n + 1)
�t + 1

n + 1
Ct
R(ỹ)

)
.

Under both solutions, the facility is placed in the median at every stage, which is
contained in the supermedian. There are (n − 1)/2 agents left of the supermedian at
every stage, and there are (n − 1)/2 agents right of the supermedian at every stage.
Therefore, ((n − 1)/2)�t ≤ Ct

NM (ỹ) for all t . We may therefore bound the last
expression in the above derivation as follows.

T∑

t=1

(Ct
R(y) − Ct

R(ỹ)) ≤
T∑

t=1

(
n − 1

2(n + 1)
�t + 1

n + 1
Ct
R(ỹ)

)

≤
∑

t∈[T ]

(
1

n + 1
Ct
NM (ỹ) + 1

n + 1
Ct
R(ỹ)

)

= 1

n + 1

∑

t∈[T ]
Ct (ỹ) = 1

n + 1
C(ỹ).
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From the last bound, we can easily derive the claimed competitive ratio and complete
the proof:

C(y) = C(ỹ) +
T∑

t=1

(Ct (y) − Ct (ỹ))

= C(ỹ) +
T∑

t=1

(Ct
R(y) − Ct

R(ỹ))

≤ C(ỹ) + 1

n + 1
C(ỹ)

= n + 2

n + 1
C(ỹ),

where the second equality follows from (2). 
�

6 Strategy-proofness

We investigate in this section the strategy-proofness property of our mechanisms pro-
posed in the previous sections. The results of Moulin [22] yield a characterisation
of the class C of strategy-proof and group-strategy-proof mechanisms for the classic
(single-stage) facility allocation problem: These mechanisms that always place the
facility at the median of the union of the set of agent locations and an auxiliary fixed
set of points, that are independent of the agent locations.

Unfortunately, the following examples show that the optimal mechanisms for the
offline and online settings, which we characterised in Corollary 1 and Theorem 3
respectively, are not group-strategy-proof. This is despite the fact that they can be
seen as repeated applications of mechanisms in C, and this issue can be attributed to
the interdependence of the facility locations among the stages.

Example 3 For even n, consider the following instance I with T = 3 stages and n = 2
agents, also shown in Fig. 4. The starting location of the facility is y0 = 0. The agent
locations are x1 = (0, 1) and x2 = x3 = (1, 0). If Agent 1 does not misreport, their
total cost is 2 under the optimal solution, because the facility will not relocate at all.
If Agent 1 reports instead that she is at location 1 in in Stage 1, then the facility will
be placed at location 1 in Stage 1, and will remain there for the remaining stages,
reducing the cost of Agent 1 by 1.

For odd n, the example is slightlymore complex, and is depicted in Fig. 5: Let T = 4
and n = 3. The starting location is y0 = 4. The agent locations are x1 = (1, 2, 5),
x2 = (2, 1, 4), x3 = (0, 4, 5), x4 = (0, 0, 0). If Agent 1 does not misreport, then the
optimal mechanism of Corollary 1 outputs the solution (y1, y2, y3, y4) = (3, 3, 3, 0).
This gives agent 1 a cost 4. If Agent 1 instead reports in the first stage that her location is
2, the vector of facility locations becomes (2, 2, 2, 0), so the cost of Agent 1 reduces by
1.Moreover, instance I ′ demonstrates thatMechanism A of Theorem 3 is not strategy-
proof: when no agent misreports, the output solution is (3.5, 2.5, 3.5, 0), which yields
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10

Stage 1

Stage 2

Stage 2

1 2

12

2 1

10

Stage 1

Stage 2

Stage 2

1 2

12

2 1

Fig. 4 Depiction of the two agent instance of Example 3. The notation is identical to previous figures,
except that the median interval is not shown, the facility location points are not labeled, and the the agent
locations are now labeled with their corresponding agent identities. On the left, the optimal facility locations
are depicted when none of the agents misreports. On the right, the optimal facility locations are depicted
when Agent 1 misreports her location in the first stage as 1

1 2 3 4 50

Stage 1

Stage 2

Stage 3

Stage 4

1

1

1

1

Fig. 5 Depiction of the 3 agent instance ofExample 3.The locations ofAgent 1 are labeledwith their identity.
The squares depict the optimal facility locations under truthful reporting. Crosses depict the optimal facility
locations when Agent 1 misreports x11 as 2

a total cost of 4.5 for Agent 1. If instead, Agent 1 misreports her location in the first
stage as 2, the output solution becomes (3, 2, 3, 0) which yields Agent 1 a cost of 3. 
�

Corollary 4 The optimal facility reallocation mechanism of Corollary 1 and the opti-
mal online mechanism of Theorem 3 are not strategy-proof.

This establishes that there is a gap between the cost generated by the optimal
mechanism and the cost generated by the optimal strategy-proof mechanism. The
following simple mechanism bounds this gap. It is an online mechanism performing
slightlyworse than the optimal onlinemechanismofTheorem3, though its competitive
ratio still tends to 1 as the number of agents grows.

Theorem 4 The online mechanism that puts the facility in every stage at the location of
themiddle agent (breaking ties arbitrarily in case of evenn, in away that is independent
of the reported agent locations) is group-strategy-proof and has a competitive ratio of
(n + 4)/n for even n, and (n + 3)/(n + 1) for odd n.
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Proof Let (n, T , y0, x) be a facility reallocation instance. Assume without loss of
generality that the mechanism always places the facility at the left of the two middle
agents, in case n is even. Let ỹ = (ỹ1, . . . , ỹT ) be the optimal solution and let y =
(y1, . . . , yT ) be the solution output by the mechanism.

We first show strategy-proofness. This follows by straightforward induction on the
number of stages. For T = 1, the instance is a classical facility allocation problem on
a line, and our mechanism clearly belongs to Moulin’s class C of group-strategy-proof
mechanisms. (In particular, it is easy to see that a misreporting set of agents must fall
entirely on one of the two sides of where the facility is placed, but this set of agents
can only cause the facility to be placed further away from each of the agents.)

Suppose as an induction hypothesis that all facility reallocation instances of T − 1
stages are group-strategy-proof. We prove that also every facility reallocation instance
of T stages is group-strategy-proof. This game is a sequence of two games: The single
stage game G1 consisting of Stage 1 only, and the T − 1 stage game G2 consisting
of stages [T ] \ {1} with the (reported) middle agent of the first stage as a starting
facility location. However, the facility placement at the latter game is independent of
the starting location of the facility. Thus, if no agent misreports at Stage 1, then by the
induction hypothesis, no agent is incentivised to misreport at stages 2, . . . , T . If a set
of agents misreports at Stage 1, then at least one of the misreporting agents has worse
cost at Stage 1, and the induced subgame G2 does not change (as the facility locations
in G2 is independent of the starting location). Therefore, group-strategy-proofness
holds for T stages.

Next, we prove the appropriate upper bound on the competitive ratio. To this end,
we will assume without loss of generality that xti ≤ xti+1 for all t ∈ [T ] and all
n ∈ [n − 1], so that yt = x
n/2� by definition of the mechanism.

For odd n, we define the supermedian St at stage t as [xt
n/2�−1, x
t
n/2�+1] (i.e.,

we use the same definition as in the proof of Theorem 3). For even n, we define the
supermedian St as the interval [xtn/2, x

t
n/2+1].

First, we analyse the difference in distance that the facility moves under both solu-
tions y and ỹ. The optimal mechanism places the facility ỹt inMt (ỹt−1) for all t ∈ [T ]
(by Corollary 1) which is contained in St . Thus, the optimal movement of the facility
|ỹt−1 − ỹt | at stage t is at least d(St , St−1), i.e., the shortest distance between a pair
of points in St × St−1, where for convenience we define S0 = {y0}. On the other
hand, the facility movement |yt − yt−1| generated by our mechanism at stage t is at
most �t + �t−1 + d(St , St−1), where �t and �t−1 denote the lengths of St and St−1

respectively.
Assume first that n is even. It is clear that at every stage, the total distance between

the facility location yt and the agent locations xt1, . . . , x
t
n is the minimum possible,

and the same holds for ỹt .
This implies that the difference in cost of both solutions is entirely attributed to the

difference in total facility movement:

C(y) − C(ỹ) ≤ �t + �t−1 + d(St , St−1) − d(St , St−1)

=
T∑

t=1

(�t + �t−1) = �T + 2
T−1∑

t=1

�t ≤ 2
T∑

t=1

�t .
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We then make use of the fact that the total distance between any two agents is �t ,
so that the total cost generated by the agents at stage t is at least (n/2)�t . The latter
implies that

C(y) − C(ỹ)

C(ỹ)
≤ 2

∑T
t=1 �t

(n/2)
∑T

t=1 �t
= 4

n
,

which shows the desired upper bound on the competitive ratio for even n.
Lastly, suppose that n is odd. We first bound the difference between the mechanism

and optimum’s total facility movement. The mechanism puts the facility at the median
agent’s location at each stage. Therefore, at each stage, the distance |yt−1− yt | that the
facility moves under the mechanism’s output, is at most the distance traveled when the
facility is first moved from location yt−1 = xt−1


n/2� to location ỹt−1 as an intermediate

step, after which it is moved from ỹt−1 to ỹt , and finally from ỹt to yt = xt
n/2�.
Therefore, the difference between y and ỹ in total facility movement can be bounded
as follows (where for convenience we define x0
n/2� = y0 = ỹ0).

T∑

t=1

(|yt−1 − yt | − |ỹt−1 − ỹt |) (4)

≤
T∑

t=1

(|yt−1 − ỹt−1| + |ỹt−1 − ỹt | + |ỹt − yt | − |ỹt−1 − ỹt |)

=
T∑

t=1

|yt−1 − ỹt−1| + |ỹt − yt |

=
T∑

t=1

|xt−1

n/2� − ỹt−1| + |ỹt − xt
n/2�|

≤ 2
T∑

t=1

|xt
n/2� − ỹt |. (5)

The optimum does not always minimise the total distance between the facility and
the agents at every stage, although the facility is always placed in St , so the total
distance from the agents to the facility is at each stage |ỹt − xt
n/2�| lower under yt .
We subtract this from our bound (5) on the difference in facility movement distance,
and we obtain:

C(y) − C(ỹ) ≤
T∑

t=1

|ỹt − x
n/2�|.

The quantity |ỹt − x
n/2�| is at most the length �t of the supermedian, so we may
bound the above by taking a convex combination of |ỹt − x
n/2�| and �t , as follows.
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C(y) − C(ỹ) ≤
T∑

t=1

(
1

�n/2	 + 1
|ỹt − x
n/2�| +

(
1 − 1

�n/2	 + 1

)
�t

)

At stage t , the distance between any two agents except the middle agent is �t , and
the distance between the middle agent and the facility is |ỹt − x�n/2	|. Hence, |ỹt −
x
n/2�| + �n/2	�t is a lower bound on Ct (ỹ), and we use that to bound the following
ratio:

C(y) − C(ỹ)

C(ỹ)
≤

∑T
t=1

(
1

�n/2	+1 |ỹt − x
n/2�| +
(
1 − 1

�n/2	+1

)
�t

)

∑T
t=1(|ỹt − x
n/2�| + �n/2	�t )

=
1

�n/2	+1

∑T
t=1

(|ỹt − x
n/2�| + �n/2	�t)
∑T

t=1(|ỹt − x
n/2�| + �n/2	�t )
= 1

�n/2	 + 1

= 2

n + 1
,

which shows the desired upper bound for odd n. 
�

Example 4 The following family of examples shows that the analysis of the competitive
ratio in Theorem 4 is tight for all n. Let the starting facility location be y0 = 1 and let
there be two stages. In Stage 1, Agents 1 to �n/2	 are located at 1, and the remaining
agents are located at 0. In Stage 2, all of the agents are located at 1. The optimal
Mechanism (see Corollary 1) places the facility at location 1 in both stages (regardless
of whether n is odd of even), which results in a cost of n/2 if n is even, and a cost of
(n + 1)/2 if n is odd.

The mechanism of Theorem 4 places the facility at location 0 in the first stage, and
at location 1 in the second stage. This yields a total cost of n/2 + 2 if n is even, and
a total cost of (n − 1)/2 + 2 when n is odd. Thus, when n is even, the competitive
ratio on these instances is ((n/2) + 2)/(n/2) = (n + 4)/n, and when n is odd, the
competitive ratio is ((n + 3)/2)/(n + 1)/2 = (n + 3)/(n + 1). 
�

7 Discussion

We studied a multi-stage variant of the classical facility location problem, where the
problem is repeated over multiple stages and there is a cost incurred by moving the
facility across stages.

Our focus in this work has primarily been on identifying and computing the optimal
facility placement and movement. We characterised the optimal mechanisms both in
the offline and online setting. We considered this problem under the constraint of
strategy-proofness aswell. Thesemechanisms turn out to be elegant and simple in their
definition, but are surprisingly challenging to analyse. Finally, we showed that neither
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of these mechanisms is strategy-proof, and devised a new strategy-proof mechanism.
We analysed the performance of this strategy-proof mechanism in the online setting.

Our mechanism definitions, and the properties that we prove about them, reveal
some interesting insights, such as the discrepancy between the cases of an even and
an odd number of agents, and the fact that there is a single-stage “lookahead” needed
to achieve optimality in the odd case.

Interesting future directions are to design online and strategy-proof mechanisms for
the generalised variant of the problem that we briefly considered, and to characterise
the class of (group)-strategy-proof mechanisms for the basic version of the problem.
We conjecture that the competitive ratio of Theorem 4 is the best achievable among
the strategy-proof mechanisms. Additionally, randomised mechanisms can be studied
in this context as it is known that they outperform deterministic ones in the single
stage case [17].

An alternative generalisation of the problem thatwould be interesting (and undoubt-
edly more complex) to study is to increase the dimension of the Euclidian space in
which the locations lie, e.g. to consider facility reallocation on the plane instead of the
line.
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