
On the Complexity of Efficiency and

Envy-Freeness in Fair Division of Indivisible
Goods with Additive Preferences

Bart de Keijzer1, Sylvain Bouveret2, Tomas Klos1, and Yingqian Zhang1

1 Delft University of Technology
B.deKeijzer@student.tudelft.nl, {T.B.Klos,Yingqian.Zhang}@tudelft.nl

2 Onera-DTIM, Toulouse
Sylvain.Bouveret@onera.fr

Abstract. We study the problem of allocating a set of indivisible goods
to a set of agents having additive preferences. We introduce two new im-
portant complexity results concerning efficiency and fairness in resource
allocation problems: we prove that the problem of deciding whether a
given allocation is Pareto-optimal is coNP-complete, and that the prob-
lem of deciding whether there is a Pareto-efficient and envy-free alloca-
tion is Σp

2 -complete.

1 Introduction

The problem of allocating a set of indivisible goods to a set of agents arises in
a wide range of applications including, among others, auctions, divorce settle-
ments, frequency allocation, airport traffic management, fair and efficient ex-
ploitation of Earth Observation Satellites [1]. In many such real-world problems,
one needs to find efficient and fair solutions, where an efficient solution can be
seen informally as ensuring the greatest possible satisfaction to the agents, and
where fairness refers to the need for compromises between the agents’ (often
antagonistic) objectives.

In this paper, we study the resource allocation problem from the point of view
of computational complexity. We restrict our setting to additive preferences. In
other words, the preferences of each agent are represented by a set of weights
w(o), standing for the utility (or satisfaction) she enjoys for each single object
o. The utility of an agent for a subset of objects S is then given by the sum of
the weights of all the objects o in S.

Moreover, we restrict our study to two particular definitions of efficiency
and fairness: Pareto-efficiency (or Pareto-optimality) and envy-freeness. Pareto-
efficient allocations are such that we cannot increase the satisfaction of an agent
without strictly decreasing the satisfaction of another agent. An allocation is
envy-free if and only if each agent likes her share at least as much as the share
of any other agent.

In this paper, we introduce two new complexity results concerning the re-
source allocation problem with additive preferences. Even if the setting seems

F. Rossi and A. Tsoukis (Eds.): ADT 2009, LNAI 5783, pp. 98–110, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

On the Complexity of Efficiency and Envy-Freeness in Fair Division 99

restrictive, we advocate that the particular problems we address are important
enough to justify an extensive study for the following reasons. Firstly, one of
the most natural ways of (compactly) modeling cardinal preferences over sets
of objects (or more generally over combinatorial domains) is to suppose that
they are additive. Notice that this goes far beyond resource allocation: matching
problems, weighted path in a graph, valued constraints satisfaction problems,
etc. Secondly, Pareto-efficiency is one the most prominent notion of efficiency
used in collective decision making problems. Thirdly, envy-freeness is a key con-
cept in the literature about resource allocation (see e.g. [2]), as it provides an
elegant way of encoding the notion of fairness and does not require, contrary to
Rawlsian egalitarianism, the interpersonal comparison of utilities.

This paper contributes to fill a gap. On the one hand resource allocation
with additive preferences have been extensively studied in economics1 (see e.g.
[2,3]), but computational issues (and a fortiori complexity) have rarely been
considered. On the other hand, computational issues in resource allocation with
additive preferences have been studied extensively in computer science (see e.g.
[4,5,6]). However, these works mainly concern the optimization of the system’s
performance as a whole. The properties of Pareto-efficiency and fairness are
rarely addressed. Two notable exceptions are the work from Lipton et al. [7]
that studies envy-freeness in fair resource allocation problems mainly from an
algorithmic point of view, and the work from Bouveret and Lang [8] that in-
troduces complexity results for fair resource allocation problems under different
hypotheses, including additive preferences. In the latter paper, one result of
importance misses, though being conjectured: the complexity of the problem of
deciding whether there is a Pareto-efficient and envy-free allocation in a resource
allocation problem with additive preferences. This is one of the two main com-
plexity results introduced in our paper and is studied in section 4. The other
main complexity result is about the related problem of deciding whether a given
allocation is Pareto-efficient when agents have additive preferences. This result
is more easily obtained, and is explained in section 3.

2 Background and Notations

In what follows, we will write vectors using arrowed letters (e.g. −→v), or brackets
for their explicit representations (e.g. 〈v1, . . . , vn〉). vi will denote the ith com-
ponent of a vector. Moreover, for any finite set X , |X | will denote the cardinal
of X .

In a resource allocation problem, a set of resources must be divided among a
set of agents. Since we will focus on additive utility functions only, it suffices to
use the following definition of a resource allocation instance:

Definition 1 (Resource allocation instance). A resource allocation problem
is a triple P = 〈A, O, w〉, where A is a set of agents, O is a set of indivisible
items, and w : A × O → R is a weight function.
1 In most social choice studies, utilities stand for amounts of money. Thus additivity

is a very natural assumption in this framework.

100 B. de Keijzer et al.

We define an allocation as follows:

Definition 2 (Allocation). An allocation for P = 〈A, O, w〉 is a vector −→π =
〈π1, . . . , πn〉 ∈ (2O)n such that for all i, j ∈ A, i �= j ⇒ πi ∩ πj = ∅. If for every
o ∈ O there exists an i such that o ∈ πi then −→π is a complete allocation.

Thus, in the problems that we will focus on, the items are non-sharable.

Definition 3 (Individual utility, utility profile). Let P = 〈A, O, w〉 be a
resource allocation instance. For all i ∈ A and πi ⊆ O, ui(πi) =

∑
o∈πi

w(i, o)
is agent i’s individual utility regarding πi. Given an allocation −→π , the vector
〈u1(π1), . . . , un(πn)〉 is the utility profile associated to −→π .

Two properties that we will focus on, are Pareto-efficiency and envy-freeness.

Definition 4 (Pareto-efficiency). Let −→π ,−→π ′ be two allocations. −→π Pareto-
dominates −→π ′ if and only if (a) for all i, ui(πi) ≥ ui(π′

i), and (b) there exists an
i such that ui(πi) > ui(π′

i).
−→π is (Pareto-)efficient (or Pareto-optimal) if and

only if there is no −→π ′ such that −→π ′ Pareto-dominates −→π .

Definition 5 (Envy & envy-freeness). We say that an agent i ∈ A envies
another agent j ∈ A iff ui(πj) > ui(πi). An allocation −→π is envy-free if and
only if ui(πi) ≥ ui(πj) holds for all i and j �= i.

In this paper, we will refer to some complexity classes located in the polynomial
hierarchy. We assume that the reader is familiar with the complexity class NP
and its complementary class coNP. Σp

2 = NPNP is the class of all languages
recognizable by a nondeterministic Turing machine working in polynomial time
using NP oracles. Its complementary class is denoted by Πp

2 .

3 Complexity of Deciding Pareto-optimal Allocations for
Agents with Additive Utility

In this section we prove that it is coNP-complete to decide whether an allocation
of resources is Pareto-optimal if the agents have additive utility functions. coNP-
completeness has already been proved for a generalized case where agents express
their utilities explicitly for each bundle of items [9]. coNP-completeness is also
known for the case where the agents have k-additive utility functions and k ≥ 2
[10].2 This is not explicitly stated in [10], but it follows directly from their proof
that it is NP-complete to decide whether it is possible to increase the utilitarian
collective utility (i.e. sum of individual utilities) of a given allocation, when
the agents have 2-additive utility functions. In addition to [10], the problem of
maximizing utilitarian collective utility is also explored in [11].

2 Informally, an agent has k-additive utility if she has a coefficient associated for every
set of k items, and her individual utility is the sum of all coefficients associated to
the sets of k items that she gets.

On the Complexity of Efficiency and Envy-Freeness in Fair Division 101

The problem we deal with is the following.

Problem 1. Pareto-optimality with additive utility functions (po-add)
INSTANCE: A resource allocation instance P = 〈A, O, w〉, an allocation −→π .
QUESTION: Is −→π Pareto-optimal?

Theorem 1. po-add is coNP-complete.

Membership of coNP is easy to establish: a nondeterministic Turing machine
could guess an allocation −→π ′, and check whether −→π ′ Pareto-dominates −→π .

To prove coNP-hardness, we give a Karp reduction (i.e. polynomial time
many-one reduction) from the coNP-complete language 3unsat.

Problem 2. Unsatisfiability of propositional 3CNF formulas (3unsat)
INSTANCE: A set of clauses C denoting a propositional formula in 3CNF.
QUESTION: Is C unsatisfiable?

Let C be a set of propositional clauses of size 3 (we will suppose w.l.o.g. that
the same literal does not appear more than once in each clause), L(C) be the
set of literals in C, and V (C) be the set of variables in C. We will write P(C)
to denote the following resource allocation instance:

Agents: 2|V (C)|+|C|+2 agents:
⋃

v∈V (C){av, av}∪
⋃

c∈C{ac}∪{aun, asat},
Objects: 4|C| + |V (C)| + 1 objects:

⋃
c∈C{oc,l | l ∈ c} ∪ ⋃

v∈V (C){ov} ∪
⋃

c∈C{oc} ∪ {osat},
Preferences: w(i, o) = 0 for all i and all o, except:

– w(av, ov) = |{c | v ∈ c ∈ C}|, and w(av, ov) = |{c | ¬v ∈ c ∈
C}| for all v ∈ V (C) ;

– w(av, oc,v) = 1 if v ∈ c, and w(av, oc,¬v) = 1 if ¬v ∈ c for
each v ∈ V (C) and each c ∈ C ;

– w(ac, oc,l) = 1 for each c ∈ C and each l ∈ c ;
– w(ac, oc) = 1 for all c ∈ C ;
– w(aun, ov) = 1 for all v ∈ V (C) ;
– w(asat, oc) = 1 for all c ∈ C ;
– w(aun, osat) = |V (C)| + 1;
– w(asat, osat) = |C|.

Let I be a partial truth assignment of the variables in C. We will define its
corresponding allocation −→π (I) as follows:

– π(I)av = {ov} if I(v) = true and π(I)av = {oc,v | v ∈ c ∈ C} otherwise, for
each v ∈ V (C);

– π(I)av
= {ov} if I(v) = false and π(I)av

= {oc,¬v | ¬v ∈ c ∈ C} otherwise,
for each v ∈ V (C);

– for each c ∈ C: π(I)ac = {oc} if I �� c, and π(I)ac = {oc,l | l ∈ C ∧ I � l}
otherwise;

102 B. de Keijzer et al.

– π(I)aun = {osat} if I is complete, and
⋃

v∈V (C),I(v) �∈{true,false}{ov} other-
wise;

– π(I)asat = {osat} if I is partial, and {oc | I � C} otherwise.

It should be clear that for each assignment I, −→π (I) is well-defined.
Let I∅ be the empty assignment (i.e. the partial truth-assignment that leaves

all variables unassigned). Our reduction transforms a 3unsat instance C into
the po-add-instance 〈P(C), I∅〉.

We will now give an example of this reduction. Consider the 3unsat instance
given by the set of clauses {c1 = {v1, v2,¬v3}, c2 = {¬v1,¬v2,¬v3}}.

If we run the reduction process on this instance, we get the po-add-instance
that is displayed in the table below. The columns of the table represent the
agents and the rows of the table represent the items. The entries in the table are
the weights. An entry is displayed in boldface italic and between brackets if
the item of the corresponding row is allocated to the agent of the corresponding
column. Empty cells in the table should be regarded as containing zero-weights.

ac1 ac2 av1 av1 av2 av2 av3 av3 aun asat

ov1 1 1 [1]
ov2 1 1 [1]
ov3 2 [1]
oc1 [1] 1
oc2 [1] 1

oc1,v1 1 [1]
oc1,v2 1 [1]

oc1,¬v3 1 [1]
oc2,¬v1 1 [1]
oc2,¬v2 1 [1]
oc2,¬v3 1 [1]

osat 4 [2]

Lemma 1. For each model M for C, −→π (M) Pareto-dominates −→π (I∅).

Proof. In −→π (M), agent aun has strictly higher utility: uaun(π(M)aun) = |C|+1,
while uaun(π(I∅)aun) = |C|. By definition of −→π (M), the utility of all other agents
is in −→π (M) at least as high as in −→π (I∅). ��
Lemma 2. If C is unsatisfiable, then −→π (I∅) is Pareto-optimal.

Proof. Suppose for contradiction that there is an allocation −→π ′ that Pareto-
dominates −→π (I∅).

There is at least one agent a such that ua(π′
a) > ua(π(I∅)a). It can be easily

proved that, starting from I∅, strictly increasing the utility of any agent in A \
{aun, asat} implies reallocating at least one item ov from agent aun’s share to
another agent. Then, the only solution for not decreasing aun’s utility is to give
her osat.

So then {oc | c ∈ C} ∈ π′
asat

. Consequently, for all ac with c ∈ C we must
have |{oc,l | l ∈ c ∧ oc,l ∈ π′

ac
}| ≥ 1. Let o ∈ {oc,l | l ∈ c ∧ oc,l ∈ π′

ac
}. Let a′

be the agent for which it holds that o ∈ π(I∅)a′ (so a′ ∈ {av, av}). Let a′ be the
agent in {av, av} that does not equal a′. It must now be that ov ∈ π′

a′ , and as a
consequence we now know that π(I∅)a = π′

a.

On the Complexity of Efficiency and Envy-Freeness in Fair Division 103

So, for each v ∈ V (C) there are no two objects oc,v and oc′,¬v with v ∈ c,
¬v ∈ c′, and c, c′ ∈ C such that oc,v ∈ πac and oc′,¬v ∈ π′

ac′ . It then follows
immediately from the construction of the reduction that there is a complete
interpretation I such that −→π ′ = −→π (I). Moreover, one can check that I � c for
each c ∈ C. Therefore, I is a model of C, and we have a contradiction. ��
Proof (Theorem 1). Let C be a set of clauses of size 3. By Lemma 1 and 2, we
have that C is unsatisfiable if and only if −→π (I∅) is a Pareto-optimal allocation for
P(C). The reduction from C to 〈P(C),−→π (I∅)〉 can clearly be done in polynomial
time, hence coNP-hardness is proved. ��

4 Complexity of Deciding Existence of Efficient and
Envy-Free Allocations for Agents with Additive Utility

For this section, we are interested in finding allocations that are both Pareto-
efficient and envy-free.

We will now state the problem and prove that this problem is Σp
2 -complete.

Problem 3. Efficient & envy-free allocation existence with additive utility func-
tions (∃-eef-add)
INSTANCE: A resource allocation instance P = 〈A, O, w〉.
QUESTION: Does there exist an allocation that is both Pareto-efficient and

envy-free?

Theorem 2. ∃-eef-add is Σp
2 -complete.

We will prove Σp
2 -completeness by a Karp reduction from the complement of the

Πp
2 -complete language ∀∃3cnf [12].

Problem 4. Doubly quantified 3CNF satisfiability (∀∃3cnf)
INSTANCE: A set V∀ of propositional variables, a set V∃ of propositional vari-

ables, a set C of clauses of three literals over the variables V∀∪V∃.
QUESTION: Does there exist for each assignment to the variables in V∀ an

assignment to the variables in V∃ that satisfies C?

Let F = 〈V∀, V∃, C〉 be an instance of ∀∃3cnf. We will assume w.l.o.g. that every
possible literal occurs at least once in C, and that a literal does not appear more
than once in each clause. Let #occ∀ be the number of literal occurrences in C
of variables in V∀. We will write L∀ and L∃ for the sets of literals of variables
in V∀ and V∃ respectively. We will write P(F) to denote the following resource
allocation instance (also see the example that follows after Definition 6):

Agents: 4|V∀|+2|V∃|+ |C|+#occ∀+3 agents:
⋃

v∈V∀{a+
v , a+cl

v , av, av}∪⋃
v∈V∃{av, av}

⋃
c∈C{ac} ∪ ⋃

c∈C{aen
c,l | l ∈ c ∩ L∀} ∪

{aun, asat, aen}

104 B. de Keijzer et al.

Objects: 4|V∀| + |V∃| + 5|C| + L∀ + 3 objects:
⋃

v∈V∀{oen
v , ocmp

v , oh
v , oh

v} ∪⋃
v∈V∃{ov} ∪

⋃
c∈C,l∈c{oc, o

cmp
c oc,l} ∪

⋃
c∈C{oen

c,l | l ∈ c ∩ L∀} ∪
{osat, oen1, oen2}

Preferences: w(i, o) = 0 for all i and all o, except:
– For all v ∈ V∀ and o ∈ {oen

v , oc
v, oh

v , oh
v}: w(a+

v , o) = 1 and
w(a+cl

v , o) = 1;3

– For all v ∈ V∀: w(av, oh
v) = |{c | v ∈ c}|, w(av , oh

v) =
|{c | ¬v ∈ c}|, w(av, oc,v) = 1 for all c ∈ C where v ∈ c,
and w(av, oc,¬v) = 1 for all c ∈ C where ¬v ∈ c;

– For all v ∈ V∃: w(av , ov) = |{c | v ∈ c}|, w(av , ov) =
|{c | ¬v ∈ c}|, w(av, oc,v) = 1 for all c ∈ C where v ∈ c,
and w(av, oc,¬v) = 1 for all c ∈ C where ¬v ∈ c;

– For all c ∈ C: w(ac, oc) = M , w(ac, o
cmp
c) = M − 1, and

w(ac, oc,l) = 1 for all l ∈ c;
– For all (c, l) where c ∈ C, l ∈ c ∩ L∀: w(aen

c,l, oc) = M ,
w(aen

c,l, oc,l) = 1, w(aen
c,l , o

en
c,l) = M ;

– For all c ∈ C: w(asat, oc) = 1, w(asat, osat) = |C|,
w(asat, oen1) = 1

2 ;
– For all c ∈ C: w(aun, ocmp

c) = 1; For all v ∈ V∀:
w(aun, ocmp

v) = 1; For all v ∈ V∃: w(aun, ov) = 1;
– w(aun, osat

c) = |V∃| + |V∀| + |C| + 1; w(aun, oen1) = 2(|V∃| +
|V∀| + |C| + 1); w(aun, oen2) = 3(|V∃| + |V∀| + |C| + 1) − 1;
w(aen, oen2) = M ;

where M is a large number. It suffices to take for M the sum of
all weights that are not defined in terms of M .

For our proof that ∃-eef-add is Σp
2 -complete, we need the notion of a special

type of allocation for P(F). An example of an X∀-allocation is given in the
example-instance that follows after this proof.

Definition 6 (V∀-assignments and V∀-allocations). For F , we define a V∀-
assignment as any complete assignment to the variables in V∀ only. Given a
V∀-assignment I, we define a corresponding allocation −→π (I) for P(F) in the
following way:

– π(I)a+
v

= {oen
v } for each v ∈ V∀;

– π(I)a+cl
v

= {oh
v} if I(v) = true and {oh

v} otherwise, for each v ∈ V∀;
– π(I)av = {oc,v | v ∈ c} ∪ {oh

v} if I(v) = false, and {oc,v | v ∈ c} otherwise,
for each v ∈ V∀;

– π(I)av
= {oc,¬v | ¬v ∈ c} ∪ {oh

v} if I(v) = true, and {oc,¬v | ¬v ∈ c}
otherwise, for each v ∈ V∀;

– π(I)av = {oc,l | l ∈ c} for each l ∈ L∃;
– π(I)ac = {oc} for each c ∈ C;
– π(I)aen

c,l
= {oen

c,l} for each c, l where c ∈ C and l ∈ c ∩ L∀;
– π(I)aun = {ocmp

c | c ∈ C} ∪ {ov | v ∈ V∃} ∪ {ocmp
v | v ∈ V∀} ∪ {oen1};

3 So, a+cl
v is a clone of a+

v .

On the Complexity of Efficiency and Envy-Freeness in Fair Division 105

– π(I)asat = {osat};
– π(I)aen = {oen2};

Given a V∀-assignment I, we define the set of V∀-allocations corresponding to
I as follows: any allocation that can be obtained from π(I) by a sequence of
swaps of the bundles of a+

v and a+cl
v for any v ∈ V∀, followed by a sequence of

reallocations of oc,l to aen
c,l for any l, c with c ∈ C, l ∈ c ∩ L∀, and I �� l.4

Let us give an example of this reduction, together with a V∀-allocation. Let the
∀∃3cnf-instance be F = 〈V∀ = {v1}, V∃ = {v2}, C = {c1 = {v1,¬v1, v2}, c2 =
{v2,¬v2, v1}}〉. Then P(F) looks as follows.

ac1 ac2 a+
v1

a+cl
v1

av1 av1 av2 av2 aen
c1,v1

aen
c1,¬v1

aen
c2,v1

aun asat aen

oc1 [M] M M 1
oc2 [M] M 1

ocmp
c1

M-1 [1]

ocmp
c2

M-1 [1]

oc1,v1 1 1 [1]
oc1,¬v1 1 [1] 1

oc1,v2 1 [1]
oc2,v2 1 [1]

oc2,¬v2 1 [1]
oc2,v1 1 1 [1]

oh
v1

1 1 [2]

oh
v1

[1] 1 1

oen
v1

1 [1]

ocmp
v1

1 1 [1]

ov2 2 1 [1]
oen

c1,v1
[M]

oen
c1,¬v1

[M]

oen
c2,v1

[M]

osat 5 [2]
oen1 [10] 1

2
oen2 14 [M]

A V∀-allocation corresponding to a V∀-assignment I with I(v1) = false is
displayed in boldface italic and between brackets. This allocation has been
obtained from π(I) by swapping the bundles of a+

v1
and a+cl

v1
, and reallocating

item oc1,v1 to aen
c1,v1

, and item oc2,v1 to aen
c2,v1

.
In the following proofs, we will restrict attention to non-wasting allocations,

that is, allocations π such that for all (o, a) ∈ O ×A, o ∈ π(a) ⇒ w(a, o) > 0. It
is obvious that every Pareto-efficient allocation is a non-wasting one.

Lemma 3. Let −→π be an allocation. −→π is envy-free if and only if −→π is a V∀-
allocation.

Proof. (⇐) For any arbitrary V∀-allocation, it is easy (although a bit tedious)
to check for each type of agent that she does not envy any other agent.

(⇒) We show this by reasoning about how resources should be allocated
in order to prevent envy. We start by noticing that oen2 must necessarily be
allocated to aen. As a consequence oen1 must be allocated to aun, after which

4 To remove any confusion, see the example allocation that follows, together with the
explanation.

106 B. de Keijzer et al.

osat should go to asat. In order prevent aun from envying aen, we should give
aun all remaining items for which his weight is positive. Now that we know we
cannot allocate ocmp

c to ac (for any c ∈ C), we must give oc to ac. For the same
reason, for all v ∈ V∃ we cannot give ov to av or av, thus these agents should
receive all remaining resources for which they have a positive weight. Next, we
notice that we should give oen

c,l to aen
c,l because aen

c,l is the only agent with positive
weight for this item. Now we see that for all c, l with l ∈ c ∩ L∀ and c ∈ C, we
cannot give oc,l to ac, because aen

c,l would then envy ac. Next, for all v ∈ V∀ we
must allocate oen

v to either a+
v or a+cl

v . Because the weights of both agents are
exactly the same, suppose w.l.o.g. that we allocate oen

v to a+
v . In order to prevent

envy between the two agents, we need to allocate either oh
v or oh

v (but not both)
to a+cl

v (we denote by o this item and o the other one of the pair). Since o cannot
be allocated to a+

v nor to a+cl
v , o must go to av if o = oh

v and av otherwise. There
is only one agent left that we can allocate o to. Lastly, let a ∈ {av, av} be the
agent that does not get o. All items that a has positive weight for should now
be allocated to a, in order to prevent a from envying the agent that gets o.

The restrictions that we just deduced, restrict the set of possibly efficient and
envy-free allocations to the set of V∀-allocations. ��
Lemma 4. No two V∀-allocations dominate each other.

Proof. Let −→π and −→π ′ be two V∀-allocations. If −→π and −→π ′ correspond to the same
V∀-assignment, then −→π does not dominate −→π ′ because swapping the bundles of
o+

v and o+cl
v for any v ∈ V∀ does not increase nor decrease the utility of both

agents. Reallocating oc,l between the agents aen
c,l and av (or av) for any l, c with

l ∈ c∩L∀ and c ∈ C can never result in a dominating allocation either, because
both agents have exactly the same weights for all of these items.

For the case that −→π and −→π ′ correspond to different V∀-assignments, let I
and I ′ be the two V∀-assignments respectively, and let v be a variable such
that I(v) �= I ′(v). We will show that −→π does not Pareto-dominate −→π ′. Assume
w.l.o.g. that I(v) = true and I ′(v) = false. In −→π we have that oh

v is allocated
to av; in −→π ′ this is not the case. Because of the weights that av has, we now
know that uav

(πav
) ≤ uav

(π′
av

). We can divide this up in two cases: in the
case that uav(πav) < uav(π′

av
), we have immediately that −→π does not Pareto-

dominate −→π ′. In the other case that uav
(πav

) = uav
(π′

av
), any item oc,¬v in the

set {oc,¬v | v ∈ c ∈ C} is allocated to aen
c,¬v under allocation −→π , but not under

allocation −→π ′, so in this case we have uac,¬v (πac,¬v) < uac,¬v(π′
ac,¬v

), hence −→π
does not Pareto-dominate −→π ′. ��
Lemma 5. Given a V∀-assignment I for F , and a V∀-allocation −→π for P(F)
that corresponds to I; if C is satisfiable on I (i.e. I can be extended such that C
is satisfied), then there is an allocation −→π ′ that Pareto-dominates −→π .

Proof. Let I ′ be a complete assignment that satisfies C such that I ⊆ I ′. The
following allocation −→π ′ Pareto-dominates −→π .

On the Complexity of Efficiency and Envy-Freeness in Fair Division 107

– For all c ∈ C: π′
c = {oc,l | l ∈ c ∧ I ′ � l} ∪ {ocmp

c }.
– For all v ∈ V∀: Let a = av, a = av, o = oh

v if I(v) = true, and let a = av,
a = av, o = oh

v otherwise. π′
a = {o} and π′

a = πa. Moreover, if o ∈ πa+
v

then
π′

a+
v

= πa+
v
\{o} ∪ {ocmp

v } and π′
a+cl

v
= πa+cl

v
; otherwise π′

a+cl
v

= πa+cl
v

\{o} ∪
{ocmp

v } and π′
a+

v
= πa+

v
.

– For all v ∈ V∃: If I ′(v) = true, then π′
av

= {ov} and π′
av

= πav
; otherwise

π′
av

= {ov} and π′
av

= πav .
– For all c, l such that c ∈ C and l ∈ c ∩ L∀: π′

aen
c,l

= πaen
c,l

.
– π′

aun
= {osat, oen1}; π′

asat
= {oc | c ∈ C}; π′

aen
= {oen2}.

In −→π ′, the utility of aun is strictly higher than in −→π . Moreover, one can easily
check that in −→π ′ the utilities of all other agents are at least as high as in −→π . ��
Lemma 6. Given a V∀-assignment I for F , and a V∀-allocation −→π in P(F) that
corresponds to I; if C is unsatisfiable on I, then −→π is Pareto-efficient.

Proof. We will first show that in any −→π ′ that Pareto-dominates −→π we necessarily
have {oc | c ∈ C} ⊆ π′

asat
. We do this by exhaustion on the type of agent. Let−→π ′ Pareto-dominate −→π . Let a be an agent such that ua(π′

a) > ua(πa). We show
for each of the following cases of a that necessarily {oc | c ∈ C} ⊆ π′

asat
.

Case 1: a = aun: In this case we clearly have osat ∈ π′
a, and because

w(asat, osat) = |C| we have as a consequence that {oc | c ∈ C} ⊆ π′
asat

.
Case 2: a ∈ {av, av | v ∈ V∃}: Let a = av for an arbitrary v ∈ V∃ (the case that

a = av is analogous). It must be that ov ∈ π′
a, so then, since ov has been

removed from aun’s share, we need to give her osat as a compensation. From
the argument in the previous case we get {oc | c ∈ C} ⊆ π′

asat
.

Case 3: a ∈ {a+
v a+cl

v | v ∈ V∀}: Let a = a+
v for an arbitrary v ∈ V∀ (the case

that a = a+cl
v is analogous). Assume w.l.o.g. that I(v) = true. Because

a+
v and a+cl

v have identical weights, we may also w.l.o.g. assume that π′
a+

v
∩

πa+cl
v

= ∅. If ocmp
v ∈ π′

a, then from the argument in case 1 it follows that
{oc | c ∈ C} ⊆ π′

asat
. If oh

v ∈ π′
a, then it must be that {oc,¬v | ¬v ∈ c ∈

C} ∩ πav
= ∅ and {oc,¬v | ¬v ∈ c ∈ C} ⊆ π′

av
. Thus, for all c ∈ C with

¬v ∈ c, we have oc ∈ π′
aen

c,¬v
. Consequently, we get ocmp

c ∈ π′
ac

; and therefore
by our argument that we gave in Case 1, {oc | c ∈ C} ⊆ π′

asat
.

Case 4: a ∈ {av, av | v ∈ V∀}: Assume w.l.o.g. that I(v) = true. For any arbi-
trary v ∈ V∀, let a = av. From the last part of the argument that we gave
for the previous case, it follows directly that {oc | c ∈ C} ⊆ π′

asat
. Now let

a = av. Necessarily we have oh
v ∈ π′

av
, and from our reasoning in Case 3 it

follows that {oc | c ∈ C} ⊆ π′
asat

.
Case 5: a ∈ {ac | c ∈ C}: Let a = ac for an arbitrary c ∈ C. If ocmp

c ∈ π′
ac

, it
follows from Case 1 that {oc | c ∈ C} ⊆ π′

asat
. If oc,l ∈ π′

ac
then the same

conclusion follows, but this time from the last part of the proof of Case 3.
Case 6: a ∈ aen

c,l | c ∈ C ∧ l ∈ c ∩ L∀}: Let a = aen
c,l for an arbitrary c, l with

c ∈ C and l ∈ c ∩ L∀. We must have that oc ∈ π′
aen

c,l
or oc,l ∈ π′

aen
c,l

(or
both), in both cases it follows from the last part of the proof of Case 3 that
{oc | c ∈ C} ⊆ π′

asat
.

108 B. de Keijzer et al.

Case 7: a = asat: Let C′ be any strict subset of C. If {oc | c ∈ C′} ⊆ π′
a, then

∀c ∈ C : ocmp
c ∈ ac, so by the arguments in Case 1, {oc | c ∈ C} ⊆ π′

a. If
oen1 ∈ π′

a, then the same follows, also from the proof in Case 1.
Case 8: a = aen: This case is obviously impossible.

Now we will finish the proof by obtaining the contradiction that an extension I ′

of I can be made to the variables in V∃, such that I ′ satisfies C.
Recall that we assume that −→π ′ Pareto-dominates −→π , and as we have just

shown, {oc | c ∈ C} ⊆ π′
asat

. For all c ∈ C : ocmp
c ∪ Lc ⊆ π′

ac
, where Lc is any

subset of {oc,l | l ∈ c}. Let oc,l ∈ Lc and let v ∈ l. There are two cases: either
v ∈ V∀ or v ∈ V∃.

Suppose v ∈ V∀. Let a = av, a = av if I(v) = true, and let a = av, a = av

otherwise. It is easy to see that � ∃oc,l ∈ Lc : oc,l ∈ πaen
c,l

and � ∃oc,l ∈ Lc : oc,l ∈ πa,
so oc,l ∈ πa. As a consequence, we know that l is satisfied by I. Hence, it must
hold that if oc,l ∈ Lc, then c is satisfied by I.

Suppose v ∈ V∃. Let a = av if l = ¬v and let a = av otherwise. Then it must
be that oc,l ∈ πa and ov ∈ π′

a.
From the construction of the reduction, it follows that there must exist an

assignment to the variables in V∃ that satisfies all clauses not satisfied by I, i.e.,
we obtain the contradiction that C is satisfiable on I. ��

Proof (Theorem 2). Membership is easily established: A nondeterministic NPNP

Turing machine that decides this problem could work as follows. On input
〈A,O, w〉:

1. Guess an allocation −→π .
2. Check whether −→π is envy-free. If not, then REJECT.
3. Check whether −→π is Pareto-optimal by querying the oracle. If it is, then

ACCEPT. Otherwise, REJECT.

The difficult part is proving Σp
2 -hardness.

Given a ∀∃3cnf-instance F = 〈V∀, V∃, C〉, we can clearly construct P(F) in
polynomial time.

If F is a NO-instance of ∀∃3cnf, then there is a V∀-assignment I that cannot
be extended to an assignment that satisfies C. Let −→π be a V∀-allocation for
P(F) that corresponds to I. By Lemma 3, −→π is envy-free and by Lemma 6, −→π
is Pareto-efficient. Hence, P(F) is a YES-instance of ∃-eef-add.

If F is a YES-instance of ∀∃3cnf, then for any V∀-assignment I that we pick,
C is satisfiable on I. Let −→π be any V∀-allocation for P(F) that corresponds to
I. By Lemma 5, there is an allocation −→π ′ that Pareto-dominates −→π . By Lemma
4, −→π is not a V∀-allocation. Finally, because −→π is not a V∀-allocation, it follows
from Lemma 3 that −→π ′ is not envy free. Because we had taken −→π to be an
arbitrary V∀-allocation for an arbitrary V∀-assignment I, it follows that P(F) is
a NO-instance of ∃-eef-add.

Therefore we conclude that ∃-eef-add is Σp
2 -hard. ��

On the Complexity of Efficiency and Envy-Freeness in Fair Division 109

5 Discussion

We have introduced in this paper two new complexity results for the resource
allocation problem with additive preferences, thus filling an important gap in
the previous complexity studies of this problem, mainly in [8]. Our main result
shows that, even with very simple preferences (additive), deciding whether there
is a Pareto-efficient and envy-free allocation is computationally very hard. This
goes slightly beyond the results in [8], as it shows that the high complexity
of the problem is not only related to the presence of preferential dependencies
(complementarity or substitutability) between objects, since the hardness holds
under the assumption of additive independence.

There are several natural ways of overcoming this high complexity. The first
one could be to impose some restrictions on the setting to decrease the complex-
ity. However, as stated in [8], the natural restrictions of the problem imply a huge
loss of generality, and thus are of limited practical interest. Another solution is
to relax envy-freeness or Pareto-efficiency, such as in [7], where envy-freeness
is replaced by a measure of envy, and where allocations are only required to be
complete (that is, all objects must be allocated) instead of being Pareto-efficient.
An idea could be to mix collective utility maximization (e.g. classical utilitarian
or egalitarian) with envy-minimization.5 And lastly, designing efficient approxi-
mation algorithms could be a way of getting around the high complexity of the
problem.

References

1. Chevaleyre, Y., Dunne, P.E., Endriss, U., Lang, J., Lemâıtre, M., Maudet, N.,
Padget, J., Phelps, S., Rodŕıguez-Aguilar, J.A., Sousa, P.: Issues in multiagent
resource allocation. Informatica 30, 3–31 (2006); Survey paper

2. Brams, S.J., Taylor, A.: Fair Division: From Cake-Cutting to Dispute Resolution.
Cambridge Univ. Press, Cambridge (1996)

3. Demko, S., Hill, T.P.: Equitable distribution of indivisible items. Mathematical
Social Sciences 16, 145–158 (1998)

4. Shehory, O., Kraus, S.: Methods for Task Allocation via Agent Coalition Forma-
tion. Artificial Intelligence 101(1-2), 165–200 (1998)

5. Modi, P.J., Jung, H., Tambe, M., Shen, W.M., Kulkarni, S.: A dynamic distributed
constraint satisfaction approach to resource allocation. In: Walsh, T. (ed.) CP 2001.
LNCS, vol. 2239, pp. 685–700. Springer, Heidelberg (2001)

6. de Weerdt, M.M., Zhang, Y., Klos, T.B.: Distributed task allocation in social net-
works. In: Huhns, M., Shehory, O. (eds.) Proceedings of the 6th International
Conference on Autonomous Agents and Multiagent Systems, Bradford, UK, pp.
488–495. IFAAMAS, Research Publishing Services (2007)

7. Lipton, R.J., Markakis, E., Mossel, E., Saberi, A.: On approximately fair alloca-
tions of indivisible goods. In: EC 2004: Proceedings of the 5th ACM conference on
Electronic commerce, pp. 125–131. ACM Press, New York (2004)

5 A similar idea is proposed in [13].

110 B. de Keijzer et al.

8. Bouveret, S., Lang, J.: Efficiency and envy-freeness in fair division of indivisi-
ble goods: Logical representation and complexity. Journal of Artificial Intelligence
Research (JAIR) 32, 525–564 (2008)

9. Dunne, P.E., Wooldridge, M., Laurence, M.: The complexity of contract negotia-
tion. Artificial Intelligence 164(1-2), 23–46 (2005)

10. Chevaleyre, Y., Endriss, U., Estivie, S., Maudet, N.: Multiagent resource alloca-
tion with k-additive utility functions. In: Proceedings of the First International
Workshop on Computer Science and Decision Theory, Paris, France, pp. 83–100
(2004)

11. Conitzer, V., Sandholm, T., Santi, P.: Combinatorial auctions with k-wise de-
pendent valuations. In: Proceedings of the 20th National Conference on Artificial
Intelligence (AAAI 2005), pp. 248–254. AAAI Press, Menlo Park (2005)

12. Schaefer, M., Umans, C.: Completeness in the polynomial-time hierarchy: a
compendium. SIGACT News (September 2002)

13. Brams, S.J., King, D.L.: Efficient fair division: Help the worst off or avoid envy?
Rationality and Society 17(4), 387–421 (2005)

	On the Complexity of Efficiency and Envy-Freeness in Fair Division of Indivisible Goods with Additive Preferences
	Introduction
	Background and Notations
	Complexity of Deciding Pareto-optimal Allocations for Agents with Additive Utility
	Complexity of Deciding Existence of Efficient and Envy-Free Allocations for Agents with Additive Utility
	Discussion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

