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Abstract
Mechanism design for one-sided markets is an area of exten-
sive research in economics and, since more than a decade, in
computer science as well. Two-sided markets, on the other
hand, have not received the same attention despite the nu-
merous applications to web advertisement, stock exchange,
and frequency spectrum allocation. This work studies dou-
ble auctions, in which unit-demand buyers and unit-supply
sellers act strategically.

An ideal goal in double auction design is to maximize
the social welfare of buyers and sellers with individually
rational (IR), incentive compatible (IC) and strongly budget-
balanced (SBB) mechanisms. The first two properties are
standard. SBB requires that the payments charged to the
buyers are entirely handed to the sellers. This property is
crucial in all the contexts that do not allow the auctioneer
retaining a share of buyers’ payments or subsidizing the
market.

Unfortunately, this goal is known to be unachievable
even for the special case of bilateral trade, where there is only
one buyer and one seller. Therefore, in subsequent papers,
meaningful trade-offs between these requirements have been
investigated.

Our main contribution is the first IR, IC and SBB

mechanism that provides an O(1)-approximation to the

optimal social welfare. This result holds for any number of

buyers and sellers with arbitrary, independent distributions.

Moreover, our result continues to hold when there is an

additional matroid constraint on the sets of buyers who may

get allocated an item. To prove our main result, we devise an

extension of sequential posted price mechanisms to two-sided

markets. In addition to this, we improve the best-known

approximation bounds for the bilateral trade problem.

1 Introduction

In the last decade, algorithmic mechanism design [16]
has provided a rich body of methods for designing
algorithms that solve computational problems while
ensuring that truthful report of input data is the
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best strategy for the agents who participate in the
mechanism. The cornerstone method of mechanism
design is the Vickrey-Clarke-Groves (VCG) mechanism
[20, 4, 10], which computes an optimal solution to the
problem of maximizing the social welfare, i.e., the total
valuation of the agents. The VCG mechanism optimizes
social welfare and provides the right incentives that
make truth-telling a dominant strategy in both one-
sided markets (the restricted setting of one non-strategic
seller – the auctioneer – and many strategic buyers) and
two-sided markets (a setting in which both many buyers
and many sellers act strategically and a non-strategic
auctioneer lets them trade). However, in two-sided
markets it may require the auctioneer subsidizing the
trade, and this is highly undesirable in several practical
applications.

As opposed to one-sided markets, which were exten-
sively studied by numerous economists (and since more
than a decade by computer scientists as well), two-sided
markets did not have the same spread. Two-sided mar-
kets naturally arise in selling display-ads in web adver-
tisement, the New York Stock Exchange (NYSE), the
US FCC spectrum license reallocation, and many other
settings with multiple buyers and sellers. For exam-
ple, ad exchange platforms for selling display-ads face
asymmetric information regarding both the valuations
of buyers – the value per advertiser’s impression shown
– as well as about the reservation prices of sellers – the
profit that the publisher could obtain by sending the
pageviews to competing ad exchanges.

An ideal goal in market design is to devise indi-
vidually rational (IR), incentive compatible (IC) mech-
anisms that maximize the social welfare of all agents. IR
requires that participating in the mechanism is benefi-
cial to all agents. IC requires that truthfully reporting
one’s preferences to the mechanism is the best strat-
egy for each agent, independently from what the other
agents report.

In two-sided markets, a further important require-
ment is strong budget-balance (SBB), which states the
payments of the buyers must entirely and exclusively be
transferred to the sellers, i.e., the buyers and the sellers
are allowed to trade without leaving to the mechanism
any share of the payments, and without the mechanism
adding money into the market. For example, in ad ex-
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change auctions, the intermediation profit of the broker
must be limited to a fixed percentage of the revenue
of the publishers. This is an important feature of the
market, as otherwise it will be perceived as unfair if the
mechanism keeps an additional arbitrary share of the
payments charged to the advertisers.

Though SBB is a most desired requirement in many
applications, it is hard to achieve in practice since it
imposes a constraint on the payments that is difficult
to satisfy. A weaker version of SBB often considered
in the literature is weak budget-balance (WBB), which
only requires the mechanism not injecting money into
the market.

In this paper we study a standard and simple model
of a two-sided market. In its basic form, there is a single
type of items for sale. The buyers each want to acquire
a single unit of this item, and the sellers each have a
single unit to sell. So, to each buyer and seller there is
a single number associated, called her valuation, which
describes how much a buyer or seller values having an
item in posession. The valuations of the buyers and
sellers are drawn from independent, possibly distinct
distributions. We refer to mechanisms that work in such
a setting as double auctions.1

Unfortunately, Myerson and Satterthwaite [15]
proved that it is impossible for an IR, Bayesian IC
(BIC),2 and WBB mechanism to maximize social wel-
fare in such a market. This result implies that an IR,
BIC, social welfare maximizing double auction necessar-
ily subsidizes the market.

Since then, much of the literature on double auc-
tions [12, 18, 19] has focused on trading off social wel-
fare, incentive compatibility and budget-balance. The
complexity of general double auction problems clearly
grows if there are restrictions on the sets of buyers and
sellers that can trade with one another. Such restric-
tions may arise from practical constraints. For instance,
a restriction on the maximum amount of page views
from a publisher that can be allocated to a set of ad-
vertisers results into a matroid constraint. A restriction
on those advertisers that can appear on the web pages
of a publisher translates into a matching constraint. In

1Some economics literature uses a stricter definition of a double

auction where the mechanism may only charge a single common
price at which each trading seller/buyer-pair trades. In the

present paper however, we refer to this stricter notion as a fixed-

price double auction, and instead use the term double auction for
any mechanism that works in the two-sided market setting.

2Bayesian incentive compatibility is a less restrictive form of

incentive compatibility. Informally, it only requires that reporting
truthfully one’s valuation to the mechanism gives an agent the
best expected utility conditioned on the assumption that all other

agents also report their valuations truthfully (taking into account
the valuation distributions of the other agents).

this work we consider the restriction where there is an
arbitrary matroid constraint on the set of buyers who
can trade.

Two recent works addressed the problem of ap-
proximating social welfare for double auctions and re-
lated problems under the WBB requirement. Dütting,
Talgam-Cohen, and Roughgarden [8] proposed a greedy
strategy that combines the one-sided VCG mechanism
independently applied to buyers and to sellers with the
trade reduction mechanism of McAfee [12], to obtain
IR, dominant strategy IC (DSIC), WBB mechanisms
for knapsack, matching and matroid constraints that
provide a good approximation of the social. Secondly,
Blumrosen and Dobzinski [1] proposed an IR, DSIC,
WBB mechanism that 8-approximates the social wel-
fare for combinatorial exchange markets – a more gen-
eral setting where agents can simultaneously be buyers
and sellers and there are different kinds of items.

The negative result of [15] was proved for a paradig-
matic special case of double auctions, the so-called bilat-
eral trade problem. In bilateral trade there is only one
unit-demand buyer and one unit-supply seller. McAfee
[13] proposed a mechanism for this problem that sets
the price equal to the median of the seller’s distribution.
The mechanism, which is IR, DSIC, and SBB, provides
a 2-approximation to the optimal gain from trade (a
measure related to social welfare), only if the median of
the buyer’s distribution is higher than the median of the
seller’s distribution. Moreover, Blumrosen and Dobzin-
ski [1] showed that this mechanism 2-approximates the
optimal social welfare no matter what the relation be-
tween the medians is. This is accompanied by a lower
bound of 1.1231 and a further improved upper bound
of 55/28 ≈ 1.9643 for the problem.

1.1 Overview of the results. This paper studies
the problem of designing double auctions that achieve
a good approximation to the social welfare. That is, we
study mechanism design for two-sided markets, in which
both buyers and sellers can exhibit strategic behavior.
We work in the Bayesian setting: i.e., buyers’ and
sellers’ valuations are private information and drawn
from independent, arbitrary distributions. This is a
standard assumption which is motivated by the fact that
purchase history is generally available in many practical
applications. We want our mechanisms to satisfy
individual rationality (IR), dominant strategy incentive
compatibility (DSIC), and strong budget-balance (SBB).

Our goal is in finding mechanisms that approxi-
mate social welfare of buyers and sellers up to a con-
stant factor, for any number of buyers and sellers. We
additionally aim to design, when possible, fixed-price
mechanisms that do not discriminate between buyers or



sellers when pricing identical items. Fixed-price mecha-
nisms are highly desirable because of their fairness and
simplicity.

All the mechanism presented in this work satisfy the
IR, DSIC,3 and SBB requirements. Our main results are
the following:

• A 16-approximate (non-fixed-price) double auction
for when there is an additional general matroid
constraint on the set of buyers that may receive
an item.

• A 16-approximate fixed-price double auction for k
sellers and n buyers. We show that this approxi-
mation factor reduces to 8 in the special case the
sellers have identical distributions.

• A 4-approximate fixed-price double auction for 1
seller and n buyers.

To our knowledge, these are the first mechanisms that
achieve all three major design requirements for double
auctions and approximate the optimal social welfare to
within a constant factor.

A first ingredient needed to obtain our results is the
extension of sequential posted price mechanisms (SPMs)
[2, 3] to two-sided markets. SPMs are a particularly
elegant and well-studied class of mechanisms for one-
sided markets. In our paper, we formulate two-sided
sequential posted price mechanisms (2SPMs) as a tool
for designing simple mechanisms in two-sided markets.
This tool will hopefully find more applications in future
research on double auction design.

A second ingredient of our results is the use of
prophet inequalities [11, 7] in combination with the
medians of the sellers’ distributions [13, 1] in order
to set threshold prices that lead to mechanisms that
well-approximate the optimal social welfare for general
matroid settings.

Another relevant contribution of this paper is the
improvement of upper and lower bounds for the bi-
lateral trade problem. We show that there exists a
25/13-approximate IR, DSIC, SBB mechanism, which
improves over the best-known approximation factor of
55/28, shown in [1]. Furthermore, we increase the best-
known lower bound of [1] from 1.1231 to 1.3360.

1.2 Related work. The impossibility result of [15]
states that no two-sided mechanism can simultaneously
satisfy BIC, IR, WBB and be socially efficient, even in
the simple bilateral trade setting. Follow-up work thus

3They actually also satisfy the stronger (but perhaps less

well-known) incentive constraint of weak group strategy proofness
(WGSP).

had to focus on designing mechanisms that trade off
among these properties.

The following papers studied the convergence rate
to social efficiency as a function of the number of
agents when all i.i.d. sellers’ and buyers’ valuations are
respectively drawn from regular distributions F and G
while obeying to IR and WBB. In a two-sided market
with multiple buyers and multiple sellers, Gresik and
Satterwhite [9] showed that duplicating the number of
agents by τ results in a market where the optimal IR, IC,
WBB mechanism’s inefficiency drops down as a function
of O(log τ/τ2). They also compared this mechanism
with a fixed-price one in the case of a continuum of
buyers and sellers. The latter mechanism’s inefficiency
is O(1/

√
τ) and therefore performs worse. Further, [17,

19] investigated in detail the family of c-double auction
mechanisms, where each choice of the index c ∈ [0, 1]
determines a different mechanism in the family, whose
inefficiency approaches zero at the quickest possible
rate. This mechanism is not truthful despite the
incentive to lie being bounded by O(1/m), where m
is the number of buyers (assumed to be equal to
the number of sellers). We note that the results
mentioned above only hold for i.i.d. agents, are solely
asymptotic and that the hidden constants must depend
on the distributions of the sellers and buyers. Our
interest is different as it is in finding universal constant
approximation guarantees.

In McAfee [12], an IC, WBB, IR double auction is
proposed that extracts at least a (1 − 1/`) fraction of
the maximum social welfare, where ` is the number of
traders in the optimal solution. In the same paper it is
also shown that when the valuations are i.i.d. and the
buyers have the same distribution, as well as the sellers,
then the inefficiency drops linearly as a function of the
minimum between the number of buyers and sellers.

Optimal revenue-maximizing Bayesian auctions
were characterized in [14], which provides an elegant
tool applicable to single-parameter, one-sided auctions.
Numerous subsequent articles dealt with extending
these results. Related to our work is [5], which studied
maximizing the auctioneer’s revenue in Bayesian double
auctions. The same objective was studied in [6] yet in
the prior-free model.

Recently, Dütting et al. [8] provided black-box re-
ductions from double auctions to one-sided mechanisms.
They are for a prior-free setting and have applications to
matroid, knapsack, and matching feasibility constraints.
These mechanisms satisfy only WBB, though.

Also relevant to our work are the IC, IR, SBB mech-
anisms for bilateral trade of [1], which considers fixed-
price mechanisms where the price is set to the median of
the seller’s distribution. In addition to this, the authors



proposed a mechanism for combinatorial exchange mar-
kets – a broader setting than double auctions in which
there are multiple types of items and agents have sub-
additive valuation functions. This mechanism is IC, IR,
WBB and 8-approximates the optimal social welfare.
Our main result loses a factor of two against this mech-
anism, but ensures SBB and additionally allows for a
matroid constraint to be specified the set of buyers that
may trade.

Sequential posted price mechanisms (SPMs) in one-
sided markets have recently gained particular atten-
tion from the computer science community due to their
simplicity, robustness to collusion, and their easy im-
plementability in practical applications. One of the
first theoretical results concerning SPMs is an asymp-
totic comparison among three different types of single-
parameter mechanisms with i.i.d. agents [2]. They were
then studied for the objective of revenue maximization
in [3]. Additionally, the results of [11, 7], which ex-
tended prophet inequalities respectively to matroid and
polymatroid constrains, found interesting applications
to the design of multi-parameter SPMs. We present a
two-sided version of SPMs and show that in this setting
constant approximations to the optimal social welfare
are attainable. To achieve this, we also make use of the
prophet inequalities.

2 Preliminaries

2.1 Two-sided mechanisms. We use n to denote
the number of buyers and k to denote the number of
sellers. We assume that every seller has one item. The
items are all identical, and each buyer wants at most
one item. To a buyer i ∈ [n],4 and a seller j ∈ [k],
there are associated numbers vi ∈ R≥0, wj ∈ R≥0 that
respectively represent buyer i’s valuation and seller j’s
valuation for an item. These numbers are not publicly
known: vi is known only to buyer i and wj is known
only to seller j. However, for each of the buyers and
sellers there is a probability distribution from which
her valuation is drawn. This probability distribution
is assumed to be public knowledge.

We use gi and fj for the probability density function
of the valuation of buyer i and seller j, respectively. Let
Gi(x) :=

∫ x
−∞ gi(x) dx and Fj(x) :=

∫ x
−∞ fi(x) dx be the

corresponding cumulative distribution functions. We
also define the inverse cumulative distribution functions
of Fj and Gi (e.g., for seller j we have F−1

j (y) =
inf{x ∈ R|F (x) ≥ y}). Then, the median of seller j’s
distribution is mj := F−1

j ( 1
2 ).

Let v = (v1, . . . , vn) (w = (w1, . . . , wk)) be a
valuation profile of the buyers (sellers). Further, let V

4For a number a ∈ N, we use [a] for the set {1, . . . , a}.

(W) be the set of all possible buyers’ (sellers’) valuation
profiles. We use the notation c(i) to denote the i-th
largest element of a vector c.5

A (direct revelation) mechanism M is a function
that takes as input a valuation vector reported by
the buyers, and a valuation vector reported by the
sellers, and outputs an allocation (that specifies which
buyers receive an item, and which sellers sell their
item) together with a specification of the prices to be
paid by the sellers and buyers. Obviously, the output
allocation has to satisfy the constraint that the number
of buyers getting an item is equal to the number of
sellers selling an item. When valuations (v,w) ∈ V×W
are reported to the mechanism, we denote the output
allocation by a(v,w) and we denote the output prices
by π(v,w). Additionally, we use the following notation.
For every buyer i, aBi (v,w) ∈ {0, 1} indicates if a
buyer has an item after the mechanism is run and
πBi (v,w) indicates how much the buyer i has to pay.
The values aSj (v,w) ∈ {0, 1} and πSj (v,w) are defined
analogously for seller j. Since sellers usually do not
pay but receive money, πSj is always non-positive. We
let aB(v,w) denote the vector (aB1 (v,w), . . . , aBn (v,w))
and analogously define aS(v,w) for the sellers, so that
a(v,w) = (aB(v,w),aS(v,w)).

After the mechanism is run on the reported valu-
ation profile (v,w), each buyer and seller experiences
a certain utility. The utility of a buyer i ∈ [n] is
a function of her true valuation v∗i ∈ V (which is
distributed according to Gi), the allocation aBi (v,w)
output by the mechanism, and the price πBi output
by the mechanism. This utility is then given by
uBi (v∗i , a

B
i (v,w), πBi (v,w)) = aBi (v,w) · v∗i − πBi (v,w)

and the utility of a seller j ∈ [k] is defined similarly as
uSj (w∗j , a

S
j (v,w), πSj (v,w)) = aSj (v,w) ·w∗j − πSj (v,w).

Sellers and buyers act strategically so as to maximize
their utility.

We refer to the following as desirable properties that
a two-sided mechanism M should satisfy:

• individual rationality (IR) states that all partici-
pants do not decrease their utility by participating
in the mechanism: So, for all i ∈ [n] and j ∈ [k]
and for all valuation profiles (v,w) ∈ V × W,
it holds that uBi (vi, aBi (v,w), πBi (v,w)) ≥ 0 and
uSj (wj , aSi (v,w), πSj (v,w)) ≥ wj .

• dominant strategy incentive compatibility (DSIC):
it is a dominant strategy for all buyers and sell-
ers to reveal their true valuation. Formally,

5Subsequently, v(i), w(i), and m(i) respectively are the i-th

largest valuation among buyers, the i-th largest valuation among
sellers, and the i-th largest value among the medians of the sellers.



for every reported valuation profile (v,w), for
every buyer i, true valuation v∗i it must hold
that uBi (v∗i , a

B
i ((v∗i ,v−i),w), πBi ((v∗i ,v−i),w)) ≥

uBi (v∗i , a
B
i (v,w), πBi (v,w)), where (v∗i ,v−1) is the

vector obtained from v by replacing vi with v∗i . The
sellers’ formulation is symmetric.

• strong budget-balance (SBB): the amount of money
paid by the buyers is totally and exclusively trans-
ferred to the sellers. Formally, for every valuation
profile (v,w), it must hold that

∑
i∈[n] π

B
i (v,w) +∑

j∈[k] π
S
j (v,w) = 0.

Additionally, we desire our mechanism to produce
an outcome where the social welfare (i.e., the sum of
everyone’s utility) is close to optimal. We will mea-
sure this as follows. First, let A be the set of feasi-
ble allocations of items to the sellers and buyers. For
an allocation a = (aB ,aS) ∈ A we denote the so-
cial welfare of (aB ,aS), for valuation profile (v,w), by
SW(v,w,a) =

∑
i∈[n] a

B
i vi +

∑
j∈[k] a

S
j wj . We can

then define the expected social welfare of mechanism
M as ALG = E [SW(v,w,a(v,w))], where the ex-
pected value is taken over the randomness of the par-
ticipants’ valuations and the randomness of the mech-
anism.6 For a valuation profile (v,w), define the opti-
mal allocation as the allocation ā(v,w) ∈ A that maxi-
mizes SW(v,w, ·). The expected optimal social welfare
is then given by OPT = E [SW(v,w, ā(v,w))].

Our goal is to design a mechanism M that extracts
at least a constant fraction α of OPT, i.e., ALG ≥
OPT/α. In such a case, we say that the mechanism
1/α-approximates the optimal social welfare.

2.2 Matroid constraints. A finite matroid M is a
pair (U , I) where U is a finite set (called the ground
set), I is a family of subsets of U (called independent
sets), and I has the following properties: (i.) ∅ ∈ I,
(ii.) ∀I ′ ⊂ I ⊆ U if I ∈ I then I ′ ∈ I, (iii.) if T, V ∈ I
and |T | > |V | then ∃t ∈ T such that V ∪ {t} ∈ I. A
maximum-cardinality independent set of a matroid is
called a basis.

2.3 One-sided Sequential Posted Price Mecha-
nisms. A one-sided sequential posted-price mechanism
(SPM) is a mechanism for a one-sided market with
only buyers who are interested in getting at most one
item. The buyers’ valuations are drawn from indepen-
dent distributions, and there is a matroid constraint
M = ([n], I) on the set of buyers that may get an item.
An SPM is parametrized by an ordering of buyers σ and

6In the subsequent sections we use the subscripts s and b (e.g.,
ALGs) to denote the sum of all sellers’ or all buyers’ utilities.

a collection of prices (pi)i∈[n]. The price paid by buyer
i is pi if i gets an item, and 0 otherwise. The following
simple iterative process determines who purchases an
item. At iteration i, it is decided whether buyer σi is
given an item. Let T<i be the buyers who have received
an item during the first i − 1 iterations. Buyer σi is
allocated an item iff her reported valuation is at least
pi, and T<i ∪ {σi} ∈ I.

SPMs are conceptually simple and satisfy several
other desirable properties such as DSIC and IR. In
[3], it is shown that the following SPM, which we call
Mone, achieves a 2-approximation to the optimal social
welfare: Let qi be the (a priori) probability that buyer
i ∈ [n] gets an item in the optimal allocation, and let
pi = G−1

i (1−qi). Let σ be the sequence of buyers sorted
by non-increasing pi. The crucial properties satisfied by
these prices and this order are (i) the probability that i
accepts the offer is exactly qi,7 and (ii) the greedy order,
which prioritizes agents who buy at higher prices.

Theorem 2.1. ([3]) The SPM Mone 2-approximates
the optimal social welfare in one-sided markets with an
arbitrary matroid constraint on the set of buyers that
may get an item.8

3 Extending Sequential Posted Price
Mechanisms to Two-Sided Markets

We describe how we extend one-sided sequential posted
price mechanisms to two-sided markets where there is
a matroid constraint M = ([n], I) on the set of buyers
that may receive an item.9

A two-sided sequential posted-price mechanism
(2SPM) is parametrized by an ordering of buyers σ,
an ordering of the sellers λ, and a collection of prices
(pij)i∈[n],j∈[k]. Given a (0, 1)-array A, we use ones(A)
to denote the set of all indexes i such that A[i] = 1.
Moreover, we write A[a, . . . , b] to denote the subarray
corresponding to the subset of indexes {a, . . . , b}. A
2SPM has the following structure. In the description

7To ensure this holds also in case i’s distribution contains
point masses, the mechanism is slightly modified to offer pi with

probability qi/(1−Gi(pi)).
8Chawla et al. [3] state this result for revenue maximization,

but show in the appendix that it also extends to social welfare
maximization.

9In this paper, SPMs and its extension to two-sided markets
are defined as direct revelation mechanisms. This is solely done

for ease of exposition. Under its original definition, an SPM is not

a direct revelation mechanism: instead, a buyer solely interacts
with the mechanism by replying whether she accepts the take-

it-or-leave-it offer made by the mechanism. The two-sided SPM
mechanisms and all other mechanisms defined in this paper can

also be defined in such a way, which comes with the advantage

that there is no need for a buyer or seller to reveal her valuation
to the mechanism.



below, we say that buyer i and seller j accept to trade
at price pij iff vi ≥ pij ≥ wj . Otherwise, we say that
buyer i refuses the offer (if vi < pij) or seller j refuses
the offer (if wj > pij).

1. Let A, π be two arrays of length n+ k

2. Set A[i] := 0 for all i ∈ [n] and A[i] := 1 for all
i ≥ n+ 1, and set π[i] := 0 for all i ∈ [n+ k]

3. Set i := 1, j := 1

4. While i ≤ n and j ≤ k do:

(a) If ones(A[1, . . . , n])∪{σi} /∈ I, set pσiλj := +∞.

(b) Offer σi and λj to trade at price pσiλj .

(c) If they both accept, set A[σi] := 1, A[n+ λj ] :=
0, π[σi] := pσiλj , π[n + λj ] := −pσiλj , and
increment i and j.

(d) If σi refuses, increment i. If λj refuses, incre-
ment j.

5. Every buyer i ∈ [n] s.t. A[i] = 1 gets an item and pays
π[i] to the auctioneer, who in turn pays −π[n+ j] to
every seller j ∈ [k] s.t. A[n+ j] = 0.

Observe that although 2SPMs satisfy SBB and IR,
they are not necessarily incentive compatible. As an
example, consider a buyer i with valuation vi who is
offered to trade with a seller j at price pij , which i
and j would normally accept. However, if i knows
that pi(j+1) < pij , and wj+1 < pi(j+1) with a high
probability, then she could profit by submitting a lower
valuation, so that the mechanism lets i trade at a lower
price. The following conditions on the set of prices
suffice to ensure a 2SPM is DSIC.10

Proposition 3.1. Let (pij)i∈[n],j∈[k] be a collection of
prices of a 2SPM such that for all i ∈ [n] and all j, j′ ∈
[k], it holds that pij = pij′ . Then, (i) no buyer has an
incentive to lie about her preferences. Moreover,(ii) if
the prices are posted in a non-increasing order, then also
no seller has an incentive to lie about her preferences.

Proof. First, observe that by assumption prices only
depend on i. Thus, a different seller cannot decrease
i’s price. The price is personal and is independent on
i’s reported valuation. The order in which the offers
are made is also fixed and independent of i’s reported
valuation. Regarding the second claim, a seller will
not report a valuation lower than her true valuation,
as it might cause a seller to accept a price below
her valuation. A seller will also not report a higher
valuation, because it will cause the seller to accept a

10We remark that a symmetric version of these conditions
(w.r.t. buyers and sellers) would also be sufficient.

lower priced offer, by non-increasingness of the posted
offers.

The two-sided fixed-price mechanism (2FPM) with
fixed price p is the mechanism that picks two permuta-
tions σ on [n] and λ on [k] uniformly at random, and
runs the 2SPM with parameters (σ,λ, (pij)i∈[n],j∈[k])
where pi,j = p for all i ∈ [n], j ∈ [k]. The 2FPM is thus
a fixed-price double auction which satisfies IR, DSIC,
and SBB.11

4 Two-sided Sequential Posted Price
Mechanisms with Matroid Constraints

In this section we devise a 2SPM for double auctions
with general matroid constraints. First, to get a 4α-
approximate mechanism under the matroid M, it is
enough to get an α-approximation under the matroid
M′ defined below.

Remark 4.1. Let M = ([n], I) be a matroid of rank
c. Define a new matroid M′ = ([n], I ′), where I ′ :=
{S ∈ I : |S| ≤ c/4}. Suppose every i ∈ [n] has
a weight vi ≥ 0, and let B be a maximum-weight
basis of M. Then, there exists a B′ ∈ I ′ such that
4 ·
∑
i∈B′ vi ≥

∑
i∈B vi.

Using the above notation, let (p̄i)i∈[n] and σ be
the prices and ordering defined as in the SPM of [3]
(Theorem 2.1) under the matroid constraintM′. Then,
for all i ∈ [n], set pij := pi := max

{
p̄i,m(k−|B|/2)

}
,

where m(`) denotes the `-th largest median of the sellers’
distributions. The remainder of this section is dedicated
to proving the following result.

Theorem 4.1. The mechanism that takes a uniform
random permutation λ of [k] and runs the 2SPM M for
matroid M′, with parameters

(
σ,λ, (pij)i∈[n],j∈[k]

)
, is

IR, DSIC, SBB, and 16-approximates the optimal social
welfare under the matroid constraint M.

Proof. The incentive compatibility of the mechanism M
follows from the definition of the prices and Proposi-
tion 3.1. Hence, we focus on showing M’s approxima-
tion guarantee, which will follow from the subsequent
lemmas, some of which are deferred to the full version
of this paper due to space constraints.

Lemma 4.1. Let S := {j ∈ [k] : wj ≤ m(k−|B|/2)} and
S̄ := {j ∈ [k] : wj ≥ m(k−|B|/2)}. With probability
at least 1/2 it holds that both |S| ≥ |B|/4 and |S̄| ≥
(1/2) · (k − |B|/2).

11SBB and IR trivially hold. DSIC holds because every 2SPM

mechanism in the support of the 2FPM mechanism satisfies the
conditions of Proposition 3.1.



Let ALG denote the social welfare extracted by M
and OPT be the optimal social welfare. Furthermore,
let the subscripts s, b respectively denote the sellers’ and
buyers’ contributions to the social welfare in both ALG
and OPT (e.g., ALG = ALGs + ALGb).

Lemma 4.2. 4/3 ·ALGs ≥ E
[∑k

j=1 wj

]
≥ OPTs.

Proof. Note that M matches at most |B′| = |B|/4 sellers
due to M′. Hence, at least k − |B|/4 sellers keep their
item. Moreover, due to prices being posted in a non-
increasing order, a seller j who declines an offer certainly
has a valuation wj that is higher than wj′ for any j′

who accepts that offer or any subsequent one. So, we
can lower-bound M by assuming that it lets the first
|B|/4 sellers in the order trade. The mechanism gets
the welfare of the last (k − |B|/4) sellers. Due to the
sellers being shuffled uniformly at random, every j ∈ [k]
is selected with probability (k− |B|/4)/k. Thus, taking
the expectation w.r.t. the random order, we extract at
least (1− |B|/4k) ·

∑
j∈[k] E [wj ] ≥ (3/4) ·

∑
j∈[k] E [wj ],

following from the fact that |B| ≤ k. The claim follows
by noting that OPTs ≤

∑
j∈[k] E [wj ].

Lemma 4.3. 16 ·ALGb + 8/3 ·ALGs ≥ OPTb.

Proof. First of all, observe that if it is the case that
for all i ∈ [n], p̄i ≥ m(k−|B|/2), then we are using
exactly the same prices of [3]’s SPM. Suppose there are
at least |B′| items, i.e., sellers willing to accept an offer
of at least m(k−|B|/2). By Theorem 2.1, our mechanism
gets at least 1/2 · E

[∑
i∈B′ vi

]
, which as previously

remarked (Remark 4.1) is at least 1/2·1/4·E
[∑

i∈B vi
]
.

By Lemma 4.1, with probability at least 1/2, there
are indeed at least |B|/4 = |B′| sellers who would
accept such an offer. Thus, conditioning on this to
hold, we lose at most a factor of two and get at least
(1/16) ·E

[∑
i∈B vi

]
= (1/16) ·OPTb.

Let A′ be the set of buyers who would receive
an item by [3]’s SPM and A be the buyers selected
by M. Suppose A′ \ A 6= ∅ as otherwise we are
in the previous case. We show that the welfare loss
E
[∑

i∈A′ vi −
∑
i∈A vi

]
due to setting a higher price is

covered by a fraction of the sellers’ welfare. Note that
for every i ∈ A′ \ A, it must be that vi < m(k−|B|/2);

therefore, E
[∑

i∈A′\A vi

]
≤ |A′ \A| ·m(k−|B|/2).

Let S̄ be defined as in Lemma 4.1. By this lemma,
|S̄| ≥ 1/2 · (k − |B|/2) with probability at least 1/2.
Recall that by assumption |B| ≤ k and observe that
(1/2)(k − |B|/2) ≥ |B|/4 is equivalent to |B| ≤ k. Now
observe that

2 ·E

 k∑
j=1

wj

 ≥ 2 ·E

∑
j∈S̄

wj



≥ 2·Pr
[
|S̄| ≥ 1

2
·
(
k − |B|

2

)]
·1
2
·
(
k − |B|

2

)
·m(k−|B|/2)

≥ |B|
4
·m(k−|B|/2) ≥ |A′\A|·m(k−|B|/2) ≥ E

 ∑
i∈A′\A

vi

 .
By Lemma 4.2, we know that (8/3) · ALGs ≥

2 · E
[∑k

j=1 wj

]
; thus, in total we have that (8/3) ·

ALGs + 16 ·ALGb ≥ OPTb.

5 Two-sided Fixed-Price Mechanisms

In this section we present two-sided fixed-price mech-
anisms for some important special cases of two-sided
markets. First, we consider the setting where there is
no matroid constraint on the buyers. We show that for
this setting there exists a fixed-price double auction. We
propose a 2FPM that achieves the same approximation
factor of 16.

Again, let m(`) denote the `-th largest median
among all sellers’ medians. Let Mk be the 2FPM where
the fixed price p is the price computed by the procedure
below.

1. Set q := m(dk/2e).

2. Set t0(p) := 0 and vn+1 := 0.

3. For 1 ≤ i ≤ dk/4e do:
Set ti(p) := min{n− dk/4e+ i,
min {j ∈ [n] : j > ti−1(p) ∧ vj ≥ p}}.

4. For i = dk/4e+ 1, . . . , k do:
Set ti(p) := min{n+ 1,
min {j ∈ [n] : j > ti−1(p) ∧ vj ≥ p}}.

5. Set r s.t. Pr
ˆ
tdk/4e(r) = n

˜
= Pr

ˆ
tdk/4e(r) < n

˜
=

1/2.

6. Set p := max{q, r}.

Theorem 5.1. The 2FPM Mk is IR, DSIC, SBB, and
16-approximates the optimal social welfare.12

The above theorem will follow from the subsequent
remarks and lemmas.

Remark 5.1. Let A,B be two events such that A =⇒
B, i.e., Pr [B|A] = 1. Then, Pr [B] ≥ Pr [A].

Remark 5.2. Let Y :=
∑k
j=1 Yj be the sum of k

random indicator variables such that for all j ∈ [k],
E [Yj ] ≥ 1/2. Then, Pr [Y ≥ dk/2e] ≥ 1/2.

12Additionally, in case of i.i.d. sellers, a slight varia-
tion of the above procedure (specifically, when we set r s.t.

Pr
ˆ
tdk/2e(r) = n

˜
= Pr

ˆ
tdk/2e(r) < n

˜
= 1/2) can be shown

to 8-approximate the optimal social welfare.



Remark 5.3. The optimal social welfare OPT is at
most the sum of all sellers’ valuations plus the sum of
the k highest buyers’ valuations, i.e.,

OPT ≤
k∑
j=1

E [wj ] +
k∑
i=1

E
[
v(i)

]
.

Remark 5.4. For any p ≥ 0,

k∑
i=1

E
[
v(i)

]
≤

k∑
i=1

E
[
p+

(
v(i) − p

)+]
≤ kp+

n∑
i=1

E
[
(vi − p)+

]
.

Lemma 5.1. For any p ∈ {q, r},

ALGb ≥ 1
2
·
(
p · dk/4e ·Pr

[
tdk/4e(p) < n

]
+ Pr

[
tdk/4e(p) = n

]
·
n∑
i=1

E
[
(vi − p)+

] )
.

Proof. Let Yj ∈ {0, 1} be a random indicator variable
being equal to one if and only if wj < p. Further, let
Y :=

∑k
j=1 Yj be the number of sellers that accept the

price. Let S := {j ∈ [k] : mj ≤ m(dk/2e)}. Clearly,
Y ≥

∑
j∈S Yj . For all j ∈ S, E [Yj ] ≥ 1/2; hence,

by Remark 5.2, Pr
[∑

j∈S Yj ≥ |S|/2
]
≥ 1/2, which in

turn implies that Pr [Y ≥ dk/4e] ≥ 1/2.
Thus, there are at least dk/4e sellers who accept the

price p. Observe that ALGb is equal to:

k∑
`=1

∑̀
i=1

E
[
vti(p)|vti(p) ≥ p ∧ Y = `

]
· Pr

[
vti(p) ≥ p ∧ Y = `

]
=

k∑
i=1

k∑
`=i

E
[
vti(p)|vti(p) ≥ p

]
· Pr

[
vti(p) ≥ p

]
·Pr [Y = `]

≥
dk/4e∑
i=1

E
[
vti(p)|vti(p) ≥ p

]
· Pr

[
vti(p) ≥ p

]
·
k∑
`=i

Pr [Y = `]

≥ Pr [Y ≥ dk/4e] ·
dk/4e∑
i=1

E
[
vti(p)|vti(p) ≥ p

]
· Pr

[
vti(p) ≥ p

]
≥ 1

2
·
dk/4e∑
i=1

E
[
vti(p)|vti(p) ≥ p

]
·Pr

[
vti(p) ≥ p

]
.

In the first equality we exploited the independence of
F1, . . . , Fk, G1, . . . , Gn. In the first inequality we simply
summed up to dk/4e instead of k. In the second
one we used that Pr [Y ≥ i] ≥ Pr [Y ≥ dk/4e] for any
i ≤ dk/4e, and the last one follows from Remark 5.2.

Further, observe that by summing and removing p,
we get that

1
2
·
dk/4e∑
i=1

(
p+ E

[
vti(p) − p|vti(p) ≥ p

])
·Pr

[
vti(p) ≥ p

]
=

1
2
·
(
p ·
dk/4e∑
i=1

Pr
[
vti(p) ≥ p

]
+
dk/4e∑
i=1

E
[(
vti(p) − p

)+] )
.

Now, observe that for any i = 1, . . . , dk/4e, the
event (tdk/4e(p) < n) implies the event (vti(p) ≥ p); thus,
by Remark 5.1, Pr

[
vti(p) ≥ p

]
≥ Pr

[
tdk/4e(p) < n

]
.

Therefore, the above expression is at least

1
2
·
(
p·dk/4e·Pr

[
tdk/4e(p) < n

]
+
dk/4e∑
i=1

E
[(
vti(p) − p

)+] )
.

Moreover,

dk/4e∑
i=1

E
[(
vti(p) − p

)+]

=
dk/4e∑
i=1

n∑
j=1

E
[
(vj − p)+ |ti(p) = j

]
·Pr [ti(p) = j]

=
n∑
j=1

dk/4e∑
i=1

E
[
(vj − p)+ |j = ti(p)

]
·Pr [j = ti(p)]

=
n∑
j=1

E
[
(vj − p)+ |j ≤ tdk/4e(p)

]
·Pr

[
j ≤ tdk/4e(p)

]
≥

n∑
j=1

n∑
`=dk/4e

E
[
(vj − p)+ |j ≤ tdk/4e(p) ∧ ` = tdk/4e(p)

]
· Pr

[
` = tdk/4e(p)

]
·Pr

[
tdk/4e(p) = n

]
= Pr

[
tdk/4e(p) = n

]
·
n∑
j=1

n∑
`=dk/4e

E
[
(vj − p)+ |j ≤ `

]
· Pr

[
` = tdk/4e(p)

]
= Pr

[
tdk/4e(p) = n

]
·
n∑
i=1

E
[
(vi − p)+

]
.

In the first inequality we exploit the fact that
Pr
[
tdk/4e(p) ≥ j

]
≥ Pr

[
tdk/4e(p) = n

]
, and in the last

equality that vj is independent of j ≤ ` and we simply
rename j to i.



Combining these inequalities, we finally get

ALGb ≥ 1
2
·
(
p · dk/4e ·Pr

[
tdk/4e(p) < n

]
+ Pr

[
tdk/4e(p) = n

]
·
n∑
i=1

E
[
(vi − p)+

] )
.

Lemma 5.2. If p = r, then

ALGs ≥
1
16
·OPTs.

Proof. As in Lemma 5.1, let Y denote the number of
sellers that accept p. Moreover, let X indicate the
number of buyers who have valuation above p. Then,
ALGs is at least

k∑
`=0

Pr [Y = `] ·
( k−∑̀
j=1

E
[
w(j)|Y = `

]
+

`−1∑
m=0

Pr [X = m]

· `−m
`
·

k∑
j=k−`+1

E
[
w(j)|Y = ` ∧X = m

] )
,

from the sellers since we certainly get the highest k − `
sellers, who do not accept the price, and in case there
are more sellers than buyers accepting, we select them
uniformly at random due to the initial shuffling.

Notice that the above expectations do not depend
on the conditionings. Hence, we can lower bound ALGs

further by

b 3
4kc∑
`=0

Pr [Y = `] ·
k−∑̀
j=1

E
[
w(j)

]
+

k∑
`=b 3

4kc+1

Pr [Y = `]

·
( k−∑̀
j=1

E
[
w(j)

]
+
dk/4e∑
m=0

Pr [X = m]

· `−m
`
·

k∑
j=k−`+1

E
[
w(j)

] )
.

Denote the first of these two summations by S1, and the
second by S2.

Note that, as ` ≤
⌊

3
4k
⌋
, the sum S1 is at least

Pr
[
Y ≤

⌊
3
4k
⌋]
·
∑dk/4e
j=1 E

[
w(j)

]
≥ 1

4 · Pr
[
Y ≤

⌊
3
4k
⌋]
·∑k

j=1 E [wj ].
For S2 observe that (` −m)/` = 1−m/` and that

` ≥
⌊

3
4k
⌋

+ 1 and m ≤ dk/4e. Since ` ≥
⌊

3
4k
⌋

+ 1 ≥
3
4k + 1/4 and m ≤ dk/4e ≤ k/4 + 3/4. We have that

m

`
≤ k + 3

4
· 4

3k + 1
≤ 7

8
, for all integers k > 1.

Thus, for any k > 1, 1 − m/` ≥ 1/8, and so S2 is at
least

k∑
`=b 3

4kc+1

Pr [Y = `] ·
( k−∑̀
j=1

E
[
w(j)

]

+
1
8
·

k∑
j=k−`+1

E
[
w(j)

]
·
dk/4e∑
m=0

Pr [X = m]
)
.

Now observe that the event (tdk/4e(p) = n) implies
(X ≤ dk/4e); hence, by Remark 5.1 it holds that
Pr [X ≤ dk/4e] ≥ Pr

[
tdk/4e = n

]
= 1/2. Hence, we

obtain that S2 is at least

k∑
`=b 3

4kc+1

Pr [Y = `] ·
( k−∑̀
j=1

E
[
w(j)

]

+
1
16
·

k∑
j=k−`+1

E
[
w(j)

] )

≥ 1
16
·Pr

[
Y >

⌊
3
4
k

⌋]
·
k∑
j=1

E [wj ] .

Combining the above inequalities, we have that

ALGs ≥ 1
4
·Pr

[
Y ≤

⌊
3
4
k

⌋]
·
k∑
j=1

E [wj ]

+
1
16
·Pr

[
Y >

⌊
3
4
k

⌋]
·
k∑
j=1

E [wj ]

≥ 1
16
·
k∑
j=1

E [wj ] ≥
1
16
·OPTs

Lemma 5.3. If p = r, then

ALGb ≥
1
16
·OPTb.

Proof. Recall Lemma 5.1 and observe that since
Pr
[
tdk/4e(p) = n

]
= Pr

[
tdk/4e(p) < n

]
= 1/2, we have

that

ALGb ≥ 1
4
·
(
dk/4e · p+

n∑
i=1

E
[
(vi − p)+

] )
.

Finally, recalling Remark 5.3, we get that

ALGb ≥ 1
4
·
(
dk/4e · p+

n∑
i=1

E
[
(vi − p)+

] )
≥ 1

16
·
k∑
i=1

E
[
v(i)

]
≥ 1

16
·OPTb.



Lemma 5.4. If p = q, then

ALG ≥ 1
12
·OPT.

Proof. Let S ⊆ [k] be the set of sellers whose median is
at least p. Observe that |S| ≥ bk/2c and that

ALGs ≥ 1
2
·
∑
j∈S

E [wj |wj ≥ p]

+
∑

j∈[k]\S

Pr [wj ≥ p] ·E [wj |wj ≥ p] .

Moreover, OPTs is at most∑
j∈S

E [wj ] +
∑

j∈[k]\S

E [wj ]

=
∑
j∈S

E [wj ] +
∑

j∈[k]\S

(
Pr [wj ≥ p] ·E [wj |wj ≥ p]

+ Pr [wj < p] ·E [wj |wj < p]
)

≤
∑
j∈S

E [wj ] +
∑

j∈[k]\S

Pr [wj ≥ p] ·E [wj |wj ≥ p]

+
⌈
k

2

⌉
· p.

Since OPTb ≤ kp+
∑n
i=1 E

[
(vi − p)+

]
, we obtain that

OPT is at most

≤
n∑
i=1

E
[
(vi − p)+

]
+
(
k +

⌈
k

2

⌉)
· p

+
∑
j∈S

E [wj ] +
∑

j∈[k]\S

Pr [wj ≥ p] ·E [wj |wj ≥ p] .

Note that∑
j∈S

E [wj |wj ≥ p] ≥
∑
j∈S

E [wj ] , and

5 ·
∑
j∈S

E [wj |wj ≥ p] ≥
(
k +

⌈
k

2

⌉)
· p,

where the latter inequality holds since

∑
j∈S

E [wj |wj ≥ p] ≥ bk/2c · p ≥
k − 1

2
· p,

and 5·(k−1) ≥ 3k+1 for all k ≥ 3. For k = 2, the above
statement trivially holds too as bk/2c = dk/2e = 1.

Observe that ALGb is at least

dk/4e∑
i=1

E
[
vti(p)|vti(p) ≥ p ∧ Y ≥ dk/4e

]
· Pr

[
vti(p) ≥ p ∧ Y ≥ dk/4e

]
≥ 1

2
·
(
Pr
[
tdk/4e(p) < n

]
· dk/4e · p

+ Pr
[
tdk/4e(p) = n

]
·
n∑
i=1

E
[
(vi − p)+

] )
≥ 1

4
·
n∑
i=1

E
[
(vi − p)+

]
,

where the first and second inequalities were
previously shown, and the last one follows
from Pr

[
tdk/4e(p) < n

]
· dk/4e · p ≥ 0 and

Pr
[
tdk/4e(p) = n

]
≥ Pr

[
tdk/4e(r) = n

]
= 1/2 since

p ≥ r.
So, in total we get that

ALG ≥ 1
4
·
n∑
i=1

E
[
(vi − p)+

]
+

1
2
·
∑
j∈S

E [wj |wj ≥ p]

+
∑

j∈[k]\S

Pr [wj ≥ p] ·E [wj |wj ≥ p] ,

and therefore 12 ·ALG ≥ OPT.

Next, we consider the special case in which k = 1,
i.e., there is a single seller and n buyers. This is
harder than the bilateral trade setting as it also involves
choosing the buyer with highest valuation among all of
them. Let m be the median of the seller’s distribution.
Moreover, let t1(r) be the first buyer that accepts price
r, i.e., min{i ∈ [n] : vi ≥ r}, or the last buyer n, in case
the former does not exist. Define r such that it solves
Pr [t1(r) < n] = Pr [t1(r) = n] = 1/2, and set the price
p := max{r,m}. Let M1 be the mechanism that sells
the item to t1(p) if and only if vt1(p) ≥ p and w1 ≤ p.

Theorem 5.2. For k = 1, mechanism M1 is IR, DSIC,
SBB, and 4-approximates the optimal social welfare.

This theorem can be proven with similar techniques
used in the previous proof; therefore, due to space
constraints, we defer it to the full version of the paper.

6 Bilateral Trade

Bilateral trade is the most fundamental special case of
a double sided market: There is only one buyer and one
seller. The seller has one item in posession. The valu-
ation for the seller and buyer are drawn independently
from two (possibly distinct) distributions on R. We de-
note the cumulative distribution function of the seller



and buyer by F and G respectively. We assume without
loss of generality that these probability distributions are
finite and discrete, and we denote by f and g the proba-
bility mass functions of the seller and buyer respectively.
Hence, a bilateral trade instance is a pair (f, g) of such
probability mass functions. A strongly budget-balanced
mechanism for (f, g) must decide whether the seller will
give the item to the buyer, and what amount the buyer
pays to the seller.

For p ∈ R≥0, a p-fixed price mechanism is a
mechanism that lets the seller and buyer trade if and
only if the buyer’s reported valuation exceeds p and
the seller’s reported valuation is below p. When trade
occurs, the price that the buyer pays to the seller is p.
There is an additional tie-breaking rule that specifies
three things:

• Whether or not to trade in the case the reported
valuations are both equal to p.

• Whether or not to trade in case the reported
valuation of the buyer is p, while that of the seller
is less than p.

• Whether or not to trade in case the reported
valuation of the seller is p, while that of the buyer
is greater than p.

Thus, for a fixed p ∈ R≥0 there are eight p-fixed
price mechanisms in total. It is easy to see that
such mechanisms are SBB, DSIC, and IR. In fact, we
can show that p-fixed price mechanisms characterize
the entire set of SBB, IC, and IR bilateral trade
mechanisms.

Proposition 6.1. Let M be a bilateral trade mecha-
nism that is SBB, DSIC, and IR. Then M is a p-fixed
price mechanism for some p ∈ R≥0.

Proof. It is clear that if M does not let the buyer and
seller trade, then M does not charge any price, as it
would violate IR for the buyer. If trade does occur,
then the price charged is at most the buyer’s valuation
(otherwise it would again violate IR for the buyer), and
at least than the buyer’s valuation (otherwise it would
violate IR for the seller).

For a valuation profile (v, w) (where v is the valua-
tion of the buyer), let p(v, w) denote the price charged
by M when (v, w) is reported. Fix a valuation w of the
seller. If trade occurs for a valuation profile (v, w) then
for each valuation profile (v′, w) where v′ > v, trade
also occurs, and p(v′, w) ≥ p(v, w), otherwise the buyer
would be better off reporting v′ if her valuation is v,
which would violate DSIC. Likewise, it must be that
p(v′, w) ≤ p(v, w), otherwise the buyer would be better

off reporting v if her valuation is v′. This implies that
for any valuation w of the seller, there is a threshold
point v̄(w) such that trade occurs for all profiles (v, w)
where v > v̄(w). By symmetry, we conclude that for
any valuation v of the buyer, there is a threshold point
w̄(v) such that trade occurs at price w̄(v) for all profiles
(v, w) where w < w̄(v). We will refer to this as trade
monotonicity.

Let (v, w) and (v′, w′) be two distinct valuation pro-
files where trade occurs. We now prove that p(v, w) =
p(v′, w′).

• First, if w < w̄(v′), then trade occurs at profile
(v′, w), so we derive that p(v′, w′) = p(v′, w) =
p(v, w).

• If w > w̄(v′) = v̄(w′), then from v > w ≥
v̄(w′) we see that trade occurs at profile (v, w′),
so p(v′, w′) = p(v, w′) = p(v, w).

• If w = w̄(v′) and trade does not occur at (w′, v), we
consider three cases: If v > w′, then trade does not
occur at (w′, v′), which is a contradiction. If v = w′

and v > v′, then trade occurs at profile (w′, v), so
p(w′, v′) = p(w′, v) = p(w, v). If v = w′ and v = v′,
then w < v (because otherwise (v, w) and (v′, w′)
would not be distinct), and w̄(v) = w̄(v′) = w <
v = w, i.e., the value w lies above the threshold
point w̄(v). This contradicts that trade occurs at
(v, w).

• If w = w̄(v′) and trade occurs at (w′, v), then
p(w, v) = p(w′, v) = p(w′, v′).

Therefore, there is a single threshold p such that
if trade occurs, then it happens at price p. Moreover,
when we include the trade monotonicity property and
the IR constraints, we conclude that trade occurs if the
buyer’s valuation is above p and the seller’s valuation is
below p. When one of these valuations is exactly p, then
trade may occur, although by DSIC it must be that for
two reported valuation profiles (p, w) and (p, w′) where
w′ < p and w < p, trade occurs at (p, w) if and only if
trade occurs at (p, w′). Likewise for reported valuation
profiles (v, p) and (v′, p) where v > p and v′ > p, trade
occurs at (p, w) if and only if trade occurs at (p, w′). It
is now straightforward to verify that this is precisely the
definition of a p-fixed price mechanism.

It is clear that for a fixed p ∈ R≥0, among the eight
p-fixed price mechanisms, the one with the highest
expected social welfare uses the tie breaking rule where
trade always occurs in case of ties. We focus on this
subclass of fixed-price mechanisms for the remainder of
this section.



Let Ms be the median of the seller. Dobzinski and
Blumrosen show in [1] that the expected social welfare
of the Ms-fixed price mechanism is a 2-approximation
to the optimal social welfare. They also show that,
in order to improve upon this approximation factor,
the fixed price p necessarily needs to be a function of
the buyer’s distribution in addition to only the seller’s
distribution. They prove subsequently that for any
bilateral trade instance (f, g) there exists a price p(f, g)
such that the expected social welfare of the p(f, g)-
fixed price mechanism is a 55/28-approximation to the
optimal social welfare. Additionally, they provide a
lower bound bilateral trade instance for which no fixed
price mechanism achieves an expected social welfare
that 1.1231-approximates the expected optimal social
welfare.

In this section we are interested in what is the best
possible approximation factor to the optimal welfare
that can be achieved by an SBB, DSIC, and IR mech-
anism on any bilateral trade intance. We improve the
lower bound of 1.1231 to 1.3360 and we improve the
upper bound of 55/28 to 25/13.

Theorem 6.1. Let (f, g) be a bilateral trade instance.
There exists a (SBB, DSIC, and IR) fixed price mech-
anism of which the expected social welfare 25/13-
approximates the optimal social welfare.

Theorem 6.2. There exists a bilateral trade instance
for which no SBB, DSIC, and IR mechanism gives
an expected social welfare that 1.3360-approximates the
optimal social welfare.

We prove the latter theorem first, as it is the easiest of
the two.

Proof. For ε ∈ Rε, let (fε, gε) be the following instance
where fε and gε defined as follows:

• The support of fε is {0, ε, 2ε}. The support of gε is
{ε, 2ε, 1}.

• The probabilities of the seller are: fε(0) = 4/(5 +√
17), fε(ε) = 2(

√
17− 4), fε(2ε) = (13− 3

√
17)/2.

• The probabilities of the buyer are: gε(ε) = (7 −√
17)/4− ε, gε(2ε) = (

√
17− 3)/4, gε(1) = ε.

It is straightforwardly verified that this is a valid
bilateral trade instance, i.e., the probabilities of both
distributions indeed sum to 1. Because the support
of the seller has three points, we know that the p-
fixed price mechanism that attains the maximum social
welfare is M0, Mε or M2ε. By manually computing
the expected social welfare of these three mechanisms,

we conclude that Mε performs best and achieves an
expected social welfare of

ε(6−
√

17− ε2(
√

17− 4)).

The expected optimal social welfare is

ε

(
19− 4

√
17− ε3(5−

√
17)

2

)
.

Therefore, the factor by which the best SBB, DSIC, IR
mechanism approximates the expected optimal social
welfare is

19− 4
√

17− ε3(5−
√

17)/2
6−
√

17− ε2(
√

17− 4)
.

Taking ε to 0 then proves the claim.

lim
ε→0

19− 4
√

17− ε3(5−
√

17)/2
6−
√

17− ε2(
√

17− 4)
=

19− 4
√

17
6−
√

17
≈ 1.3360.

The remainder of this section is devoted to proving the
upper bound of 25/13. We will denote the p-fixed price
mechanism by Mp. Let X be a random variable with
distribution F and let Y be a random variable with dis-
tribution G. Throughout this section, for an event E
we will write 1(E) to denote the indicator function that
maps to 1 if E is true, and to 0 otherwise. Given a
bilateral trade instance (f, g), the expected social wel-
fare of Mp can be written as E [X] + GFTf,g(p), where
GFTf,g(p) = E [(Y −X)1(Y ≥ p ≥ X)] is the gain
from trading at price p. Moreover, the expected optimal
social welfare can be written as E [X] + GFTf,g(OPT),
where GFTf,g(OPT) = E [(Y −X)1(Y > X)] is the
optimal gain from trade. The following lemma bounds
GFTf,g(OPT) in terms of E [Y ] and GFTf,g(p).

Lemma 6.1. Let c ∈ [0, 1] and let f and g be two finite
discrete probability distributions on R≥0. Define F−1(c)
as the point p such that F (p) ≥ c and F (p− ε) < c for
all ε ∈ R>0. Then it holds that

GFTf,g(OPT) ≤ cE [Y ] +
1
c
GFTf,g(F−1(c)).

Proof. For convenience we assume that there exists a
point p such that F (p) = c. (Otherwise one may
“perturb” f slightly such that this is the case.) Let S be
the support of f and B be the support of g. We split the
expected optimal gain from trade into three summations
GFT≤p, GFT>p, and GFTp, defined as follows.

GFT≤p =
∑

x∈S,y∈B:x<y≤p

f(x)g(y)(y − x),

GFT>p =
∑

x∈S,y∈B:p<x<y

f(x)g(y)(y − x),

GFTp = GFTf,g(p).



It can be checked that these three summations indeed
sum up to GFTf,g(OPT). We bound GFT≤p in terms
of E [Y ]:

GFT≤p =
∑

x∈S,y∈B:x<y≤p

f(x)g(y)(y − x),

≤
∑

x∈S,y∈B:x<y≤p

f(x)g(y)y

≤
∑

x∈S:x<p

∑
y∈B:y≤p

f(x)g(y)y

≤ c
∑

y∈B:y≤p

g(y)y

≤ cE [Y ] ,

where the third inequality follows because F (p) = c.
We bound GFT>p in terms of GFTp:

GFT>p =
∑
y∈B

∑
x∈S:p<x<y

f(x)g(y)(y − x),

≤
∑
y∈B

∑
x∈S:p<x<y

f(x)g(y)(y − p)

≤ (1− c)
∑

y∈B:p<y

g(y)(y − p)

=
(1− c)
c

∑
x∈S:x<p

f(x) ·
∑

y∈B:p<y

g(y)(y − p)

=
(1− c)
c

∑
x∈S:x<p

∑
y∈B:p<y

f(x)g(y)(y − x)

=
(1− c)
c

GFTp,

where the second inequality follows because the total
probability mass of f above point p is at most (1 − c),
i.e., F (p) = c. The third inequality follows for the same
reason. Therefore,

GFTf,g(OPT) = GFT≤p + GFT>p + GFTp

≤ cE [Y ] +
(

1 +
1− c
c

)
GFTp

≤ cE [Y ] +
1
c

GFTf,g(F−1(c)).

For a bilateral trade instance (f, g), we will write
R(f, g) to denote

max
{

E [X] + GFTf,g(p)
E [X] + GFTf,g(OPT)

: p ∈ R≥0

}
= max

{
E [X] + GFTf,g(p)

E [X] + GFTf,g(OPT)
: p ∈ S

}
,

where S is the support of f . Thus, R(f, g) is the best
(inverse) approximation factor to the social welfare that

is achievable by a fixed-price mechanism on instance
(f, g). For a fixed price p ∈ R≥0, we define the missed
gain from trade at p as

MGFTf,g(p) =
∑

x∈S,y∈B:x<y<p

f(x)g(y)(y − x)

+
∑

x∈S,Y ∈B:p<x<y

f(x)g(y)(y − x).

Using this notion, we may rewrite the ratio R(f, g) in
an alternative form 1−R′(f, g), where

R′(f, g) =
min{MGFTf,g(p) : p ∈ S}
E [X] + GFTf,g(OPT)

=
min{MGFTf,g(p) : p ∈ S}

E [max{X,Y }]
.

We will now proceed with reasoning about bilateral
trade instances on which any fixed price mechanism
generates the worst possible relative expected social
welfare. We will establish various structural properties
that such a worst-case instance satisfies. Let I be the
set of all bilateral trade instances. Let J be the set
of bilateral trade instances in which the support of the
seller has the form {0}∪T and the support of the buyer’s
distribution is T ∪ {1}, or T ∪ {0, 1} where T is a finite
subset of (0, 1). I.e, the buyer’s and seller’s support are
subsets of [0, 1], and these sets coincide on (0, 1). Value
0 is in the support of the seller (and possibly the buyer),
and value 1 is in the support of the buyer.

Lemma 6.2. Let (f, g) be an instance in I. There exists
an instance (f ′, g′) ∈ J such that R(f, g) ≥ R(f ′, g′).
Hence,

inf{R(f, g) : (f, g) ∈ I} = inf{R(f, g) : (f, g) ∈ J }

Proof. Let (f, g) ∈ I be an instance that is not in
J . Let S and B denote the support of f and g
respectively. We prove the claim by considering various
operations on f and g, and we prove that for any of these
operations, R(f, g) does not increase (or equivalently:
R′(f, g) does not decrease). After having performed all
of these operations, our instance (f, g) will have been
transformed into an appropriate instance in J while
R(f, g) will not have increased.

Let x = minS. If ` > 0. Consider moving some
amount of probability mass of f from x to 0. By
performing this operation the denominator of R′(f, g),
(i.e., the expected optimal social welfare) decreases,
as the denominator can be written as E [max{X,Y }].
Moreover, all of the |S| values in the min-expression
in R′(f, g) do not decrease. We conclude that R′(f, g)
increases and thus that R(f, g) increases.



Next, let x = maxS. If x ≥ maxB, consider
removing all probability mass from x and rescaling the
remaining probabilities by an appropriate λ > 1 such
that

∑
x′∈S λf(x′) = 1. It is easy to see that that

R′(f, g) increases, as a scaling operation leaves the ratio
R′(·) unaffected and removing probability mass only
decreases the denominator of R′(f, g).

Next, we scale the points in the supports of f and
g by an appropriate positive constant, and we obtain a
probability distribution where 1 = maxB. It can easily
be checked that R(f, g) does not change by performing
such a scaling operation.

Now, suppose that there are two points x, x′ ∈ S,
x < x′ such that there is no point of B in between
x and x′. We consider the operation of augmenting
f by removing all probability mass from the points x
and x′, and putting it on the point x′′ = (f(x)x +
f(x′)x′)/(f(x)+f(x′)). Let f ′ be the resulting distribu-
tion and let X ′ be a random variable with distribution
f ′. It then holds that E [X ′] = E [X]−f(X)x−f(x′)x′+
(f(x) + f(x′))(f(x)x+ f(x′)x′)/(f(x) + f(x′)) = E [X].
Likewise, for any point y ∈ B we see that

g(y)f(x)(y−x)+g(y)f(x′)(y−x′) = g(y)(f(x)+f(x′))x′′

Thus GFTf,g(x) ≤ GFT(x′) = GFTf ′,g(x′′), as every
pair of terms g(y)f(x)(y − x) and g(y)f(x)(y − x)
that occur in GFTf,g(x) gets replaced by the term
g(y)(f(x) + f(x′))x′′, which is equal. For the same
reason it holds that GFTf,g(z) = GFTf ′,g(Z) for z ∈
B \ {x} and GFTf,g(OPT) = GFTf ′,g(OPT).

Therefore, R(f ′, g) = R(f, g). We can repeat this
operation until there are no two points left in S that
have no point in B in between them. By similar
operations, we obtain an instance for which there are
no two points y, y′ ∈ B with a point of S in between y
and y′.

Lastly, suppose there are points x ∈ S and y ∈ B,
where y < x and there is no point z ∈ S ∪ B with
y < z < x. We consider the operation of augmenting f
by moving point x (and all of its probability mass) to y.
Clearly, the denominator of R′(f, g) does not increase
by performing this operation. Moreover, MGFTf,g(x)
increases for all x ∈ S, so R′(f, g) increases.

From now on, we restrict our attention to instances
in J exclusively, and we will use the following notation:
m is the cardinality of the support of the buyer (and
hence the cardinality of the support of the seller is either
m or m + 1). Let x1 = 0 and let x2 < . . . < xm be
such that {x1, . . . , xm} is the support of the seller. Let
xm+1 = 1, so that by the above lemma we may assume
that {x2, . . . , xm+1} or {x1, . . . , xm+1} is the support of
the buyer. For i ∈ [m], we abbreviate f(xi) to pi and

for j ∈ [m+1] we abbreviate g(xj) to qj (where possibly
q1 = 0). The values of these parameters depend on the
instance, but whenever we use this notation it will be
clear from context which instance is being discussed.

For ε ≥ 0, let K(ε) be the subset of instances in
J where for all i, j ∈ [m − 1], the gain from trade of
Mxi

is equal to the gain from trade of Mxj
and the gain

from trade of Mxm
is between 1 and (1 − ε) times the

gain from trade of Mxi , for all i ∈ [m − 1]. The next
lemma shows that we may safely restrict our attention
to studying bilateral trade instances in the set K(ε).

We define a canonical instance as an instance in
J such that there is no other instance (f ′, g′) in J
for which it holds that both R(f ′, g′) ≤ R(f, g) and
the seller and buyer have in (f ′, g′) a support of lower
cardinality than in (f, g)

Lemma 6.3. Let (f, g) be a canonical instance in J .
For any ε > 0, there exists a canonical instance
(f ′, g′) ∈ K(ε) such that R(f ′, g′) ≤ R(f, g). Hence,

inf{R(f, g) : (f, g) ∈ J } = inf{R(f, g) : (f, g) ∈ K(ε)}.

Moreover,

• the support of g is the support of g′,

• g(xm) > g′(xm),

• and g(xm) + g(xm+1) ≥ g′(xm) + g′(xm+1).

(The last part of this lemma are technical properties
that are needed subsequently.)

Proof. Pick any ε > 0 and let (f, g) be a canonical in-
stance. We prove the claim by considering various oper-
ations on f and g, and by showing that for any of these
operations, R(f, g) does not increase (or equivalently:
R′(f, g) does not decrease). We show that an appropri-
ate combination of such operations turns instance (f, g)
into an instance in K(ε) such that R(f, g) has not in-
creased.

We first define an operation reduce(i, ε, (f, g)),
where i ∈ [m − 1] and ε ∈ [0, pi+1] as follows: Aug-
ment f by subtracting a probability mass of ε from pi+1,
and adding it to pi. By doing this, the denominator of
R′(f, p) decreases. Moreover, we see that

• the value MGFTf,g(xi) decreases by
ε
∑
i+1≤j≤m+1 qj(xj − xi+1);

• for k > i the value MGFTf,g(xk) increases by
ε(xi+1 − xi)

∑
i+1≤j≤k qj ;

• and for k < i the value MGFTf,g(xk) increases by
ε(xi+1 − xi)

∑
i+1≤j≤m+1 qj .



We also define the operation reduce(m, ε, (f, g))
which has the effect that MGFTf,g(xm) decreases and
{MGFTf,g(xi) : i ∈ [m − 1]} all increase, while the
denominator ofR′(f, g) does not change. This operation
works as follows: Let δ(ε) < ε be the value such
that δ(ε)

∑
1≤i≤m pi(xm+1 − xi) − ε

∑
1≤i≤m pi(xm −

xi) = 0. The operation reduce(m, ε, (f, g)) consists of
subtracting ε from qm, adding δ(ε) to qm+1, and adding
the remaining probability mass to q1.

The value δ(ε) has been chosen in such a way
that the denominator of R′(f, g) remains unaffected.
(This is because GFTf,g(OPT) = GFTf,g(OPT) +
δ(ε)

∑
1≤i≤m pi(xm+1 − xi) − ε

∑
1≤i≤m pi(xm − xi) =

GFTf,g′(OPT), where (f, g′) is the instance result-
ing from reduce(m, ε, (f, g)).) Also, we see that the
value MGFTf,g(xm) decreases by ε

∑
1≤j≤m pj(xm −

xj), while for k ∈ [m − 1] the value MGFTf,g(xk)
changes by ∆(m, k, ε, (f, g)), defined as∑

k+1≤i≤m

pi(δ(ε)xm+1 − εxm + xi(ε− δ(ε))).

It can be seen that this change is positive, because
the factor (δ(ε)xm+1 − εxm + xi(ε − δ(ε))) is increas-
ing in i, therefore the terms in the summation of
∆(m, 0, ε(f, g)) = 0 are first all negative and afterwards
all positive. Thus, the partial sum ∆(m, k, ε(f, g)) is
positive, and MGFTf,g(xk) increases.

We have thus shown that for all i ∈ [m] and ε ∈
R≥0, the operation reduce(i, ε, (f, g)) decreases the de-
nominator ofR′(f, g), decreases the value MGFTf,g(xi),
and increases the value MGFTf,g(xj) for j ∈ [m] \ {i}.
Therefore, for every i there is a threshold ti(f, g) such
that the function reduce(i, ·, (f, g)) increases the value
min{MGFTf,g(xi) : i ∈ [m]} up to the point ti(f, g)
and decreases it after ti(f, g). In other words, ap-
plying operation reduce(i, ti(f, g), (f, g)) results in an
instance (f ′, g′) in which R′(f ′, g′) ≥ R′(f, g), and
MGFTf ′,g′(xi) = min{MGFTf ′,g′(xj) : j ∈ [m]}. We
next consider what happens if we perform sequencences
of operations of reduce(i, ti(·), ·), i ∈ [m] such that
ti > 0, starting on the instance (f, g). We call these re-
duction sequences on (f, g). This definition implies that
for any reduction sequence on instance (f, g) ∈ J , the
resulting instance (f ′, g′) satisfies R(f, g) ≥ R(f ′, g′).

Note first that the following facts hold.

Proposition 6.2. There does not exist a reduction
sequence on (f, g) that yields an instance that reduces
the support of f or g. Every reduction sequence on (f, g)
yields an instance (f ′, g′) that lies in J , such that f ′ and
f have the same support, and g′ and g have the same
support.

Proof. The claim follows by contradiction: suppose that

a reduction sequence on (f, g) results in an instance
(f ′, g′) where the support of f ′ is a strict subset of the
support of f , or the support of g′ is a strict subset of
the support of g. (Reduction sequences cannot influence
the support in any other way, by definition.) Then, by
Lemma 6.2, there is an instance (f ′′, g′′) ∈ J such that
R(f ′′, g′′) ≤ R(f, g) where the cardinality of the support
of f ′′ is less than the cardinality of the support of f , or
the cardinality of the support of g′′ is strictly less than
the cardinality of the support of g. This contradicts our
assumption that (f, g) is canonical.

Proposition 6.3. On any instance (f ′, g′) ∈ J ,
there exists a finite reduction sequence that results
in an instance (f ′′, g′′) where MGFTf ′′,g′′(xm) =
max{MGFTf ′′,g′′ : i ∈ [m]} and MGFTf ′′,g′′(xi) =
MGFTf ′′,g′′(xj) for all j ∈ [m− 1].

Proof. This fact holds because for i ∈ [m − 1], the
value MGFTf ′,g′(xm) increases the most among
all values {MGFTf ′,g′(xj) : j ∈ [m], j > i} when
performing the operation reduce(i, ti(f ′, g′), (f ′, g′)),
all values {MGFTf ′,g′(xj) : j ∈ [m], j < i} all
increase by an even larger amount, and all val-
ues {MGFTf ′,g′(xj) : j ∈ [m], j < i} all increase
by the same amount. Therefore, the reduction
sequence reduce(m − 1, tm−1(·), ·), reduce(m −
2, tm−2(·), ·), . . . , reduce(1, t1(·), ·) yields an in-
stance (f ′′′, g′′′) in which MGFTf ′′′,g′′′(xi) <
MGFTf ′′′,g′′′(xi+1) for all i ∈ [m − 1]. If
after that, we apply the reduction sequence
reduce(2, t2(·), ·), reduce(3, t3(·), ·), . . . reduce(m −
1, tm−1(·), ·), we obtain an instance (f ′′, g′′) where
MGFTf ′′,g′′(xi) = MGFTf ′′,g′′(xi+1) for all i ∈ [m− 2]
and MGFTf ′′,g′′(xm−1) ≤ MGFTf ′′,g′′(xm), as desired.

Now we distinguish between two cases:

Case 1: There exists a finite reduction sequence on
(f, g) that yields in an instance (f ′, g′) such that
ti(f ′, g′) = 0 for all i ∈ [m]. In such an instance,
all the ratios R′(f ′, g′) are equal and greater than
R′(f, g), and (f ′, g′) ∈ K(0), which proves the
claim.

Case 2: There does not exist a finite reduction se-
quence that results in an instance (f ′, g′) such that
ti(f ′, g′) = 0 for all i ∈ [m]. In that case, consider
any infinite reduction sequence

(reduce(i(k), ti(k)(·), ·))k∈N

on (f, g) such that

• i(k) = m infinitely often, and



• for all k where i(k) = m it holds that
MGFTfk,gk

(xm) = max{MGFTfk,gk
(xj) : j ∈

[m]}, and MGFTfk,gk
(xj) = MGFTfk,gk

(xj′)
for all j, j′ ∈ [m − 1], where (fk, gk) is the
instance resulting from the first k reduce-
operations in the sequence.

Such a sequence exists by Proposition 6.3. Let S
be the set of indices k such that i(k) = m. Because
an application of reduce(m, ε, ·) decreases the value
of qm by ε, we know that

∑
k∈S tm(fk, gk) < qm.

Because S is infinite, for all ε′ ∈ R>0, there must
be an index k ∈ S such that ti(k) < ε′. Note
moreover that by definition, for any δ > 0 and
any (f ′, g′) ∈ J , the operation reduce(m, δ, (f ′, g′))
increases GFTf ′,g′(xm) by at most an amount of δ.
Therefore, in the instance (fk, gk) it holds that

min{GFTfk,gk
(xj) : j ∈ [m]}

= GFTfk,gk
(xm)

≥ max{GFTfk,gk
(xj) : j ∈ [m]} − ε′.

When we choose ε′ = εp1qm+1 (where p1 and qm+1

refer to instance (f, g), i.e., the values f(0) and
g(1)) we obtain

min{GFTfk,gk
(xj) : j ∈ [m]}

≥ max{GFTfk,gk
(xj) : j ∈ [m]} − εp1qm+1

≥ (1− ε) max{GFTfk,gk
(xj) : j ∈ [m]},

where the last inequality follows from the prop-
erty that reduction sequences can only increase
p1 and qm+1, hence p1qm+1 ≤ fk(x1)gk(xm+1) ≤
GFTfk,gk

(xi) for all i ∈ [m].

So (fk, gk) is an instance in K(ε) where R′(fk, gk) ≥
R′(f, g). This completes the proof.

Next, we define yet another class of instances: For
ε ∈ R>0, let L(ε) be the bilateral trade instances in J
where qm+1 < ε and xm ≤ ε. The purpose of this class
of instances (and the next lemma), will be clear later on
in this proof.

Lemma 6.4. Let (f, g) be an instance in J . For any
ε > 0, there exists an instance (f ′, g′) ∈ L(ε) such that
R(f ′, g′) ≤ R(f, g). Hence, for all ε ∈ R>0,

inf{R(f, g) : (f, g) ∈ J } = inf{R(f, g) : (f, g) ∈ L(ε)}.

Moreover, the probability mass on the second highest
point in the support of g equals the probability mass on
the second highest point in the support of g′.

(The last part of this Lemma is a technical property
that is needed subsequently.)

Proof. For an instance (f, g) ∈ J , we define R(f, g, i)
as

E [X] + GFTf,g(xi)
E [X] + GFTf,g(OPT)

,

so that R(f, g) = max{R(f, g, i) : i ∈ [m]}.
Let (f, g) ∈ J . We prove that for all ε ∈ [0, 1] there

exists a δ(ε) ≤ ε such that

• scaling down the points x1, . . . xm (but not xm+1)
by ε,

• scaling down the probability qm+1 by δ(ε),

• putting the remaining buyer’s probability mass of
q1 := (1− δ(ε))qm+1 on the point 0,

yields an instance (f ′, g′) in J such that R(f ′, g′) ≤
R(f, g).

Thus, it remains to define δ(ε) and to prove that
the scaling operation just mentioned yields an instance
(f ′, g′) in which R(f ′, g′, i) ≤ R(f, g, i) for all i ∈ [m].
Define δ(ε) ∈ [0, ε] such that

εqm+1

∑
i∈[m]

(xm+1−xi)pi = δ(ε)qm+1

∑
i∈[m]

(xm+1−εxi)pi.

Such a choice of δ(ε) exists because the terms in the
right hand side summation are larger than the terms in
the left hand side summation.

Observe that R(f ′, g′, i) can then be written as

=


εEX∼f [X] + εGFTf,g(xi)

− εqm+1

∑
j∈[i]

(xm+1 − εxj)pj

+ δ(ε)qm+1

∑
j∈[i]

(xm+1 − εxj)pj



εEX∼f [X] + εGFTf,g(OPT)

− εqm+1

∑
j∈[m]

(xm+1 − xj)pj

+ δ(ε)qm+1

∑
j∈[m]

(xm+1 − εxj)pj



=


εEX∼f [X] + εGFTf,g(xi)

− εqm+1

∑
j∈[i]

(xm+1 − εxj)pj

+ δ(ε)qm+1

∑
j∈[i]

(xm+1 − εxj)pj


εEX∼f [X] + εGFTf,g(OPT)

=

 εEX∼f [X] + εGFTf,g(xi)

+ qm+1

∑
j∈[i]

(xm+1(δ(ε)− ε) + xjε(1− δ(ε))pj)


εEX∼f [X] + εGFTf,g(OPT)

,



where the second equality follows from the definition of
δ(ε). Moreover, observe that the above is at most

≤ εEX∼f [X] + εGFTf,g(xi)
εEX∼f [X] + εGFTf,g(OPT)

= R(f, g, i),

since the factor (xm+1(δ(ε) − ε) + xjε(1 − δ(ε)) is in-
creasing in i: The summation S :=

∑
j∈[m](xm+1(δ(ε)−

ε) + xjε(1− δ(ε))pj) therefore consists of first only neg-
ative terms, and after that only positive terms. By the
definition of δ(ε), we have that S = 0, so the partial
summation

∑
j∈[m](xm+1(δ(ε)− ε) + xjε(1− δ(ε))pj) is

negative.

Summarizing the above two lemmas: Lemma 6.4
changes an instance in J such that the buyer’s prob-
ability mass on the highest point is smaller than any
constant ε. In doing this, the probability mass on the
second highest point remains unaffected. Lemma 6.3
changes a canonical instance into another canonical in-
stance such that all fixed price mechanisms perform
equally well, except possibly when the fixed price is
on the highest seller’s point in which case it performs
slightly worse (by factor (1− ε) for any ε). In doing so,
probability mass may be moved from the second highest
point of the seller to the highest point of the seller, and
this is the only way in which the probability mass on
those two points is modified. Therefore, by a repeated
sequence of applications of Lemma 6.3 and Lemma 6.4,
(starting with some canonical instance, and an arbitrar-
ily small ε > 0,) we may obtain an instance that is in
both K(ε) and L(ε). This implies the following corol-
lary:

Corollary 6.1. For all ε > 0,

inf{R(f, g) : (f, g) ∈ I}
= inf{R(f, g) : (f, g) ∈ L(ε) ∩ K(ε)}.

Note that the above corollary requires all the technical
properties in the statements of Lemmas 6.3 and 6.4: The
total amount by which q(xm+1) increases throughout
any sequence of applications of the above two lemmas
is bounded by 1, thus there must be a finite sequence of
such applications that yields an instance that is both in
K(ε) and L(ε), for any ε > 0.

Now we are ready to state the key lemma by which
we can prove Theorem 6.1. This lemma says that for
any ε, we can safely restrict our attention to instances
in J that are both in L(ε) and K(0), i.e., instances in J
where every fixed-price achieves the same social welfare,
and the buyer’s probability mass on xm+1 is arbitrarily
small.

Lemma 6.5. For all ε > 0,

inf{R(f, g) : (f, g) ∈ I}
= inf{R(f, g) : (f, g) ∈ L(ε) ∩ K(0)}.

Proof. Let (f, g) be an instance in L(ε) ∩ K(ε). We
will transform this instance into an instance R(f ′, g′) ∈
L(ε)∩K(0), such that R(f ′, g′) ≤ R(f, g) + h(ε), where
h is an increasing continuous function with h(0) = 0.
Because we can pick ε arbitrarily small, this would
establish that

inf{R(f, g) : (f, g) ∈ L(ε) ∩ K(ε)}
= inf{R(f, g) : (f, g) ∈ L(ε) ∩ K(0)},

and subsequently applying Corollary 6.1 would prove
the claim.

For i ∈ [m], we define R(f, g, i) as in the
proof of the previous lemma, so that max{R(f, g, i) :
i ∈ [m]} = R(f, g). In instance (f, g) the val-
ues R(f, g, 1), . . . , R(f, g,m − 1) are all equal. Value
R(f, g,m) is lower, but at least (1 − ε)R(f, g,m − 1).
Consider the operation where we add probability mass
of δ to f(xm), (i.e., the highest point of the seller), and
subsequently scale the seller’s distribution by a constant
so as to ensure that

∑
i∈[m] f(xi) = 1. For simplicity we

only consider the first of these two steps, as the scaling
step does not influence the ratios R(f, g, i), i ∈ [m] in
any way.

This operation adds to the denominator of R(f, g)
(and hence the denominator of R(f, g, i), i ∈ [m]) an
amount of δxm + δg(xm+1)(1 − xm) = δ(g(xm+1) +
xm(1 − g(xm+1))) ≤ δ. The numerator of R(f, g,m)
increases by the same amount. For i ∈ [m − 1], the
numerator of R(f, g, i) increases by only δxm. There-
fore, it is possible to choose δ such that the numer-
ator of R(f, g,m) becomes equal to the numerators
of R(f, g, i), i ∈ [m − 1]. Denote this choice of δ by
δ(ε), and let the resulting instance be (f ′, g′). In other
words, instance (f ′, g′) is obtained from (f, g) by adding
δ(ε) to f(xm), and (f ′, g′) ∈ K(0). Denote the quan-
tity E [f ] + GFTf,g(xi) by N(f, g, i), i.e., N(f, g, i) is
the numerator of R(f, g, i); and denote the quantity
E [f ]+GFTf,g(OPT) by D(f, g), i.e., D(f, g) is the de-
nominator of R(f, g) and R(f, g, i). Then, for i ∈ [m−1]

R(f, g) =
N(f, g, i) + δ(ε)g(xm+1)

D(f, g) + δ(ε)(g(xm+1) + xm(1− g(xm+1)))

≤ N(f, g, i) + δ(ε)g(xm+1)
D(f, g)

= R(f, g, i) +
δ(ε)g(xm+1)
D(f, g)

= R(f, g) +
δ(ε)g(xm+1)
D(f, g)

.



It is easy to verify that we defined δ(ε) as

δ(ε) =
GFTf,g(xm)−GFTf,g(xm+1)

g(xm+1)(1− xm)

≤ εGFTf,g(xm)
g(xm+1)(1− xm)

.

Therefore,

R(f ′, g′) ≤ R(f, g) +
εGFTf,g(xm)

(1− xm)D(f, g)

≤ R(f, g) +
ε

1− xm
≤ R(f, g) +

ε

1− ε
.

The function h(ε) = ε/(1 − ε) is increasing and con-
tinuous in ε, and satisfies h(0) = 0, which proves the
claim.

The following lemma states an important relation
between the buyer and seller distribution for instances
in K(0).

Lemma 6.6. For any instance in K(0),

E [X | X > 0] ≥ E [Y | Y < 1] .

Proof. It holds that MGFTf,g(xi) = MGFTf,g(xi+1)
for all i ∈ [m− 1]. This means that

pi+1

∑
j∈[m]:j>i+1

qj(xj −xi+1) = qi+1

∑
j<i+1

pj(xi+1−xj).

Rewriting this yields

pi+1

qi+1
=

∑
j<i+1 pj(xi+1 − xj)∑

j∈[m]:j>i+1 qj(xj − xi+1)
.

The numerator of the right hand side of this equation is
increasing in i, while the denominator is decreasing in
i. Therefore, the sequence(

p2

q2
,
p3

q3
, . . . ,

pm
qm

)
is increasing, so(

Pr [X = x2 | X > 0]
Pr [Y = x2 | Y < 0]

,
Pr [X = x3 | X > 0]
Pr [Y = x3 | Y < 0]

, . . .

. . . ,
Pr [X = xm | X > 0]
Pr [Y = xm | Y < 0]

)

is also increasing. Let Ȳ denote the distribution of Y
conditioned on Y < 1 and let X̄ denote the distribution

of X conditioned on X > 0. The increasingness of
the above sequence implies that there is an index i ∈
{2, . . . ,m − 1} such that Pr

[
X̄ = xj

]
< Pr

[
Ȳ = xj

]
for all j < i, while Pr

[
X̄ = xj

]
≥ Pr

[
Ȳ = xj

]
for all

j ≥ i. Thus, the distribution Ȳ can be obtained from X̄
by a sequence of reallocations of probability mass from
higher points to lower points. Each such a reallocation
decreases the expected value of the distribution by a
positive amount, so E

[
Ȳ
]
≤ E

[
X̄
]
.

Lastly, we make use of the following well-known
fact.

Proposition 6.4. Let a/b be a rational number in
[0, 1] and let c ∈ R≥0. Then a/b ≥ (a− c)/(b− c).

Proof.

a− c
b− c

≤ a− c(a/b)
b− c

=
ab− ac
b(b− c)

=
a(b− c)
b(b− c)

.

The above proposition and lemmas enable us to prove
the upper bound.

Proof. [of Theorem 6.1] By Lemma 6.5, it suffices to
prove that limε→0 inf{R(f, g) : (f, g) ∈ K(0) ∩ L(ε)} ≥
13/25. Let ε ∈ R>0, k ∈ [0, 1) and let (f, g) be an
arbitrary bilateral trade instance in K(0) ∩ L(ε). The
gain from trading at price xm is qm+1

∑
i∈m(1−xi)pm =

qm+1(1−E [X]), while the gain from trading at price x1

is p1E [Y ]. Because our instance is a member of K(0),
these quantities are equal. In fact, for all p ∈ [0, 1) it
holds that

(6.1) GFTf,g(p) = p1E [Y ] = qm+1 − qm+1E [X] .

Using this identity, we derive the following bounds:

qm+1 = p1E [Y ] + qm+1E [X]
≤ p1E [Y ] + εE [X]
≤ p1E [Y | Y < 1] + p1qm+1 + εE [X]

≤ (εE [X] + p1E [Y | Y < 1])
∞∑
j=0

pj1

=
ε

1− p1
E [X] +

p1

1− p1
E [Y | Y < 1] ,

where we used that (f, g) ∈ L(ε) for the first inequality,
and the last equality follows by recursively substituting
qm+1 by p1E [Y | Y < 1] + p1qm+1 + εE [X]. Similarly:

qm+1 ≥ p1E [Y ]
= p1(1− qm+1)E [Y | Y < 1] + p1qm+1

=
p1(1− qm+1)E [Y | Y < 1]

1− p1

≥ p1(1− ε)
1− p1

E [Y | Y < 1] ,



where we used that (f, g) ∈ L(ε) for the last inequality,
and the last equality follows by recursively substituting
qm+1 by p1(1−qm+1)E [Y | Y < 1]+p1qm+1. Using the
above upper and lower bounds on qm+1, we derive three
useful bounds on E [Y ]:

E [Y ] = qm+1 + (1− qm+1)E [Y | Y < 1]

≤ ε

1− p1
E [X] +

p1

1− p1
E [Y | Y < 1]

+ E [Y | Y < 1]

=
ε

1− p1
E [X] +

1
1− p1

E [Y | Y < 1]

Our second bound is as follows:

E [Y ] = qm+1 + (1− qm+1)E [Y | Y < 1]

≥ p1(1− ε)
1− p1

E [Y | Y < 1]

+ (1− ε)E [Y | Y < 1]

≥ 1− ε
1− p1

E [Y | Y < 1] .

Our third bound follows from the first bound:

E [Y ] ≤ ε

1− p1
E [X] +

1
1− p1

E [Y | Y < 1]

≤ ε

1− p1
E [X] +

1
1− p1

E [X | X > 0]

=
ε

1− p1
E [X] +

1
(1− p1)2

E [X]

=
1 + ε(1− p1)2

(1− p1)2
E [X] ,

where we used Lemma 6.6 for the second inequality.
Using the above three bounds, we will now derive

two lower bounds B1(f, g) and B2(f, g) on R(f, g), so
that R(f, g) ≥ max{B1(f, g), B2(f, g)}.

R(f, g) is equal to

=
E [X] + p1E [Y ]
E [max{X,Y }]

≥

(
E [X | X > 0] (1− p1)
+ p1(1− ε)E [Y | Y < 1] /(1− p1)

)
E [X] + E [Y ]

≥

(
E [X | X > 0] (1− p1)
+ p1(1− ε)E [Y | Y < 1] /(1− p1)

)
(

E [X | X > 0] (1− p1) + εE [X] /(1− p1)
+ E [Y | Y < 1] /(1− p1)

)

≥

(
E [Y | Y < 1] (1− p1)
+ p1(1− ε)E [Y | Y < 1] /(1− p1)

)
(

E [Y | Y > 0] (1− p1) + εE [Y | Y < 1]
+ E [Y | Y < 1] /(1− p1)

) ,

where we use Lemma 6.6 in combination with Proposi-
tion 6.4 for the third inequality. Further, it holds that
the above expression is equal to

=
E [Y | Y < 1] (1− p1 + p1(1− ε)/(1− p1))

E [Y | Y > 0] (1− p1 + ε+ 1/(1− p1))

=
1− p1 + p1(1− ε)/(1− p1)

1− p1 + ε+ 1/(1− p1)

≥ 1− p1 + p1/(1− p1)
1− p1 + 1/(1− p1)

− 2ε

=: B1(f, g).

The bound on B2(f, g) is derived as follows.

R(f, g) =
E [X] + p1E [Y ]

E [X] + GFTf,g(OPT)

≥ E [Y ] (1− p1)2/(1 + ε(1− p1)2) + p1E [Y ](
E [Y ] (1− p1)2/(1 + ε(1− p1)2)
+ GFTf,g(OPT)

)

≥ E [Y ] (p1 + (1− p1)2/(1 + ε(1− p1)2))(
E [Y ] (1− p1)2/(1 + ε(1− p1)2)

+
√
p1E [Y ] + GFTf,g(F−1(

√
p1))/

√
p1

)

=
E [Y ] (p1 + (1− p1)2/(1 + ε(1− p1)2))

E [Y ] (1− p1)2/(1 + ε(1− p1)2) + 2
√
p1E [Y ]

=
p1 + (1− p1)2/(1 + ε(1− p1)2)

2
√
p1 + (1− p1)2/(1 + ε(1− p1)2)

=
p1 + (1− p1)2

2
√
p1 + (1− p1)2

− ε

=: B2(f, g),

where the first inequality follows from our third bound
on E [Y ] in combination with Proposition 6.4, and the
second inequality follows from applying Lemma 6.1,
taking c =

√
p1. The second equality follows from (6.1).

Using B1(f, g) and B2(f, g), we can prove the claim.

lim
ε→0

inf{R(f, g) : (f, g) ∈ L(ε)}

≥ lim
ε→0

inf{max{B1(f, g), B2(f, g)} : (f, g) ∈ L(ε)}

= inf

{
max

{
1− p1 + p1/(1− p1)
1− p1 + 1/(1− p1)

,

p1 + (1− p1)2

2
√
p1 + (1− p1)2

}
: p1 ∈ [0, 1)

}
.

Basic calculus shows that the max-expression is mini-
mized at p1 = 1/4, at which it evaluates to 13/25.
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